
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
UNIVERSITY OF BRITISH COLUMBIA

CPEN 211 Computer Systems I, Fall 2024
Lab 7 Bonus: Supporting Branches in the “Simple RISC Machine”

This bonus is autograded only, the submission deadline is 11:59 PM Dec 6 (all lab sections).

1 Introduction
This bonus lab completes your Simple RISC Machine by adding two types of branch instructions. When
compiling high-level programming languages such as C, C++ or Java, or interpreting a dynamic language
such as Python, conditional branch instructions are used to implement “for” and “while” loops and “if”
and “switch” statements. Function calls are also implemented using a form of branch instruction. If you
completed all of Lab 5 to 7, the changes in this lab will make your Simple RISC Machine “Turing complete”.
This means a program can be written to implement any algorithm that can run within the 256 word memory
you added in Lab 7. How fast your computer runs depends on your detailed implementation such as how
many states you used in your FSM from Lab 7 or whether you pipelined your design. To make this lab a bit
more fun, a part of your mark will be based upon how fast your final Simple RISC Machine is compared to
your classmates.

When you submit your code it will be ranked versus other submissions that have already been submitted.
Your code will not be ranked if our correctness checks fail (and moreover will not give you any feedback
on what fails). This is to encourage you to test your design; you’ll have to wait until after the submission
deadline to get detailed feedback on any failing tests (you can still earn part marks even if some checks fail).
1.1 Branch Instructions
In Lab 7 the program counter (PC) was incremented after each instruction. To support loop and “if” con-
structs at the assembly level we introduce conditional branch instructions. In the Simple RISC Machine
conditional branch instructions either update the PC to PC+1 or PC+1+sx(im8), where sx(im8) is the lower
8-bits of the instruction sign extended to 9-bits. When executing the conditional branch instruction the
choice between updating the PC to PC+1 or PC+1+sx(im8) is made by considering the values of Z, N, and
V status flags. The CMP (compare) instruction from Lab 6 is used to set these flags. Thus, a conditional
branch instruction determines which instruction to execute next based on the result of the computation so
far. The ability of conditional branches to select which instruction to execute based upon the results of a
past computation transforms your Simple RISC Machine into a general-purpose computer.

An example of a simple C program that includes a loop is shown in Figure 1. The corresponding
Simple RISC Machine program is shown in Figure 2. The right side of Figure 2 shows the assembly
code that defines the program. Rather than typing this out you can simply download it from Piazza (see
lab7bonus_fig2.s). The left side of the figure shows the corresponding memory addresses where each
instruction and data element is placed in memory. Finally, the middle portion shows the contents of memory,
in binary. Notice that any given memory location can contain either instructions or data and there is nothing
about the memory that distinguishes data from instructions. The program in Figure 2 adds up the values in
array “amount” identified by the label amount: on line 24 and stores the total in the memory location with
address 0x14 identified by the label “result” on line 29. The initial value of “result” (memory address 0x14)
is zero, but after the program reaches the HALT instruction the contents of memory location 0x14 should
contain 850 (0000001101010010 in binary).

The only instruction in Figure 2 that is new versus Lab 7 is the “BLT” instruction on line 16. As in
ARM (see Flipped Lecture #4), BLT stands for “branch if less than”. The BLT instruction determines the
next program counter (PC) value by comparing the negative (N) and overflow (V) flags. Recall from Lab 5
and 6 that the status flags are determined by the ALU while performing a subtraction of Bin input from the
Ain input during a CMP instruction. Thus, the BLT instruction on line 16 uses the values of N and V set by

CPEN 211 - Lab 7 Bonus 1 of 6

int N = 4;
int amount[] = {50,200,100,500};
int result = 0;
int main(void) {
int i = 0;
int sum = 0;
for(i=0; i<N; i++) {
sum = sum + amount[i];

}
result = sum;

}

Figure 1: C code corresponding to assembly code in Figure 2

“CMP R1,R0” on line 15.
Ignoring the possibility of overflow, if the result of R1-R0 is negative, then it must be true that R1 is

less than R0. However, if R1 is negative and R0 is positive, then it is possible the subtraction operation
performed by CMP R1,R0 overflows and results in a positive value at the 16-bit output of the ALU that feeds
into register C in Figure 1 in the Lab 5 handout. To take account of the possibility of overflow BLT checks
whether the negative flag (N) is not equal to the overflow flag (V). If they are not equal, then R1 must have

1 Address | Content of memory | Assembly code (lab7bonus_fig2.s on Piazza)
2 --------+---------------------+---
3 0x00 | 1101000000001111 | MOV R0,N // R0 = address of variable N
4 0x01 | 0110000000000000 | LDR R0,[R0] // R0 = 4
5 0x02 | 1101000100000000 | MOV R1,#0 // R1 = 0; R1 is "i"
6 0x03 | 1101001000000000 | MOV R2,#0 // R2 = 0; R2 is "sum"
7 0x04 | 1101001100010000 | MOV R3,amount // R3 = base address of "amount"
8 0x05 | 1101010000000001 | MOV R4,#1 // R4 = 1
9 | |

10 | | LOOP:
11 0x06 | 1010001110100001 | ADD R5,R3,R1 // R5 = address of amount[i]
12 0x07 | 0110010110100000 | LDR R5,[R5] // R5 = amount[i]
13 0x08 | 1010001001000101 | ADD R2,R2,R5 // sum = sum + amount[i]
14 0x09 | 1010000100100100 | ADD R1,R1,R4 // i++
15 0x0A | 1010100100000000 | CMP R1,R0
16 0x0B | 0010001111111010 | BLT LOOP // if i < N goto LOOP
17 | |
18 0x0C | 1101001100010100 | MOV R3,result
19 0x0D | 1000001101000000 | STR R2,[R3] // result = sum
20 0x0E | 1110000000000000 | HALT
21 | |
22 | | N:
23 0x0F | 0000000000000100 | .word 4
24 | | amount:
25 0x10 | 0000000000110010 | .word 50
26 0x11 | 0000000011001000 | .word 200
27 0x12 | 0000000001100100 | .word 100
28 0x13 | 0000000111110100 | .word 500
29 | | result:
30 0x14 | 1011101011011101 | .word 0xBADD

Figure 2: Example (lab7bonus_fig2.s) with branch instruction (use with
lab7bonus_autograder_check.v)

CPEN 211 - Lab 7 Bonus 2 of 6

Assembly Syntax (see text)
“Simple RISC Machine” 16-bit encoding

Operation (see text)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Branch opcode op cond 8b
B <label> 0 0 1 0 0 0 0 0 im8 PC = PC+1+sx(im8)
BEQ <label> 0 0 1 0 0 0 0 1 im8 if Z = 1 then

PC = PC+1+sx(im8)
else

PC = PC+1
BNE <label> 0 0 1 0 0 0 1 0 im8 if Z = 0 then

PC = PC+1+sx(im8)
else

PC = PC+1
BLT <label> 0 0 1 0 0 0 1 1 im8 if N != V then

PC = PC+1+sx(im8)
else

PC = PC+1
BLE <label> 0 0 1 0 0 1 0 0 im8 if N!=V or Z=1 then

PC = PC+1+sx(im8)
else

PC = PC+1

Table 1: Assembly instructions introduced in Stage 1 (sx & im8 defined in Lab 6 handout)

been less than R0 when “CMP R1,R0” was executed and BLT updates PC to PC + 1 + sx(im8). Here im8
is the lower 8-bits of the BLT instruction and PC is initially the address of the BLT instruction in memory,
which is 0x0B for the BLT instruction on line 16 in Figure 2.

The encoding for the BLT instruction is shown in Table 1. From the middle portion of line 16 in Figure 2
we can see that sas encoded “BLT LOOP” as “0010001111111010”. The lower 8-bits corresponding to
im8 are “11111010” which is -6 in decimal. Thus, if R1 is less than R0 we update the PC to be equal
to 0x0B + 1 + (-6) = 11 + 1 - 6 = 0x06 which is the address of the first instruction after the label
“LOOP:” (line 10 in Figure 2).

The rest of the instructions in Table 1 operate as follows: The “B” instruction branches unconditinally to
the label provided. This instruction is useful for implementing “if-then-else” constructs and “while” loops.
The “BEQ” instruction updates the PC to point to the instruction after the label if the status flags indicate
source operands of the last CMP instruction were equal. Similarly, the “BNE” instruction branches to the
instruction at the label if the source operands of the last “CMP” instruction were not equal. Finally, the “BLE”
instruction updates the PC to point to the instruction after the label if the first operand was less than or equal
to the second operand.
1.2 Supporting function calls
The final addition to the Simple RISC Machine is adding support for function calls and returns.

To start, consider the C code in Figure 3. Recall that in C you must declare a function before calling
it. The first line helps accomplish this by declaring that function leaf_example takes four arguments
of type int and returns a value of type int. The function main calls leaf_example on line 5. The
function leaf_example computes the value of “(g + h) - (i + j)” and returns it to main. How do we
implement the function call to “leaf_example” at line 5 in Figure 3? You might think you could use the
unconditional branch “B” from Table 1 to jump from “main” to the start of the function leaf_example and

CPEN 211 - Lab 7 Bonus 3 of 6

1 extern int leaf_example(int,int,int,int);
2
3 int result = 0xCCCC;
4
5 void main() {
6 result = leaf_example(1,5,9,20);
7 }
8
9 int leaf_example(int g, int h, int i, int j)

10 {
11 int f;
12 f = (g + h) - (i + j);
13 return f;
14 }

Figure 3

Syntax (see text)
“Simple RISC Machine” 16-bit encoding

Operation (see text)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct Call opcode op Rn 8b
BL <label> 0 1 0 1 1 1 1 1 im8 R[7]=PC+1; PC=PC+1+sx(im8)
Return opcode op unused Rd unused
BX Rd 0 1 0 0 0 0 0 0 Rd 0 0 0 0 0 PC=R[Rd]
Indirect Call opcode op Rn Rd unused
BLX Rd 0 1 0 1 0 1 1 1 Rd 0 0 0 0 0 R[7]=PC+1; PC=R[Rd]

Table 2: Instructions for function calls and returns.

another unconditional branch “B” at the end of leaf_example to jump back to main. However, that would
permit us to call leaf_example from only one place. Instead, you will implement the “branch and link”,
BL instruction in Table 2. The use of the BL instruction is shown in Figure 4 (described below), which is the
Simple RISC Machine assemble equivalent to the C code shown in Figure 3.

The “branch and link” instruction (BL) performs two operations. First, it saves PC+1, which corresponds
to the instruction stored at the next address after the BL instruction, to the link register R7. The choice of
R7 is an architectur2 design decision that must be agreed upon between hardware and software designers.
The Simple RISC Machine use of R7 for branch and link is similar to the use of R14 in ARM. For the BL
instruction on line 12 in Figure 4 PC+1 is 0x0a, which corresponds to the address of the next instruction
after the function call. By saving this address in a known location, namely R7, we enable software to return
after the function call is finished.

Second, the BL instruction updates the PC to the address associated with the start of the function being
called. For the BL instruction on line 12 in Figure 4 this address is 0x0C, which is the address of the memory
location containing the first instruction in the function leaf_example.

The use of STR and LDR instructions in leaf_example on lines 16, 17, 25 and 26 is for saving and
restoring register values to the stack.

To return from leaf_example to main we use the instruction BX R7 on line 27 in Figure 4. This BX
instruction simply copies the named register into the PC.

The last instruction in Table 2 is BLX. This function is useful for supporting object-oriented program-
ming because it essentially enables calling a function with a “pointer”.

CPEN 211 - Lab 7 Bonus 4 of 6

2 Lab Procedure
Starting from your code from Lab 7, modify your design in two stages. In the first stage add support for
the conditional branch instructions in Table 1 and in the second stage add support for the call and return
instructions in Table 2. To do this think through all necessary changes to your existing design based on the
instruction definitions in these tables. Modify the provided testbench lab7bonus_stage2_tb.v to work
with your state machine as indicated by the comments in the file. Your lab7bonus_top should use the
input signal CLOCK_50. If you look in DE1_SoC.qsf you will see CLOCK_50 is connected to pin PIN_AF14
on the Cyclone V on your DE1-SoC. On the printed circuit board of your DE1-SoC this pin is connected
to another chip that generates a 50 MHz clock signal. In other words, CLOCK_50 is a 50 MHz clock that is
input to your lab7bonus_top. By the end this lab you will have built a real computer so it is finally time to
hook it up to an external clock instead of pressing a key to advance each clock cycle. This will allows you
to run longer programs quickly.

All student submissions that pass the Lab 8 auto grader will be ranked on performance. Performance on
a given workload is given by one over execution time, where execution time will can be computed using the
following formula:

Execution Time = Total Cycles × Cycle Time (1)

Here Total Cycles is the number of clock cycles to execute a given program as measured using ModelSim
using a counter reset to zero by the reset (KEY1) and which otherwise increments by one each cycle until

1 Address | Content of memory | Assembly code (lab7bonus_fig4.s on Piazza)
2 --------+---------------------+---
3 0x00 | 1101011000011000 | MOV R6,stack_begin
4 0x01 | 0110011011000000 | LDR R6,[R6] // initialize stack pointer
5 0x02 | 1101010000011001 | MOV R4, result // R4 contains address of result
6 0x03 | 1101001100000000 | MOV R3,#0
7 0x04 | 1000010001100000 | STR R3,[R4] // result = 0;
8 0x05 | 1101000000000001 | MOV R0,#1 // R0 contains first parameter
9 0x06 | 1101000100000101 | MOV R1,#5 // R1 contains second parameter

10 0x07 | 1101001000001001 | MOV R2,#9 // R2 contains third parameter
11 0x08 | 1101001100010100 | MOV R3,#20 // R3 contains fourth parameter
12 0x09 | 0101111100000010 | BL leaf_example // call leaf_example(1,5,9,20)
13 0x0a | 1000010000000000 | STR R0,[R4] // result=leaf_example(1,5,9,20)
14 0x0b | 1110000000000000 | HALT
15 | | leaf_example:
16 0x0c | 1000011010000000 | STR R4,[R6] // save R4 for use afterwards
17 0x0d | 1000011010111111 | STR R5,[R6,#-1] // save R5 for use afterwards
18 0x0e | 1010000010000001 | ADD R4,R0,R1 // R4 = g + h
19 0x0f | 1010001010100011 | ADD R5,R2,R3 // R5 = i + j
20 0x10 | 1011100010100101 | MVN R5,R5 // R5 = ~(i + j)
21 0x11 | 1010010010000101 | ADD R4,R4,R5 // R4 = (g + h) + ~(i + j)
22 0x12 | 1101010100000001 | MOV R5,#1
23 0x13 | 1010010010000101 | ADD R4,R4,R5 // R4 = (g + h) - (i + j)
24 0x14 | 1100000000000100 | MOV R0,R4 // R0 = return value (g+h)-(i+j)
25 0x15 | 0110011010111111 | LDR R5,[R6,#-1] // restore saved contents of R5
26 0x16 | 0110011010000000 | LDR R4,[R6] // restore saved contents of R4
27 0x17 | 0100000011100000 | BX R7 // return control to caller
28 | | stack_begin:
29 0x18 | 0000000011111111 | .word 0xFF
30 | | result:
31 0x19 | 1100110011001100 | .word 0xCCCC

Figure 4: Example (lab7bonus_fig4.s) with branch and link (use with lab7bonus_stage2_tb.v).

CPEN 211 - Lab 7 Bonus 5 of 6

the HALT instruction is executed and thus LEDR[8] is set to 1. For this competition, Cycle Time will be
measured using TimeQuest Timing Analyzer in the Linux version of Quartus 15.0 after compiling your
Verilog for the Cyclone V FPGA in the DE1-SoC. In Quartus look under “TimeQuest Timing Analyzer” ->
“Slow 1100mV 85C Model” -> “Fmax Summary” -> “Fmax”. The value of Cycle Time measured in seconds
is 1 divided by Fmax. After submitting with handin (or HandinUI) the autograder will be run automatically
and if you pass all checks your ranking will appear at a ranking webpage which is updated automatically
each time you submit your code using handin or HandinUI. Note it may take some time for your ranking to
appear as each submission takes about 10 minutes to run and other students may have submitted before you.

The autograder requires your design set LEDR[8] to one when executing HALT and zero other-
wise. Thus, the autograder requires that after HALT executes, when reset is asserted and there is
a rising edge of clk, LEDR[8] returns back to 0 and remains 0 until HALT is executed again. Also,
ensure your program counter register output is called PC inside a module with instance name CPU. See
lab7bonus_autograder_check.v for more details. You will note that the checker checks that PC is equal
to 0x0F while the HALT instruction is stored in memory at address 0x0E. The reason for this can be seen
by referring back to Figure 3 in the Lab 7 handout. In that figure you will see there is an “Update PC” state
that sets PC = PC + 1 and that this state is encountered before the “Decode” state where you would detect
the instruction in the instruction register contains a HALT instruction. You don’t have to use these same
states in your controller, but to be compatible with the autograder your HALT instruction should set PC to
the address of the next instruction. Note that your top-level module should be renamed to lab7bonus_top.

3 Marking Scheme and Competition Instructions
Ensure that when you simulate the module lab7bonus_check_tb in lab7bonus_autograder_check.v it
prints out “INTERFACE OK” and that your code is synthesizable by Quartus (e.g. works when downloaded to
your DE1-SoC). Inferred latches and/or synthesis errors in Quartus will result in both disqualification
from the performance competition and an additional 3.0 marks deducted. Ensure you include Quartus
and ModelSim Project files.

Table 1 instructions [6 marks autograder] Your autograder mark will be five marks for passing cor-
rectness checks for all required instructions.

Table 2 instructions [4 marks autograder] Your autograder mark will be 3 marks for passing all
correctness checks for all three instructions in Table 2.

Competition [up to 10 marks] In addition to the above, after the submission deadline (and all legitimate
autograder concerns have been addressed) the top 10 submissions that pass all checks will earn a 5 mark
bonus (i.e., 15/10). The top ten is based upon your ranking in the ranking webpage (updated automatically
each time you submit your code to github). Moreover, the #1 top ranked submission will earn 15 marks
extra on top of the above (i.e., 30/10, equivalent to an extra 6% to their final grade), the #2 ranked will earn
10 marks extra (i.e., 25/10), and the #3 will earn 5 marks extra (i.e., 20/10). Submissions are ranked by
geometric mean speedup across a set of “benchmarks”, versus a low performance reference design.

Submitting early has the virtue of letting you know if your code passes our autograder checks. However,
to encourage you to design your own testbenches you will not get any feedback on what has failed if anything
until after the submission deadline.
4 Lab Submission
Submit your code using the github invite link for Lab-7 Bonus (only) from https://cpen211.ece.ubc.ca/cwl/
github_info.php.

CPEN 211 - Lab 7 Bonus 6 of 6

https://cpen211.ece.ubc.ca/cwl/show-srm-ranking.php
https://cpen211.ece.ubc.ca/cwl/show-srm-ranking.php
https://cpen211.ece.ubc.ca/cwl/github_info.php
https://cpen211.ece.ubc.ca/cwl/github_info.php

	Introduction
	Branch Instructions
	Supporting function calls

	Lab Procedure
	Marking Scheme and Competition Instructions
	Lab Submission

