
The 8051 Assembler A51

Introduction

A51 is a cross macro-assembler intended to perform the clerical task of converting a
user program written as a series of instructions into executable code that can run in the
8051 family of microcontrollers. A51 is part of the CALL51 software develop package for
the 8051. CALL51 includes: a C compiler (C51), an assembler (A51), a linker/locator
(L51), and a librarian (Lib51). This manual describes the assembler A51.

Disclaimer

Copyright (C) 2008-2011 Jesus Calvino-Fraga (jesusc at ece.ubc.ca)

This program and documentation are free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program and documentation is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite
330, Boston, MA 02111-1307, USA

Invocation

A51 is a command prompt program. It is called by typing a51 followed by the assembly
source file to compile:

a51 [options] source.asm

A51 recognizes several optional options as listed below:

Option Description
-l Create list file
-s Send output to stdout
-i Case sensitive symbols
-c Compile only. Generates object file.

Constants and Operators

A51 can recognize different constant radixes as well as perform unary and binary
operations with labels, operands, and constants. Constants must start with a digit (0 to
9) regardless of radix. These are the radixes recognized by A51:

Radix Prefix Operator Suffix Operator Examples
Binary 0B or 0b B or b 10011000B, 0b10011000

Octal 0q, 0Q, 0o, 0O Q or q 3452Q, 0o3452,

Decimal 0d, 0D, or empty D, d, or empty 2011D, 0d2011 or 2011

Hexadecimal 0x or 0X H or h 0x3AFF or 3AFFH

Assembly operators are evaluated either at compile time for absolute symbols and
constants or at linking time for relocatable symbols. In either case, these operators are
not evaluated at run time in the microcontroller. It is the responsibility of the
programmer to perform operations at run time by means of assembly instructions. The
following operators are available in A51:

Operator(s) Meaning Example
OR, | Logic OR MOV a, #(0x01 | 0x02)
AND, & Logic AND MOV R1, #(myvar and 0x0f)
NOT, ~ Complement MOV a, #(~1)
XOR, ^ Exclusive OR MOV a, #(myvar ^ 0F0H)
HIGH Upper 8-bits MOV R0, #HIGH(my_address)
LOW Lower 8-bits MOV R1, #LOW(my_address)
* Multiplication MOV R1, # (my_address*2)
/ Division MOV R0, # (my_address/0x100)
% Modulo MOV R0, # (my_address%0x100)
- (unary form) Two’s complement MOV DPTR, #(-1)
- (binary form) subtraction MOV DPTR, #(8000H-1)
+ Addition LCALL mysub+3
SHR, >> Shift right MOV R0, # (my_address>>8)
SHL, << Shift left MOV R1, # (my_address<<1)

Operator Precedence

The precedence of the operators listed above is as follows: Parenthesized expression (
), unary -, HIGH, LOW, NOT, OR, AND, XOR, *, /, %, -, +, SHR, and SHL.

Symbols Names

A symbol must begin with a letter (A-Z, a-z) or the special characters underscore (‘_’) or
question mark (‘?’), and it can be followed by letters, decimal digits (0-9), and the special
characters underscore (‘_’) and question mark (‘?’). There is no restriction in the number
of valid characters in a label name. The instruction mnemonics, assembly-time
operators, some predefined bit and data addresses, segment attributes, and assembler
directives may not be used as user defined symbol names. For a complete list of these
reserved words, refer to the table below.

a ab acall add addc ajmp
and anl ar0 ar1 ar2 ar3
ar4 ar5 ar6 ar7 at bit
bseg byte c cjne clr code
cpl cseg da data db dbit
dec div djnz dptr ds dseg
dw end equ extern extrn high
idata inc iseg jb jbc jc
jmp jnb jnc jnz jz lcall
ljmp low mac mov movc movx
mul nop not or org orl
overlay pc pop public push r0
r1 r2 r3 r4 r5 r6
r7 ret reti rl rlc rr
rrc rseg seg segment set setb
shl shr sjmp skip subb swap
using word xch xchd xdata xor
xrl xseg endmac

Reserved Assembler Symbols

Assembly Language Program Structure

An assembly language program consists of a sequence of statements that, after
compiled into machine code, instruct the microcontroller to perform the desired
operations. Most lines of an assembly program are comprised of up to four distinct
fields. Some of the fields may be empty. The order of these fields is

[label:] Operation Operand [;Comment]

By default A51 is not case sensitive. You can use uppercase or lowercase letters or
even mix the use of cases to represent any of the four fields. The assembler can be
made case sensitive by using the appropriate command line switch as described in
Invocation section above. This switch is necessary when assembling files generated by
C51, as the C program language is case sensitive.

The Label Field

Labels are symbols defined by the user to identify memory locations in the program or
data areas of the assembly source code. For most instructions and directives, the label
is optional. Labels must follow these rules:

• A label must be the first field in a source statement and must be terminated by a
colon (:). Some assembler directives use symbols that do not represent a
memory location and do not require a colon.

• Only one label can be defined per line. When labels are defined in consecutive
lines without assembler operators, they represent the same memory location.

These are examples of instructions with valid labels:

sum: ADD A, B

out: LCALL _printf

loop1: ; Labels can be the only field in a line

loop2: MOV R0, #10H

This_is_a_very_long_label_do_you_like_it?:

 INC A

These are examples of instructions with invalid labels:

add 10: MOV A,#10 ; a blank is included in the label

l1 ADD A,RO ; the label is not terminated with a colon

7UP: DA A ; the label starts with a number
asf[]: PUSH AR5 ; label uses invalid characters [and]

The Operation Field

The operation field specifies the action to be performed. It may consist of an instruction
mnemonic (opcode) or an assembler directive. Here are some examples of operation
fields:

INC R1 ; INC is the operation field
SUB A,#10 ; SUB is the operation field

zero EQU 0 ; directive EQU is the operation field

The Operand Field

If an operand field is present, it follows the operation field and is separated from the
operation field by at least one space or tab character. The operand field specifies
operands for instructions or arguments for assembler directives. The following examples
show some operand fields:

MOV A, R0 ; A and R0 are operands

forever:

 SJMP forever ; forever is the operand

The Comment Field

The comment field starts with a semicolon and extends up to the end of the line. This
field is optional and may contain any printable ASCII character. Comments do not affect
assembly processing or program execution. Comments are used mainly for
documentation purposes. These are some examples of comments:

 DEC R0 ; decrement the contents at location 30H

 ; The whole line is a comment
 ; MOV a, #10H � this instruction was commented out!

Assembler Directives

Assembler directives are similar to instructions in an assembly language program, but
instead of generating machine code they tell the assembler how to behave and how to
process subsequent assembly language instructions. Directives are also used to define
program constants and reserve space for variables. The A51 assembler directives are
listed in the table below.

Category Directives
Segment management SEGMENT, RSEG, CSEG, DSEG, BSEG, ISEG, XSEG
Symbol definition EQU, SET, BIT, CODE, DATA. IDATA, XDATA
Memory initialization DB, DW
Memory reservation DBIT, DS
Program linkage PUBLIC, EXTERN
Address management ORG, USING
Others END

Segment Control Directives

A segment is a block memory (either code or data) created by the assembler as
instructed in an 8051 assembly source file. Only one segment can be active at a time.
A51 works with two types of segments: relocatable and absolute.

Location Counter

A51 keeps a location counter for each segment. The location counter is a pointer to the
address space of the active segment and represents an offset for relocatable segments
or the current absolute address for absolute segments. When a segment is first selected,
its associated location counter is reset to 0. The location counter is changed after each
instruction according to the length of the instruction. The memory initialization and
allocation directives (i.e., DS, DB, DW, or DBIT) change the value of the location counter
as these directives reserve or preset memory. Using the ORG directive it is possible to
set the value of the location counter for absolute segments. Every time a segment is
activated, the location counter of the segment is restored to its previous value.
Whenever the assembler encounters a label definition, it assigns the value of the
location counter as well as the type of the current segment to that label.

The value of the location counter of the active segment can be accessed
programmatically by using the dollar sign ($). When $ is as an operand for a multi-byte
instruction or directive, the value used is the address of the first byte of that instruction.
WARNING: do not use $ in relocatable segments, as the linker doesn’t keep track of the
number of bytes used per instruction.

Relocatable Segments

Relocatable segments are created using the SEGMENT directive. When the
programmer creates a relocatable segment, it must specify the name of the segment,
the segment class, and an optional relocation type. Relocatable segments are assigned
absolute addresses by the linker L51. For example,

 mycode SEGMENT CODE

defines a segment named mycode with a memory class of CODE. This means that data
in the myprog segment will be located in the code or program area of the MCS-51. In
order to activate a previously defined relocatable segment, the RSEG directive is used.
After RSEG is used to select a segment, that segment becomes the active segment and
used for subsequent code and data until the segment is changed either with a new
RSEG directive or with an absolute segment directive. For example,

 RSEG mycode

selects the mycode segment, as defined previously, as the current active segment.

Absolute Segments

Absolute segments are allocated by the assembler at fixed memory locations as
specified by the programmer. They are created using the BSEG, CSEG, DSEG, ISEG,
and XSEG directives, which enable either to allocate code and data or reserve memory
space at fixed locations. By default in A51, and until changed by the programmer, the
absolute CODE segment is the active segment with and initial location counter of 0000H.

SEGMENT

The SEGMENT directive is used to declare a relocatable segment. An optional
relocation type may be specified in the segment declaration. The format of SEGMENT
directive is as follows:

Segment SEGMENT class reloctype

Where

Segment: The name to be assigned to the segment.

Class: The memory space for the segment: BIT, CODE, DATA, IDATA, or
XDATA.

Reloctype Defines the relocation type that may be performed by the
Linker/Locator.
The valid relocation types are listed in Table 2.2.

For example,

DDS SEGMENT DATA

defines a segment with the name DDS and the memory class DATA.

XDS SEGMENT XDATA

defines a segment with the name XDS and the memory class XDATA.

BSEG, CSEG, DSEG, ISEG, and XSEG

Each of the BSEG, CSEG, DSEG, ISEG, or XSEG directives selects an absolute
segment in the corresponding memory class. These directives use the following formats:

BSEG AT address_8 ; selects the absolute BIT segment

CSEG AT address_16 ; selects the absolute CODE segment
DSEG AT address_8 ; selects the absolute DATA segment

ISEG AT address_8 ; selects the absolute IDATA segment

XSEG AT address_16 ; selects the absolute XDATA segment

where address_8 and address_16 are optional base address at which the segment
starts.

BSEG AT 40H

selects the absolute BIT segment and sets its location counter to 40H.

CSEG AT 0x2000

selects the absolute CODE segment and sets its location counter to 2000H.

Symbol Definition Directives

The symbol definition directives permit the creation of symbols that can be used to
represent segments, registers, numbers, and addresses. Symbols defined using these
directives may not have been previously defined and may not be redefined by any
means. The SET directive is the only exception to this rule.

EQU, SET

The EQU and SET directives assign a numeric value or register symbol to the specified
symbol name. Symbols defined with EQU may not have been previously defined and
may not be redefined by any means. The SET directive allows later redefinition of
symbols. The formats of these two directives are as follows:

Symbol EQU expression

Symbol EQU register

Symbol SET expression

Symbol SET register

where

Symbol: is the name of the symbol to be defined. The expression or register
specified in the EQU or SET directive will be substituted for each occurrence of
symbol that is used in your assembly program.

expression :is a numeric expression that may include symbols.

register: is one of the following register names: A, R0, R1, R2, R3, R4, R5, R6,
R7, AR0, AR1, AR2, AR3, AR4, AR5, AR6, or AR7.

The following are examples of using EQU and SET directives:

ptr SET RO ; use RO as ptr

true EQU 1 ; use true to represent 1

counter EQU R3 ; use R3 as counter

BIT, CODE, DATA, IDATA, and XDATA

The BIT, CODE, DATA, IDATA, and XDATA directives assign an address value to the
specified symbol. Symbols defined with the BIT, CODE, DATA, IDATA, and XDATA
directives may not be changed or redefined. The formats of these directives are

Symbol BIT bit_address ; defines a BIT symbol

Symbol CODE code_address ; defines a CODE symbol

Symbol DATA data_address ; defines a DATA symbol

Symbol IDATA idata_address ; defines an IDATA symbol
Symbol XDATA xdata_address ; defines an XDATA symbol

where

bit_address is the address of a bit in internal data memory. Bit address cannot
be greater than 255.
code_address is a code address in the range from 0000H to 0FFFFH.

data_address is a DATA memory address in the range from 0 to 127 or a special
function register (SFR) address in the range from 128 to 255.

idata_address is an IDATA memory address in the range from 0 to 255.

xdata_address is a XDATA memory address in the range from 0000H to 0FFFFH

Examples of using these directives follow:

enable_flg BIT 10H ; use bit location at 10H as enable_flg
P1 DATA 90H ; P1 is a special function register

buffer IDATA 30H ; use a location at IDATA as buffer

buffer XDATA 8000H ; use external data memory location 8000H
 ; as variable buffer

reset CODE 0000H ; make ‘reset’ equal to 0000H

Memory Initialization Directives

The memory initialization directives are used to initialize code space in either byte or
word units. The memory image starts at the point indicated by the current value of the
location counter in the currently active segment.

DB

The DB directive initializes program memory with 8-bit byte values. It can be used only
when a segment with a CODE storage class is the active segment. The DB directive has
the following format:

label: DB expression, expression, . . .

where

label: is the symbol that is given the address of the initialized memory location.

expression: is a byte value. Each expression may be a symbol, a character
string, or a numeric expression.

Examples of using the DB directive follow. If an optional label is used, its value will point
to the first byte constant listed.

Hello: DB 'Hello, world!' ; ASCII literal

Seven_seg: DB 7EH,60H,6DH,79H,33H,5BH,5FH,70H,7FH,7BH
mixed: DB 2*3,'date/time',2*8 ; can mix literals and numbers

DW

The DW directive initializes the program (code) memory with 16-bit constants. It can be
used only when a segment with a CODE storage class is the active segment. The DW
directive has the following format:

label: DW expression, expression, . . .

The following examples illustrate the use of this directive:

Jump_tab: DW Sun,Mon,Tue,Wed,Thu,Fri,Sat
misc: DW 'A',1122H ; first byte contains 0

 ; second byte contains 41H

 ; third byte contains 11H

 ; fourth byte contains 22H

The symbols "Sun", "Mon", . . ., "Sat" are labels of some instructions in your program.

Memory Reservation Directives

The memory reservation directives are used to reserve space in bit, byte, or word units.
The space reserved starts at the point indicated by the current value of the location
counter in the currently active segment.

DBIT

The DBIT directive is used to reserve bits within a segment with the BIT storage class.
The location counter of the segment is advanced by the value of the directive. The
format of the DBIT directive is

label: DBIT expression

The following are examples of using the DBIT directive:

 DBIT 10 ; reserve 10 bits

status: DBIT 5 ; reserve 5 bits to keep track of program status

DS

The DS directive is used to reserve space in the currently selected segment in byte
units. It can be used only when currently active segment has storage classes IDATA,
DATA, or XDATA. The location counter of the segment is advanced by the value of the
directive.

The format of the DS directive is as follows:

label: DS expression

The following are examples of using the DS directive in the external data segment.

 XDATA ; select the external data segment

 DS 20 ; reserve 20 bytes (label is optional)

io_buf: DS 40 ; reserve 40 bytes for I/O

Occasionally, it is desirable to tell the assembler where to reserve a block of memory.
This can be achieved by combining the use of AT and DS directives. For example, the
following directives reserve 100 bytes starting from address 2000H:

 XDATA AT 2000H ; reserve a memory block starting at address 2000H
 DS 100 ; reserve 100 bytes

Here are other examples of using the storage reservation directives:

 BSEG AT 20H ; absolute bit segment at 20H

dec_flag: DBIT 1 ; absolute bit

inc_flag: DBIT 1

 CSEG AT 100H ; absolute code segment at 100H

; Seven-segment display patterns for 0-9

seg7-tab: DB 7EH,30H,6DH,79H,33H

 DB 5BH,5FH,70H,7FH,7BH

 DSEG AT 40H ; absolute data segment at 40H

i: DS 1 ; reserve one byte for variable i
j: DS 1 ; reserve one byte for variable j

sum: DS 2 ; reserve two bytes for sum
float: DS 4 ; reserve four bytes for float

 ISEG AT 0D0H ; Absolute indirect data segment at D0H

ptr_1: DS 2

ptr_2: DS 2
out_buf: DS 0x10 ; Reserve 16 bytes of IDATA starting at 0D4H

 XSEG AT 2000H ; Absolute external data segment at 2000H

stringl: DS 100 ; Reserve 100 bytes for string1

string2: DS 10*10 ; Also reserve 100 bytes for string2

in_buf: DS 80

Program Linkage Directives

A program may need to access variables or call subroutines that reside in different files
in order to perform its intended operations. To make this type of cross-reference
possible, the programmer needs to use assembler directives to tell the assembler that
some variables or subroutines used/called in one module reside in a different module.
The programmer also needs to inform the assembler about variables and subroutines
that will be accessed by programs in different modules. At some point, all these modules
must be combined into a single executable by ‘linking’ them. This is the function of the
linker L51. These are the program linkage directives:

PUBLIC

The PUBLIC directive lists symbols that may be used in other object modules. A symbol
declared PUBLIC must be defined in the current module. The format of this directive is
as follows:

EXTERN symbol, symbol, . . .

The following example illustrates the use of this directive:

PUBLIC getchar, putchar, gets, puts

EXTRN

The EXTRN directive tells the assembler of a list of symbols to be referenced in the
current module but that are defined in other modules. The list of external symbols must
have a segment associated with each symbol in the list. The format of this directive is
as follows:

EXTERN class (symbol, symbol, . . .)

where

class: is the memory class where the symbol has been defined and may be one
of the following: BIT, CODE, DATA, IDATA, or XDATA.

symbol: is an external symbol name.

As indicated earlier, the PUBLIC and EXTRN directives work together. When one
symbol is declared EXTRN in one module, it must be declared PUBLIC in another
module. Symbols can be declared public only once in all the modules to be linked. The
use of the PUBLIC and EXTRN directives is illustrated in the following example:

In module main.asm:

 EXTRN CODE (putchar, getchar)

 .

 .

 .

 LCALL putchar

 .

 .

 LCALL getchar

In module util.asm:

 PUBLIC putchar, getchar

 .

 .
 .

 putchar: ;begin of subroutine
 .

 .

 .
 RET

 getchar: ;begin of subroutine
 .

 .
 .

 RET

Address Control Directives

The ORG directive allow the control of the address location counter for the current
absolute segment, while the USING directive is use to select the bank for absolute
symbols R0 to R7.

ORG

The ORG directive is used to specify a value for the currently active segment's location
counter. The ORG directive works only for absolute segments CSEG, DSEG, ISEG,
BSEG, and XSEG.

The format for the ORG directive is as follows:

 ORG expression

The following examples illustrate the use of this directive:

 ORG 1000H ; set active location counter to 4096
 ORG RESET ; RESET is a previously defined symbol

 ORG jump_tab+200H ; arithmetic expression

Using

The format for the USING directive is shown below. Note that a label is not permitted.

USING expression

This directive notifies the assembler of the register bank that is used by the subsequent
code. The expression is the number (between 0 and 3 inclusive) which refers to one of
four register banks. The USING directive allows the programmer to use the predefined
symbolic register addresses (AR0 through AR7) instead of their absolute addresses.

NOTE: the ‘USING’ directive does not select the register bank when using register R0 to
R7. To perform such task, the programmer must update the value of the Program
Status Word Special Function Register (PSW SFR) using assembly instructions.

Examples:

 USING 3

 PUSH AR2 ; Push register 2 of bank 3

 USING 1

 PUSH AR2 ; Push register 2 of bank 1

Other Directives

END

The END directive signals the end of the assembly module. Any text in the assembly file
that appears after the END directive is ignored.

Macro Definition Directives

A macro is a name assigned to one or more assembly statements or directives. Macros
are used to include the same sequence of instructions in several places. This sequence
of instructions may operate with different parameters, as indicated by the programmer.

MAC

The MAC directive is used to define the start of a macro. A macro is a segment of
instructions that is enclosed between the directives MAC and ENDMAC. The format of a
macro is as follows:

 name MAC ; comment

 .

 .

 .

 ENDMAC

ENDMAC

This directive terminates a macro definition.

 average MAC; a macro that computes the average of three byte arguments

 mov A, %0

 add A, %1

 add A, %2

 mov B, #3

 div AB ; divide B into A and A gets the average

 ENDMAC ; terminate the macro definition

To invoke the above defined macro, enter the macro name and its parameters. The
statement

 average (R1 ,R2, R3)

will enable the assembler to generate the following instructions, starting from the current
location counter:

 mov A, Rl

 add A, R2
 add A, R3

 mov B, #3

 div AB

In order to place local labels within macros, use ‘%M’ in the name of the label symbol.
‘%M’ will be replaced with a consecutive and unique integer for each macro usage. For
example:

MYMACRO MAC

 ; MYMACRO begins here

 mov P0, %0

loop%M:

 djnz R0, loop%M

 mov P0, %1

 ; MYMACRO ends here

ENDMAC

Assembler Controls

Control statements are used to tell the assembler how it interacts with the host computer
regarding data input and output. A51 recognizes the following controls:

Control Description
$INCLUDE Includes a file into the current assembly source file
$MOD Include register definition for a particular 8051

variant
$NOMOD51 Do not define default 8051 special function register

definition
$LIST Enable output to list file
$NOLIST Disable output to list file.

$INCLUDE

The $INCLUDE control is used to include a file into the user source code. The format of
this control is as follows:

$INCLUDE(filename)

For example:

$include(c:\source\asm\bpm2.asm)

$MOD

The $MOD control is used to include a Special Function Register definition file for an
specific 8051 processor. The format of this control is as follows:

$MODproccesor

For example:
$MODDE2

The line above includes the SFR declarations for the DE2-8052 processor. In order for
this control to work, a file named ‘MODDE2’ must exist at least in one of these three
locations:

1. Where the assembly source file resides.

2. Where the assembler compiler resides.

3. In directory ‘Define’ at the parent directory where the assembler compiler resides.

For example, if a51.exe resides in C:\Call51\bin, then the file can be placed in
folder C:\Call51\Define.

$NOMOD51

By default A51 will define the Special Function Registers for the standard 8051
microcontroller if no $MOD control is found. This behaviour can be prevented by using
the $NOMOD51 control.

$LIST

Enables output to the listing file.

$NOLIST

Disables output to the listing file.

8051 Design Overview

 The 8051 family of microcontrollers has been around since 1980. Originally
designed and manufactured by Intel, it has become a de facto industry standard with
more than 20 companies manufacturing significantly improved versions of this
processor. Over more than three decades, many resources had become available for
the 8051 family of microcontrollers, including books, source code, tutorials, debuggers,
compilers, etc. Modern 8051 microcontrollers are among the cheapest processor
available which in turn encourages manufactures to come out with newer and improved
versions every year. The 8051 has been also very popular as a soft-processor with
VHDL and Verilog implementations available, both free and commercial.

 The figure below shows the block diagram of a modern 8051 microcontroller. It
is important to notice that the 8051 microcontroller uses separated memory spaces for
code and variables. A program running in the 8051 can access code memory using only
the MOVC instruction. Variables in the 8051 can reside into two different memory
spaces: internal and extended RAM. The internal RAM is a fast access memory space
with many dedicated MOV instructions to utilize it. A program running in the 8051 can
access expanded RAM using only the MOVX instruction.

Internal
Interrupts

8-bit bus

CPU

Oscillator

Interrupt
Control

64k FLASH
ROM

64k bytes
XRAM

256 bytes
RAM

Timer 2

Timer 1

Timer 0

BUS
CONTROL

4 I/O
PORTS

SERIAL
PORT

TXD RXD

External
Interrupts MOVX MOV MOVC

P0 P1 P2 P3

8051 Registers

The 8051 microcontroller has many registers. All of them are 8-bit registers with the
exception of the DPTR which is a 16-bit register. These registers are arranged as:

• 32 general purpose registers arranged in 4 banks of 8 register each: R0 to R7.
R0 and R1 can be used as “index” registers for indirect access.

• Several (depends on the derivative, but usually 25 or more) Special Function

Registers or SFRs. All the hardware resources of the 8051 are accessed through
SFRs.

A few SFRs are related to ALU operations. That is, there are instructions in the 8051
microcontroller that use these registers implicitly. These registers are:

• Accumulator (A).
• Register B.
• Data Pointer (DPTR, a 16-bit register made using two eight bit registers put

together: DPH and DPL)
• Stack Pointer (SP).
• Program Counter (PC).
• Program Status Word (PSW).

Accumulator

 In the 8051 this is the most versatile of all the registers. Most of the ALU
operations place the result in the accumulator. Additionally, many opcodes accept only
the accumulator as operand. The accumulator is bit addressable.

Example usage:

MOV a, #20H ; Load accumulator with 20H
INC a ; Add one to accumulator
SWAP A ; Swap bits 0 to 3 with bits 4 to 7

Register B

 This register is used together with the Accumulator to perform 8-bit multiplication
and division operations. This SFR is bit addressable.

Example usage:

MOV A, #140
MOV B, #150
MUL AB ; After this inst. A=08H, B=52H

Data Pointer Register (DPTR)

 Formed by two 8-bit SFRs (DPH and DPL) this is the only 16-bit register in the
8051. Together with some especial opcodes, it is used to access CODE and XRAM
memory. There is a dedicated opcode to increment it! Unfortunately there is no opcode
to decrement it!

Example usage:

MOV DPTR, #0AAAAH
INC DPTR ; DPL=0ABH, DPH=0AAH
MOVX A, @DPTR

Stack Pointer (SP)

 The stack pointer SFR is used as an index register for instructions that use the
stack. These instructions are CALL, LCALL, RET, IRET, PUSH, and POP. The stack
pointer is initialized to 07H after reset. This SP SFR is incremented before a stack write
operation and decremented before a stack read operation. The SP pointer should be
initialized by the user program to a suitable memory location at the beginning of the main
program in order to prevent unintentional memory accesses.

Example usage:

MOV SP, #7FH ; Set the stack after direct memory

Program Counter (PC)

 This register points to the location of the code memory under access when
running a program. This register not be accessed directly. This register is incremented
by one, two, or three bytes (one for most instructions), depending on the opcode length.
The jump, call, or return instructions modify the value of the program counter.

Example usage:

LJMP 34AAH ; Set PC to 34AAH

Program Status Word (PSW)

 This bit addressable SFR is used to store the ALU flags as well as to select the
active register bank. It contains the following bits:

CY AC F0 RS1 RS0 OV -- P

CY Carry flag
AC Auxiliary Carry flag (For BCD Operations)
FO Flag 0 (Available to the user for General

Purpose)
RS1, RS0 Register bank select bits.
OV Overflow flag
P Parity flag

The carry, overflow, and parity flag are affected by the instructions as shown in the table
below.

Instruction CY OV AC
ADD X X X
ADDC X X X
SUBB X X X
MUL 0 X
DIV 0 X
DA X
RRC X
RLC X
SETB C 1
CLR C 0
CPL C X
ANL C, bit X
ANL C, /bit X
ORL C, bit X
ORL C, /bit X
MOV C, bit X
CJNE X

Example usage:

JC 8 ; If the carry is set jump 8 bytes ahead

8051 Addressing Modes

The 8051 supports the following ten different types of addressing:

1. Register Inherent
2. Direct
3. Immediate
4. Indirect
5. Indexed
6. Relative
7. Absolute
8. Long
9. Bit Inherent
10. Bit Direct

Register Inherent Addressing

For this mode the opcode is already associated with the register for speed and
efficiency.

Examples:

MOV R1, #10 ; opcode: 01111001B + 00001010B
INC A ; opcode: 00000100B

INC R3 ; opcode: 00001011B

Direct Addressing

Direct addressing is used to access the first 128 bytes of internal ram (addresses 0 to
127) or the SFRs (addresses 128 to 255).

Examples:

MOV 20H, A ; 11110101B + 00100000B
MOV 50H, 25H ; 10000101B + 00100101B + 01010000B
MOV 50H, #25H ; 01110101B + 01010000B + 00100101B

MOV 80H, A ; 80H > 127 therefore is a SFR access!
MOV P0, A ; SFR P0 is at address 80H

Immediate Addressing

Immediate addressing is used to initialize a register or memory with a constant. The
constant to load MUST be preceded with ‘#’.

Examples:

 MOV R0, #10

L1: MOV P1, #01H
 NOP ; Does nothing just wastes time!
 MOV P1, #00H

 DJNZ R0, L1 ; Decrement an jump if no zero

Indirect Addressing

Indirect addressing can be used to access ALL the internal RAM of the microcontroller.
It is the only means of accessing the internal RAM from address 128 to 255! This kind of
addressing is the only means of accessing XRAM memory using the MOVX instruction.

Examples:

MOV R0, #80H

MOV A, @R0 ; Copy content of RAM loc. 80H into the Accumulator
MOV A, 80H ; Copy SFR 80H (P0) into the accumulator
MOV DPTR, #200H

MOVX A, @DPTR ; Copy content of XRAM loc. 200H into the Acc.
MOV R6, A
INC DPTR

MOVX A, @DPTR ; Copy content of XRAM loc. 201H into the Acc.
MOV R7, A

Indexed Addressing

Indexed addressing uses a base register (DPTR) and a offset register (Accumulator)

Examples:

JMP @a+DPTR

MOVC a, @a+DPTR

MOVC a, @a+PC

Relative Addressing

Relative addressing is used to jump (conditionally or unconditionally) to other parts of
program. The offset is an 8-bit SIGNED number. The 8051 can jump in the range -128
to +127 bytes:

Examples:

 1 $mod52
0000 2 L1:

0000 00 3 nop
0001 80FD 4 sjmp L1
0003 8001 5 sjmp L2

0005 00 6 nop
0006 00 7 L2: nop
 8 end

To jump conditionally any bit variable available can be used. Some conditional relative
jumps implicitly use some bits in the program status word (PSW):

JZ L1

JNZ L2
JC L3

JNC L4

JB P1.3, L5

Absolute Addressing

Absolute addressing works on jumps or calls using a combination of the 11 bits in the
destination and 5 upper bits of the program counter. It allows to jump or call within the
same 2K page were the program counter is. There are only two instructions that support
this addressing mode: ACALL and AJMP

Examples:

ACALL myroutine

AJMP DONE

Long Addressing

Long addressing works on jumps or calls to any destination in the 16-bit address range
of the microcontroller.

Examples:

LCALL my_other_routine

LJMP DONE

Bit Inherent Addressing

This kind of addressing works only with the carry flag.

Examples:

SETB C

CLR C
CPL C

Bit Direct Addressing

The 8051 provides direct bit addressing of certain parts of its internal memory or SFRs.
The first 128 bits are mapped in internal ram from bytes 20H to 2FH. The second 128
bits are mapped to SFRs, only if the SFR address location is divisible by 8.

Examples:

CLR P0.0 ; Clear bit 0 of port 0 (SFR address 80H)

SETB P0.1 ; Set bit 1 of port 0 (SFR address 81H)
SETB 00H ; This is bit 0 of byte 20 in internal RAM

8051 Instruction Set

Notes on the Addressing Modes

Rn Working register R0-R7

direct 128 internal RAM locations, any l/O port, control or status register

@Ri Indirect internal or external RAM location addressed by register R0 or

R1

#data 8-bit immediate constant

#data 16 16-bit immediate constant included as bytes 2 and 3 of instruction

bit 128 software flags, any bit addressable l/O pin, control or status bit

A Accumulator

addr16 Destination address for LCALL and LJMP may be anywhere within the
64-Kbyte program memory address space

addr11 Destination address for ACALL and AJMP will be within the same 2-
Kbyte page of program memory as the first byte of the following
instruction

rel SJMP and all conditional jumps include an 8 bit offset byte. Range is
+127/-128 bytes relative to the first byte of the following instruction

Copyright

All mnemonics copyrighted: © Intel Corporation 1980. The 8051 instruction set is
reprinted here with Intel’s permission.

ACALL addr11

Function: Absolute call

Description: ACALL unconditionally calls a subroutine located at the indicated

address. The instruction increments the PC twice to obtain the address
of the following instruction, then pushes the 16-bit result onto the stack
(low-order byte first) and increments the stack pointer twice. The
destination address is obtained by successively concatenating the five
high-order bits of the incremented PC, op code bits 7-5, and the second
byte of the instruction. The subroutine called must therefore start within
the same 2K block of program memory as the first byte of the instruction
following ACALL. No flags are affected.

Example: Initially SP equals 07H. The label ”SUBRTN” is at program memory
location 0345H. After executing the instruction

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM location 08H and
09H will contain 25H and 01H, respectively, and the PC will contain
0345H.

Operation: ACALL
(PC) ← (PC) + 2
(SP) ← (SP) + 1
((SP)) ← (PC7-0)
(SP) ← (SP) + 1
((SP)) ← (PC15-8)
(PC10-0) ← page address

Encoding: a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

ADD A, <src-byte>

Function: Add without carry

Description: ADD adds the byte variable indicated to the accumulator, leaving the

result in the accumulator. The carry and auxiliary carry flags are set,
respectively, if there is a carry out of bit 7 or bit 3, and cleared otherwise.
When adding unsigned integers, the carry flag indicates an overflow
occurred. OV is set if there is a carry out of bit 6 but not out of bit 7, or a
carry out of bit 7 but not out of bit 6; otherwise OV is cleared. When
adding signed integers, OV indicates a negative number produced as the
sum of two positive operands, or a positive sum from two negative
operands. Four source operand addressing modes are allowed: register,
direct, register indirect, or immediate.

Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH
(10101010B). The instruction

ADD A,R0

will leave 6DH (01101101B) in the accumulator with the AC flag cleared
and both the carry flag and OV set to 1.

Operation: ADD A, Rn
(A) ← (A) + (direct)

Encoding: 0 0 1 0 1 r r r

Operation: ADD A, direct
 (A) ← (A) + (direct)

Encoding: 0 0 1 0 0 1 0 1 direct address

Operation: ADD A, @Ri
(A) ← (A) + ((Ri))

Encoding: 0 0 1 0 0 1 1 i

Operation: ADD A, #data
(A) ← (A) + #data

Encoding: 0 0 1 0 0 1 0 0 immediate data

ADDC A, < src-byte>

Function: Add with carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and

the accumulator contents, leaving the result in the accumulator. The carry
and auxiliary carry flags are set, respectively, if there is a carry out of bit
7 or bit 3, and cleared otherwise. When adding unsigned integers, the
carry flag indicates an overflow occurred. OV is set if there is a carry out
of bit 6 but not out of bit 7, or a carry out of bit 7 but not out of bit 6;
otherwise OV is cleared. When adding signed integers, OV indicates a
negative number produced as the sum of two positive operands or a
positive sum from two negative operands. Four source operand
addressing modes are allowed: register, direct, register indirect, or
immediate.

Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH
(10101010B) with the carry flag set. The instruction

ADDC A, R0

will leave 6EH (01101110B) in the accumulator with AC cleared and both
the carry flag and OV set to 1.

Operation: ADDC A, Rn
 (A) ← (A) + (C) + (Rn)

Encoding: 0 0 1 1 1 r r r

Operation: ADDC A, direct
 (A) ← (A) + (C) + (direct)

Encoding: 0 0 1 1 0 1 0 1 direct address

Operation: ADDC A, @Ri
 (A) ← (A) + (C) + ((Ri))

Encoding: 0 0 1 1 0 1 1 i

Operation: ADDC A, #data
(A) ← (A) + (C) + #data

Encoding: 0 0 1 1 0 1 0 0 immediate data

AJMP addr11

Function: Absolute jump

Description: AJMP transfers program execution to the indicated address, which is

formed at runtime by concatenating the high-order five bits of the PC
(after incrementing the PC twice), op code bits 7-5, and the second byte
of the instruction. The destination must therefore be within the same 2K
block of program memory as the first byte of the instruction following
AJMP.

Example: The label ”JMPADR” is at program memory location 0123H. The
instruction

AJMP JMPADR

is at location 0345H and will load the PC with 0123H.

Operation: AJMP addr11
(PC) ← (PC) + 2
(PC10-0) ← page address

Encoding: a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

ANL <dest-byte>, <src-byte>

Function: Logical AND for byte variables

Description: ANL performs the bitwise logical AND operation between the variables

indicated and stores the results in the destination variable. No flags are
affected. The two operands allow six addressing mode combinations.
When the destination is a accumulator, the source can use register,
direct, register-indirect, or immediate addressing; when the destination is
a direct address, the source can be the accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value
used as the original port data will be read from the output data latch, not
the input pins.

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH
(10101010B) then the instruction

ANL A,R0

will leave 81H (10000001B) in the accumulator. When the destination is a
directly addressed byte, this instruction will clear combinations of bits in

any RAM location or hardware register. The mask byte determining the
pattern of bits to be cleared would either be a constant contained in the
instruction or a value computed in the accumulator at run-time. The
instruction

ANL P1, #01110011B

will clear bits 7, 3, and 2 of output port 1.

Operation: ANL A, Rn
 (A) ← (A) ∧ (Rn)

Encoding: 0 1 0 1 1 r r r

Operation: ANL A, direct
 (A) ← (A) ∧ (direct)

Encoding: 0 1 0 1 0 1 0 1 direct address

Operation: ANL A, @Ri
 (A) ← (A) ∧ ((Ri))

Encoding: 0 1 0 1 0 1 1 i

Operation: ANL A, @Ri
 (A) ← (A) ∧ ((Ri))

Encoding: 0 1 0 1 0 1 1 i

Operation: ANL A, #data
 (A) ← (A) ∧ #data

Encoding: 0 1 0 1 0 1 0 0 immediate data

Operation: ANL direct, A
 (direct) ← (direct) ∧ (A)

Encoding: 0 1 0 1 0 0 1 0 direct address

Operation: ANL direct, #data
 (direct) ← (direct) ∧ #data

Encoding: 0 1 0 1 0 0 1 1 direct address immediate data

ANL C, <src-bit>

Function: Logical AND for bit variables

Description: If the Boolean value of the source bit is a logic 0 then clear the carry flag;

otherwise leave the carry flag in its current state. A slash (”/” preceding
the operand in the assembly language indicates that the logical
complement of the addressed bit is used as the source value, but the
source bit itself is not affected. No other flags are affected. Only direct
bit addressing is allowed for the source operand.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, and OV = 0:

MOV C,P1.0 ; Load carry with input pin state
ANL C,ACC.7 ; AND carry with accumulator bit 7
ANL C,/OV ; AND with inverse of overflow flag

Operation: ANL C, bit

 (C) ← (C) ∧ (bit)

Encoding: 1 0 0 0 0 0 1 0 bit address

Operation: ANL C, /bit
 (C) ← (C) ∧ ¬ (bit)

Encoding: 1 0 1 1 0 0 0 0 bit address

CALL addr16

Function: Call subroutine.

Description: This is a generic call instruction which will be replaced by the assembler

with a ACALL or LCALL instruction. The assembler will try to pick the
most economical replacement.

Example: The instruction sequence

CALL MYSUB

will cause program execution to continue at the instruction at label
MYSUB after pushing the return address into the stack.

Operation: Please check the instructions ACALL and LCALL.

Encoding: Please check the instructions ACALL and LCALL.

CJNE <dest-byte >, < src-byte >, rel

Function: Compare and jump if not equal

Description: CJNE compares the magnitudes of the first two operands, and branches

if their values are not equal. The branch destination is computed by
adding the signed relative displacement in the last instruction byte to the
PC, after incrementing the PC to the start of the next instruction. The
carry flag is set if the unsigned integer value of <dest-byte> is less than
the unsigned integer value of <src-byte>; otherwise, the carry is cleared.
Neither operand is affected.

The first two operands allow four addressing mode combinations: the
accumulator may be compared with any directly addressed byte or
immediate data, and any indirect RAM location or working register can be
compared with an immediate constant.

Example: The accumulator contains 34H. Register 7 contains 56H. The first
instruction in the sequence

 CJNE R7, # 60H, NOT_EQ
; ; R7 = 60H
NOT_EQ: JC REQ_LOW ; If R7 < 60H
; ; R7 > 60H

sets the carry flag and branches to the instruction at label NOT_EQ. By
testing the carry flag, this instruction determines whether R7 is greater or
less than 60H. If the data being presented to port 1 is also 34H, then the
instruction

WAIT: CJNE A,P1,WAIT

clears the carry flag and continues with the next instruction in sequence,
since the accumulator does equal the data read from P1. (If some other
value was input on P1, the program will loop at this point until the P1 data
changes to 34H).

Operation: CJNE A, direct, rel
(PC) ← (PC) + 3
if (A) < > (direct)
then (PC) ← (PC) + relative offset
if (A) < (direct)
then (C) ←1
else (C) ← 0

Encoding: 1 0 1 1 0 1 0 1 direct address rel. address

Operation: CJNE A, #data, rel
(PC) ← (PC) + 3
if (A) < > data
then (PC) ← (PC) + relative offset
if (A) ← data
then (C) ←1
else (C) ← 0

Encoding: 1 0 1 1 0 1 0 0 immediate data rel. address

Operation: CJNE Rn, #data, rel
(PC) ← (PC) + 3
if (Rn) < > data
then (PC) ← (PC) + relative offset
if (Rn) < data
then (C) ← 1
else (C) ← 0

Encoding: 1 0 1 1 1 r r r immediate data rel. address

Operation: CJNE @Ri, #data, rel
(PC) ← (PC) + 3
if ((Ri)) < > data
then (PC) ← (PC) + relative offset
if ((Ri)) < data
then (C) ← 1
else (C) ← 0

Encoding: 1 0 1 1 0 1 1 i immediate data rel. address

CLR A

Function: Clear accumulator

Description: The accumulator is cleared (all bits set to zero). No flags are affected.

Example: The accumulator contains 5CH (01011100B). The instruction

CLR A

will leave the accumulator set to 00H (00000000B).

Operation: CLR
(A) ← 0

Encoding: 1 1 1 0 0 1 0 0

CLR bit

Function: Clear bit

Description: The indicated bit is cleared (reset to zero). No other flags are affected.

CLR can operate on the carry flag or any directly addressable bit.

Example: Port 1 has previously been written with 5DH (01011101B). The
instruction

CLR P1.2

will leave the port set to 59H (01011001B).

Operation: CLR C
 (C) ←0

Encoding: 1 1 0 0 0 0 1 1

Operation: CLR bit
(bit) ← 0

Encoding: 1 1 0 0 0 0 1 0 bit address

CPL A

Function: Complement accumulator

Description: Each bit of the accumulator is logically complemented (one’s

complement). Bits which previously contained a one are changed to zero
and vice versa. No flags are affected.

Example: The accumulator contains 5CH (01011100B). The instruction

CPL A

will leave the accumulator set to 0A3H (10100011B).

Operation: CPL A
(A) ← ¬ (A)

Encoding: 1 1 1 1 0 1 0 0

CPL bit

Function: Complement bit

Description: The bit variable specified is complemented. A bit which had been a one is

changed to zero and vice versa. No other flags are affected. CPL can
operate on the carry or any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value
used as the original data will be read from the output data latch, not the
input pin.

Example: Port 1 has previously been written with 5DH (01011101B). The instruction
sequence

CPL P1.1
CPL P1.2

will leave the port set to 5BH (01011011B).

Operation: CPL C
 (C)← ¬ (C)

Encoding: 1 1 0 0 0 0 1 1

Operation: CPL bit
 (bit) ← ¬ (bit)

Encoding: 1 0 1 1 0 0 1 0 bit address

DA A

Function: Decimal adjust accumulator for addition

Description: DA A adjusts the eight-bit value in the accumulator resulting from the

earlier addition of two variables (each in packed BCD format), producing
two four-bit digits. Any ADD or ADDC instruction may have been used to
perform the addition.

If accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if
the AC flag is one, six is added to the accumulator producing the proper
BCD digit in the low order nibble. This internal addition would set the
carry flag if a carry-out of the low order four-bit field propagated through
all high-order bits, but it would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine
(1010xxxx- 1111xxxx), these high-order bits are incremented by six,
producing the proper BCD digit in the high-order nibble. Again, this would
set the carry flag if there was a carryout of the high-order bits, but
wouldn’t clear the carry. The carry flag thus indicates if the sum of the
original two BCD variables is greater than 100, allowing multiple precision
decimal addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially; this
instruction performs the decimal conversion by adding 00H, 06H, 60H, or
66H to the accumulator, depending on initial accumulator and PSW
conditions.

Note: DA A cannot simply convert a hexadecimal number in the
accumulator to BCD notation, nor does DA A apply to decimal
subtraction.

Example: The accumulator holds the value 56H (01010110B) representing the
packed BCD digits of the decimal number 56. Register 3 contains the
value 67H (01100111B) representing the packed BCD digits of the
decimal number 67. The carry flag is set. The instruction sequence

ADDC A, R3
DA A

will first perform a standard two’s-complement binary addition, resulting in
the value 0BEH (10111110B) in the accumulator. The carry and auxiliary
carry flags will be cleared.

The decimal adjust instruction will then alter the accumulator to the value
24H (00100100B), indicating the packed BCD digits of the decimal
number 24, the low order two digits of the decimal sum of 56, 67, and the
carry-in. The carry flag will be set by the decimal adjust instruction,
indicating that a decimal overflow occurred. The true sum 56, 67, and 1 is

124.

BCD variables can be incremented or decremented by adding 01H or
99H. If the accumulator initially holds 30H (representing the digits of 30
decimal), then the instruction sequence

ADD A, #99H
DA A

will leave the carry set and 29H in the accumulator, since 30 + 99 = 129.
The low order byte of the sum can be interpreted to mean 30 – 1 = 29.

Operation: DA A
contents of accumulator are BCD
if [[(A3-0) > 9] ∨ [(AC) = 1]]
then (A3-0) ← (A3-0) + 6
and
if [[(A7-4) > 9] ∨ [(C) = 1]]
then (A7-4) ← (A7-4) + 6

Encoding: 1 1 0 1 0 1 0 0

DEC byte

Function: Decrement

Description: The variable indicated is decremented by 1. An original value of 00H will

underflow to 0FFH. No flags are affected. Four operand addressing
modes are allowed: accumulator, register, direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value
used as the original port data will be read from the output data latch, not
the input pins.

Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and
7FH contain 00H and 40H, respectively. The instruction sequence

DEC @R0
DEC R0
DEC @R0

will leave register 0 set to 7EH and internal RAM locations 7EH and 7FH
set to 0FFH and 3FH.

Operation: DEC A
 (A) ← (A) – 1

Encoding: 0 0 0 1 0 1 0 0

Operation: DEC Rn
 (Rn) ← (Rn) – 1

Encoding: 0 0 0 1 1 r r r

Operation: DEC direct
(direct) ← (direct) – 1

Encoding: 0 0 0 1 0 1 0 1 direct address

Operation: DEC @Ri
((Ri)) ← ((Ri)) – 1

Encoding: 0 0 0 1 0 1 1 i

DIV AB

Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the accumulator by the

unsigned eight-bit integer in register B. The accumulator receives the
integer part of the quotient; register B receives the integer remainder.
The carry and OV flags will be cleared. Exception: If B had originally
contained 00H, the values returned in the accumulator and B register will
be undefined and the overflow flag will be set. The carry flag is cleared in
any case.

Example: The accumulator contains 251 (0FBH or 11111011B) and B contains 18
(12H or 00010010B). The instruction

DIV AB

will leave 13 in the accumulator (0DH or 00001101 B) and the value 17
(11H or 00010001B) in B, since 251 = (13x18) + 17. Carry and OV will
both be cleared.

Operation: DIV AB
(A), (B) ← (A) / (B)

Encoding: 1 0 0 0 0 1 0 0

DJNZ <byte>, < rel-addr>

Function: Decrement and jump if not zero

Description: DJNZ decrements the location indicated by 1, and branches to the

address indicated by the second operand if the resulting value is not
zero. An original value of 00H will underflow to 0FFH. No flags are
affected. The branch destination would be computed by adding the
signed relative-displacement value in the last instruction byte to the PC,
after incrementing the PC to the first byte of the following instruction. The
location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value
used as the original port data will be read from the output data latch, not
the input pins.

Example: Internal RAM locations 40H, 50H, and 60H contain the values, 01H, 70H,
and 15H, respectively. The instruction sequence

DJNZ 40H,LABEL_1
DJNZ 50H,LABEL_2
DJNZ 60H,LABEL_3

will cause a jump to the instruction at label LABEL_2 with the values 00H,
6FH, and 15H in the three RAM locations. The first jump was not taken
because the result was zero.

This instruction provides a simple way of executing a program loop a
given number of times, or for adding a moderate time delay (from 2 to
512 machine cycles) with a single instruction. The instruction sequence

 MOV R2, #8
TOGGLE: CPL P1.7
 DJNZ R2, TOGGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7
of output port 1. Each pulse will last three machine cycles; two for DJNZ
and one to alter the pin.

Operation: DJNZ Rn, rel
(PC) ← (PC) + 2
(Rn) ← (Rn) – 1
if (Rn) > 0 or (Rn) < 0
then (PC) ← (PC) + rel

Encoding: 1 1 0 1 1 r r r rel. address

Operation: DJNZ direct, rel
(PC) ← (PC) + 2
(direct) ← (direct) – 1
if (direct) > 0 or (direct) < 0
then (PC) ← (PC) + rel

Encoding: 1 1 0 1 0 1 0 1 direct address rel. address

INC <byte>

Function: Increment

Description: INC increments the indicated variable by 1. An original value of 0FFH will

overflow to 00H. No flags are affected. Three addressing modes are
allowed: register, direct, or register-indirect. Note: When this instruction is
used to modify an output port, the value used as the original port data will
be read from the output data latch, not the input pins.

Example: Register 0 contains 7EH (01111110B). Internal RAM locations 7EH and
7FH contain 0FFH and 40H, respectively. The instruction sequence

INC @R0
INC R0
INC @R0

will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH
holding (respectively) 00H and 41H.

Operation: INC A
 (A) ← (A) + 1

Encoding: 0 0 0 0 0 1 0 0

Operation: INC Rn
 (Rn) ← (Rn) + 1

Encoding: 0 0 0 0 1 r r r

Operation: INC direct
 (direct) ← (direct) + 1

Encoding: 0 0 0 0 0 1 0 1 direct address

Operation: INC @Ri
((Ri)) ← ((Ri)) + 1

Encoding: 0 0 0 0 0 1 1 i

INC DPTR

Function: Increment data pointer

Description: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is

performed; an overflow of the low-order byte of the data pointer (DPL)
from 0FFH to 00H will increment the high-order byte (DPH). No flags are
affected. This is the only 16-bit register which can be incremented.

Example: Registers DPH and DPL contain 12H and 0FEH, respectively. The
instruction sequence

INC DPTR
INC DPTR
INC DPTR

will change DPH and DPL to 13H and 01H.

Operation: INC DPTR
(DPTR) ← (DPTR) + 1

Encoding: 1 0 1 0 0 0 1 1

JB bit, rel

Function: Jump if bit is set

Description: If the indicated bit is a one, jump to the address indicated; otherwise

proceed with the next instruction. The branch destination is computed by
adding the signed relative-displacement in the third instruction byte to the
PC, after incrementing the PC to the first byte of the next instruction. The
bit tested is not modified. No flags are affected.

Example: The data present at input port 1 is 11001010B. The accumulator holds 56
(01010110B). The instruction sequence

JB P1.2,LABEL1
JB ACC.2,LABEL2

will cause program execution to branch to the instruction at label
LABEL2.

Operation: JB bit, rel
(PC) ← (PC) + 3
if (bit) = 1
then (PC) ← (PC) + rel

Encoding: 0 0 1 0 0 0 0 0 direct address rel. address

JBC bit, rel

Function: Jump if bit is set and clear bit

Description: If the indicated bit is one, branch to the address indicated; otherwise

proceed with the next instruction. In either case, clear the designated
bit. The branch destination is computed by adding the signed relative
displacement in the third instruction byte to the PC, after incrementing the
PC to the first byte of the next instruction. No flags are affected. Note:
When this instruction is used to test an output pin, the value used as the
original data will be read from the output data latch, not the input pin.

Example: The accumulator holds 56H (01010110B). The instruction sequence

JBC ACC.3,LABEL1
JBC ACC.2,LABEL2

will cause program execution to continue at the instruction identified by
the label LABEL2, with the accumulator modified to 52H (01010010B).

Operation: JBC bit, rel
 (PC) ← (PC) + 3
if (bit) = 1
then (bit) ← 0
(PC) ← (PC) + rel

Encoding: 0 0 0 1 0 0 0 0 direct address rel. address

JC rel

Function: Jump if carry is set

Description: If the carry flag is set, branch to the address indicated; otherwise proceed

with the next instruction. The branch destination is computed by adding
the signed relative displacement in the second instruction byte to the PC,

after incrementing the PC twice. No flags are affected.

Example: The carry flag is cleared. The instruction sequence

JC LABEL1
CPL C
JC LABEL2

will set the carry and cause program execution to continue at the
instruction identified by the label LABEL2.

Operation: JC rel
(PC) ← (PC) + 2
if (C) = 1
then (PC) ← (PC) + rel

Encoding: 0 1 0 0 0 0 0 0 rel. address

JMP addr16

Function: Unconditional jump.

Description: This is a generic jump instruction which will be replaced by the assembler

with a SJMP, AJMP, or LJMP instruction. The assembler will try to pick
the most economical replacement.

Example: The instruction sequence

JMP MYLABEL

will cause program execution to continue at the instruction at label
MYLABEL.

Operation: Please check the instructions SJMP, AJMP, and LJMP.

Encoding: Please check the instructions SJMP, AJMP, and LJMP.

JMP @A + DPTR

Function: Jump indirect

Description: Add the eight-bit unsigned contents of the accumulator with the sixteen-

bit data pointer, and load the resulting sum to the program counter. This

will be the address for subsequent instruction fetches. Sixteen-bit
addition is performed (modulo 216): a carry-out from the low-order eight
bits propagates through the higher-order bits. Neither the accumulator
nor the data pointer is altered. No flags are affected.

Example: An even number from 0 to 6 is in the accumulator. The following
sequence of instructions will branch to one of four AJMP instructions in a
jump table starting at

JMP_TBL:
MOV DPTR, #JMP_TBL
JMP @A + DPTR
JMP_TBL: AJMP LABEL0
AJMP LABEL1
AJMP LABEL2
AJMP LABEL3

If the accumulator equals 04H when starting this sequence, execution will
jump to label LABEL2. Remember that AJMP is a two-byte instruction, so
the jump instructions start at every other address.

Operation: JMP @A + DPTR
(PC) ← (A) + (DPTR)

Encoding: 0 1 1 1 0 0 1 1

JNB bit, rel

Function: Jump if bit is not set

Description: If the indicated bit is a zero, branch to the indicated address; otherwise

proceed with the next instruction. The branch destination is computed by
adding the signed relative-displacement in the third instruction byte to the
PC, after incrementing the PC to the first byte of the next instruction. The
bit tested is not modified. No flags are affected.

Example: The data present at input port 1 is 11001010B. The accumulator holds
56H (01010110B). The instruction sequence

JNB P1.3,LABEL1
JNB ACC.3,LABEL2

will cause program execution to continue at the instruction at label
LABEL2.

Operation: JNB bit, rel
(PC) ← (PC) + 3

if (bit) = 0
then (PC) ← (PC) + rel

Encoding: 0 0 1 1 0 0 0 0 bit address rel. address

JNC rel

Function: Jump if carry is not set

Description: If the carry flag is a zero, branch to the address indicated; otherwise

proceed with the next instruction. The branch destination is computed by
adding the signed relative-displacement in the second instruction byte to
the PC, after incrementing the PC twice to point to the next instruction.
The carry flag is not modified.

Example: The carry flag is set. The instruction sequence

JNC LABEL1
CPL C
JNC LABEL2

will clear the carry and cause program execution to continue at the
instruction identified by the label LABEL2.

Operation: JNC rel
 (PC) ← (PC) + 2
if (C) = 0
then (PC) ← (PC) + rel

Encoding: 0 1 0 1 0 0 0 0 rel. address

JNZ rel

Function: Jump if accumulator is not zero

Description: If any bit of the accumulator is a one, branch to the indicated address;

otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified. No flags are affected.

Example: The accumulator originally holds 00H. The instruction sequence

JNZ LABEL1

INC A
JNZ LABEL2

will set the accumulator to 01H and continue at label LABEL2.

Operation: JNZ rel
(PC) ← (PC) + 2
if (A) ≠ 0
then (PC) ← (PC) + rel.

Encoding: 0 1 1 1 0 0 0 0 rel. address

JZ rel

Function: Jump if accumulator is zero

Description: If all bits of the accumulator are zero, branch to the address indicated;

otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified. No flags are affected.

Example: The accumulator originally contains 01H. The instruction sequence

JZ LABEL1
DEC A
JZ LABEL2

will change the accumulator to 00H and cause program execution to
continue at the instruction identified by the label LABEL2.

Operation: JZ rel
 (PC) ← (PC) + 2
if (A) = 0
then (PC) ← (PC) + rel

Encoding: 0 1 1 0 0 0 0 0 rel. address

LCALL addr16

Function: Long call

Description: LCALL calls a subroutine located at the indicated address. The

instruction adds three to the program counter to generate the address of
the next instruction and then pushes the 16-bit result onto the stack (low
byte first), incrementing the stack pointer by two. The high-order and low-
order bytes of the PC are then loaded, respectively, with the second and
third bytes of the LCALL instruction. Program execution continues with
the instruction at this address. The subroutine may therefore begin
anywhere in the full 64 Kbyte program memory address space. No flags
are affected.

Example: Initially the stack pointer equals 07H. The label ”SUBRTN” is assigned to
program memory location 1234H. After executing the instruction

LCALL SUBRTN

at location 0123H, the stack pointer will contain 09H, internal RAM
locations 08H and 09H will contain 26H and 01H, and the PC will contain
1234H.

Operation: LCALL addr16
 (PC) ← (PC) + 3
(SP) ← (SP) + 1
((SP)) ← (PC7-0)
(SP) ← (SP) + 1
((SP)) ← (PC15-8)
(PC) ← addr15-0

Encoding: 0 0 0 1 0 0 1 0 addr15 . . . addr8 addr7 . . . addr0

LJMP addr16

Function: Long jump

Description: LJMP causes an unconditional branch to the indicated address, by

loading the high order and low-order bytes of the PC (respectively) with
the second and third instruction bytes. The destination may therefore be
anywhere in the full 64K program memory address space. No flags are
affected.

Example: The label ”JMPADR” is assigned to the instruction at program memory
location 1234H. The instruction

LJMP JMPADR

at location 0123H will load the program counter with 1234H.

Operation: LJMP addr16

 (PC) ← addr15-0

Encoding: 0 0 0 0 0 0 1 0 addr15 . . . addr8 addr7 . . . addr0

MOV <dest-byte>, <src-byte>

Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the

location specified by the first operand. The source byte is not affected.
No other register or flag is affected. This is by far the most flexible
operation. Fifteen combinations of source and destination addressing
modes are allowed.

Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is
10H. the data present at input port 1 is 11001010B (0CAH).

MOV R0, #30H ; R0 < = 30H
MOV A, @R0 ; A < = 40H
MOV R1,A ; R1 < = 40H
MOV B, @R1 ; B < = 10H
MOV @R1,P1 ; RAM (40H) < = 0CAH
MOV P2,P1 ; P2 < = 0CAH

leaves the value 30H in register 0, 40H in both the accumulator and
register 1, 10H in register B, and 0CAH (11001010B) both in RAM
location 40H and output on port 2.

Operation: MOV A, Rn
 (A) ← (Rn)

Encoding: 1 1 1 0 1 r r r

Operation: MOV A, direct 1
 (A) ← (direct)

Encoding: 1 1 1 0 0 1 0 1 direct address

Operation: MOV A, @Ri
 (A) ← ((Ri))

Encoding: 1 1 1 0 0 1 1 i

1 MOV A, ACC is not a valid instruction.

Operation: MOV A, #data
 (A) ← #data

Encoding: 0 1 1 1 0 1 0 0 immediate data

Operation: MOV Rn, A
 (Rn) ← (A)

Encoding: 1 1 1 1 1 r r r

Operation: MOV Rn, direct
 (Rn) ← (direct)

Encoding: 1 0 1 0 1 r r r direct address

Operation: MOV Rn, #data
 (Rn) ← #data

Encoding: 0 1 1 1 1 r r r immediate data

Operation: MOV direct, A
 (direct) ← (A)

Encoding: 1 1 1 1 0 1 0 1 direct address

Operation: MOV direct, Rn
 (direct) ← (Rn)

Encoding: 1 0 0 0 1 r r r direct address

Operation: MOV direct, direct
 (direct) ← (direct)

Encoding: 1 0 0 0 0 1 0 1 dir.addr. (src) dir.addr. (dest)

Operation: MOV direct, @Ri
 (direct) ← ((Ri))

Encoding: 1 0 0 0 0 1 1 i direct address

Operation: MOV direct, #data
 (direct) ← #data

Encoding: 0 1 1 1 0 1 0 1 direct address immediate data

Operation: MOV @ Ri, A
 ((Ri)) ← (A)

Encoding: 1 1 1 1 0 1 1 i

Operation: MOV @ Ri, direct
 ((Ri)) ← (direct)

Encoding: 1 0 1 0 0 1 1 i direct address

Operation: MOV @ Ri, #data
 ((Ri)) ← #data

Encoding: 0 1 1 1 0 1 1 i immediate data

MOV <dest-bit>, <src-bit>

Function: Move bit data

Description: The Boolean variable indicated by the second operand is copied into the

location specified by the first operand. One of the operands must be the
carry flag; the other may be any directly addressable bit. No other
register or flag is affected.

Example: The carry flag is originally set. The data present at input port 3 is
11000101B. The data previously written to output port 1 is 35H
(00110101B).

MOV P1.3,C
MOV C,P3.3
MOV P1.2,C

will leave the carry cleared and change port 1 to 39H (00111001 B).

Operation: MOV C, bit
 (C) ← (bit)

Encoding: 1 0 1 0 0 0 1 0 bit address

Operation: MOV bit, C
 (bit) ← (C)

Encoding: 1 0 0 1 0 0 1 0 bit address

MOV DPTR, #data16

Function: Load data pointer with a 16-bit constant

Description: The data pointer is loaded with the 16-bit constant indicated. The 16 bit

constant is loaded into the second and third bytes of the instruction. The
second byte (DPH) is the high-order byte, while the third byte (DPL)
holds the low-order byte. No flags are affected. This is the only instruction
which moves 16 bits of data at once.

Example: The instruction

MOV DPTR, #1234H

will load the value 1234H into the data pointer: DPH will hold 12H and
DPL will hold 34H.

Operation: MOV DPTR, #data16
 (DPTR) ← #data15-0

Encoding: 1 0 0 1 0 0 0 0 immed. data 15 ... 8 immed. data 7 ... 0

MOVC A, @A + <base-reg>

Function: Move code byte

Description: The MOVC instructions load the accumulator with a code byte, or

constant from program memory. The address of the byte fetched is the
sum of the original unsigned eight-bit accumulator contents and the
contents of a sixteen-bit base register, which may be either the data
pointer or the PC. In the latter case, the PC is incremented to the address
of the following instruction before being added to the accumulator;
otherwise the base register is not altered. Sixteen-bit addition is
performed so a carry-out from the low-order eight bits may propagate
through higher-order bits. No flags are affected.

Example: A value between 0 and 3 is in the accumulator. The following instructions
will translate the value in the accumulator to one of four values defined by
the DB (define byte) directive.

REL_PC: INC A
 MOVC A, @A + PC
 RET
 DB 66H

 DB 77H
 DB 88H
 DB 99H

If the subroutine is called with the accumulator equal to 01H, it will return
with 77H in the accumulator. The INC A before the MOVC instruction is
needed to ”get around” the RET instruction above the table. If several
bytes of code separated the MOVC from the table, the corresponding
number would be added to the accumulator instead.

Operation: MOVC A, @A + DPTR
 (A) ← ((A) + (DPTR))

Encoding: 1 0 0 1 0 0 1 1

Operation: MOVC A, @A + PC
 (PC) ← (PC) + 1
(A) ← ((A) + (PC))

Encoding: 1 0 0 0 0 0 1 1

MOVX <dest-byte>, <src-byte>

Function: Move expanded

Description: The MOVX instructions transfer data between the accumulator and a

byte of expanded data memory, hence the ”X” appended to MOV. There
are two types of instructions, differing in whether they provide an eight bit
or sixteen-bit indirect address to the external data RAM.

In the first type, the contents of R0 or R1 in the current register bank
provide an eight-bit address multiplexed with data on P0. Eight bits are
sufficient for external l/O expansion decoding or a relatively small RAM
array. For somewhat larger arrays, any output port pins can be used to
output higher-order address bits. These pins would be controlled by an
output instruction preceding the MOVX.

In the second type of MOVX instructions, the data pointer generates a
sixteen-bit address. P2 outputs the high-order eight address bits (the
contents of DPH) while P0 multiplexes the low-order eight bits (DPL) with
data. The P2 special function register retains its previous contents while
the P2 output buffers are emitting the contents of DPH. This form is faster
and more efficient when accessing very large data arrays (up to 64
Kbyte), since no additional instructions are needed to set up the output
ports. It is possible in some situations to mix the two MOVX types. A
large RAM array with its high-order address lines driven by P2 can be
addressed via the data pointer, or with code to output high-order address

bits to P2 followed by a MOVX instruction using R0 or R1.

Example: An external 256 byte RAM using multiplexed address/data lines is
connected to port 0. Port 3 provides control lines for the external RAM.
Ports 1 and 2 are used for normal l/O. Registers 0 and 1 contain 12H and
34H. Location 34H of the external RAM holds the value 56H. The
instruction sequence

MOVX A, @R1
MOVX @R0,A

copies the value 56H into both the accumulator and external RAM
location 12H.

Operation: MOVX A, @Ri
 (A) ← ((Ri))

Encoding: 1 1 1 0 0 0 1 i

Operation: MOVX A, @DPTR
 (A) ← ((DPTR))

Encoding: 1 1 1 0 0 0 0 0

Operation: MOVX @Ri, A
 ((Ri)) ← (A)

Encoding: 1 1 1 1 0 0 1 i

Operation: MOVX @DPTR, A
 ((DPTR)) ← (A)

Encoding: 1 1 1 1 0 0 0 0

MUL AB

Function: Multiply
Description: MUL AB multiplies the unsigned eight-bit integers in the accumulator and

register B. The low-order byte of the sixteen-bit product is left in the
accumulator, and the high-order byte in B. If the product is greater than
255 (0FFH) the overflow flag is set; otherwise it is cleared. The carry flag
is always cleared.

Example: Originally the accumulator holds the value 80 (50H). Register B holds the
value 160 (0A0H). The instruction

MUL AB

will give the product 12,800 (3200H), so B is changed to 32H
(00110010B) and the accumulator is cleared. The overflow flag is set,
carry is cleared.

Operation: MUL AB
 (A7-0), (B15-8) ← (A) x (B)

Encoding: 1 0 1 0 0 1 0 0

NOP

Function: No operation

Description: Execution continues at the following instruction. Other than the PC, no

registers or flags are affected.

Example: It is desired to produce a low-going output pulse on bit 7 of port 2 lasting
exactly 5 cycles. A simple SETB/CLR sequence would generate a one-
cycle pulse2, so four additional cycles must be inserted. This may be
done (assuming no interrupts are enabled) with the instruction sequence

CLR P2.7
NOP
NOP
NOP
NOP
SETB P2.7

Operation: NOP

Encoding: 0 0 0 0 0 0 0 0

2 This is for the original 8051 from Intel, where one cycle takes 12 clock periods. Modern
variants of the 8051 microcontroller, in particular those running at one cycle per clock
period, may take more than one cycle to execute the SETB/CLR instructions. Please
refer the datasheet of the particular microcontroller your are using for more details.

ORL <dest-byte> <src-byte>

Function: Logical OR for byte variables

Description: ORL performs the bitwise logical OR operation between the indicated

variables, storing the results in the destination byte. No flags are affected
. The two operands allow six addressing mode combinations. When the
destination is the accumulator, the source can use register, direct,
register-indirect, or immediate addressing; when the destination is a
direct address, the source can be the accumulator or immediate data.
Note: When this instruction is used to modify an output port, the value
used as the original port data will be read from the output data latch, not
the input pins.

Example: If the accumulator holds 0C3H (11000011B) and R0 holds 55H
(01010101B) then the instruction

ORL A, R0

will leave the accumulator holding the value 0D7H (11010111B).

When the destination is a directly addressed byte, the instruction can set
combinations of bits in any RAM location or hardware register. The
pattern of bits to be set is determined by a mask byte, which may be
either a constant data value in the instruction or a variable computed in
the accumulator at run-time. The instruction

ORL P1, #00110010B

will set bits 5, 4, and 1 of output port 1.

Operation: ORL A, Rn
 (A) ← (A) ∨ (Rn)

Encoding: 0 1 0 0 1 r r r

Operation: ORL A, direct
 (A) ← (A) ∨ (direct)

Encoding: 0 1 0 0 0 1 0 1 direct address

Operation: ORL A, @Ri
 (A) ← (A) ∨ ((Ri))

Encoding: 0 1 0 0 0 1 1 i

Operation: ORL A, #data
 (A) ← (A) ∨ #data

Encoding: 0 1 0 0 0 1 0 0 immediate data

Operation: ORL direct, A
 (direct) ← (direct) ∨ (A)

Encoding: 0 1 0 0 0 0 1 0 direct address

Operation: ORL direct, #data
 (direct) ← (direct) ∨ #data

Encoding: 0 1 0 0 0 0 1 1 direct address immediate data

ORL C, <src-bit>

Function: Logical OR for bit variables

Description: Set the carry flag if the Boolean value is a logic 1; leave the carry in its

current state otherwise. A slash (”/”) preceding the operand in the
assembly language indicates that the logical complement of the
addressed bit is used as the source value, but the source bit itself is not
affected. No other flags are affected.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, or OV = 0:

MOV C,P1.0 ; Load carry with input pin P1.0
ORL C,ACC.7 ; OR carry with the accumulator bit 7
ORL C,/OV ; OR carry with the inverse of OV

Operation: ORL C, bit

 (C) ← (C) ∨ (bit)

Encoding: 0 1 1 1 0 0 1 0 bit address

Operation: ORL C, /bit
 (C) ← (C) ∨ ¬ (bit)

Encoding: 1 0 1 0 0 0 0 0 bit address

POP direct

Function: Pop from stack

Description: The contents of the internal RAM location addressed by the stack pointer

is read, and the stack pointer is decremented by one. The value read is
the transfer to the directly addressed byte indicated. No flags are
affected.

Example: The stack pointer originally contains the value 32H, and internal RAM
locations 30H through 32H contain the values 20H, 23H, and 01H,
respectively. The instruction sequence

POP DPH
POP DPL

will leave the stack pointer equal to the value 30H and the data pointer
set to 0123H. At this point the instruction

POP SP

will leave the stack pointer set to 20H. Note that in this special case the
stack pointer was decremented to 2FH before being loaded with the
value popped (20H).

Operation: POP direct
(direct) ← ((SP))
(SP) ← (SP) – 1

Encoding: 1 1 0 1 0 0 0 0 direct address

PUSH direct

Function: Push onto stack

Description: The stack pointer is incremented by one. The contents of the indicated

variable is then copied into the internal RAM location addressed by the
stack pointer. Otherwise no flags are affected.

Example: On entering an interrupt routine the stack pointer contains 09H. The data
pointer holds the value 0123H. The instruction sequence

PUSH DPL
PUSH DPH

will leave the stack pointer set to 0BH and store 23H and 01H in internal
RAM locations 0AH and 0BH, respectively.

Operation: PUSH direct
(SP) ← (SP) + 1
((SP)) ← (direct)

Encoding: 1 1 0 0 0 0 0 0 direct address

RET

Function: Return from subroutine

Description: RET pops the high and low-order bytes of the PC successively from the

stack, decrementing the stack pointer by two. Program execution
continues at the resulting address, generally the instruction immediately
following an ACALL or LCALL. No flags are affected.

Example: The stack pointer originally contains the value 0BH. Internal RAM
locations 0AH and 0BH contain the values 23H and 01H, respectively.
The instruction

RET

will leave the stack pointer equal to the value 09H. Program execution
will continue at location 0123H.

Operation: RET
(PC15-8) ← ((SP))
(SP) ← (SP) – 1
(PC7-0) ← ((SP))
(SP) ← (SP) – 1

Encoding: 0 0 1 0 0 0 1 0

RETI

Function: Return from interrupt

Description: RETI pops the high and low-order bytes of the PC successively from the

stack, and restores the interrupt logic to accept additional interrupts at the
same priority level as the one just processed. The stack pointer is left
decremented by two. No other registers are affected; the PSW is not
automatically restored to its pre-interrupt status. Program execution

continues at the resulting address, which is generally the instruction
immediately after the point at which the interrupt request was detected. If
a lower or same-level interrupt is pending when the RETI instruction is
executed, that one instruction will be executed before the pending
interrupt is processed.

Example: The stack pointer originally contains the value 0BH. An interrupt was
detected during the instruction ending at location 0122H. Internal RAM
locations 0AH and 0BH contain the values 23H and 01H, respectively.
The instruction

RETI

will leave the stack pointer equal to 09H and return program execution to
location 0123H.

Operation: RETI
(PC15-8) ← ((SP))
(SP) ← (SP) – 1
(PC7-0) ← ((SP))
(SP) ← (SP) – 1

Encoding: 0 0 1 1 0 0 1 0

RL A

Function: Rotate accumulator left

Description: The eight bits in the accumulator are rotated one bit to the left. Bit 7 is

rotated into the bit 0 position. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction

RL A

leaves the accumulator holding the value 8BH (10001011B) with the
carry unaffected.

Operation: RL A
(An + 1) ← (An) n = 0-6
(A0) ← (A7)

Encoding: 0 0 1 0 0 0 1 1

RLC A

Function: Rotate accumulator left through carry flag

Description: The eight bits in the accumulator and the carry flag are together rotated

one bit to the left. Bit 7 moves into the carry flag; the original state of the
carry flag moves into the bit 0 position. No other flags are affected.

Example: The accumulator holds the value 0C5H (11000101B), and the carry is
zero. The instruction

RLC A

leaves the accumulator holding the value 8AH (10001010B) with the
carry set.

Operation: RLC A
(An + 1) ← (An) n = 0-6
(A0) ← (C)
(C) ← (A7)

Encoding: 0 0 1 1 0 0 1 1

RR A

Function: Rotate accumulator right

Description: The eight bits in the accumulator are rotated one bit to the right. Bit 0 is

rotated into the bit 7 position. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction

RR A

leaves the accumulator holding the value 0E2H (11100010B) with the
carry unaffected.

Operation: RR A
(An) ← (An + 1) n = 0-6
(A7) ← (A0)

Encoding: 0 0 0 0 0 0 1 1

RRC A

Function: Rotate accumulator right through carry flag

Description: The eight bits in the accumulator and the carry flag are together rotated

one bit to the right. Bit 0 moves into the carry flag; the original value of
the carry flag moves into the bit 7 position. No other flags are affected.

Example: The accumulator holds the value 0C5H (11000101B), the carry is zero.
The instruction

RRC A

leaves the accumulator holding the value 62H (01100010B) with the carry
set.

Operation: RRC A
(An) ← (An + 1) n=0-6
(A7) ← (C)
(C) ← (A0)

Encoding: 0 0 0 1 0 0 1 1

SETB <bit>

Function: Set bit

Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or

any directly addressable bit. No other flags are affected.

Example: The carry flag is cleared. Output port 1 has been written with the value
34H (00110100B). The instructions

SETB C
SETB P1.0

will leave the carry flag set to 1 and change the data output on port 1 to
35H (00110101B).

Operation: SETB C
 (C) ←1

Encoding: 1 1 0 1 0 0 1 1

Operation: SETB bit
 (bit) ← 1

Encoding: 1 1 0 1 0 0 1 0 bit address

SJMP rel

Function: Short jump

Description: Program control branches unconditionally to the address indicated. The

branch destination is computed by adding the signed displacement in the
second instruction byte to the PC, after incrementing the PC twice.
Therefore, the range of destinations allowed is from 128 bytes preceding
this instruction to 127 bytes following it.

Example: The label ”RELADR” is assigned to an instruction at program memory
location 0123H. The instruction

SJMP RELADR

will assemble into location 0100H. After the instruction is executed, the
PC will contain the value 0123H.

Note: Under the above conditions the instruction following SJMP will be
at 102H. Therefore, the displacement byte of the instruction will be the
relative offset (0123H- 0102H) = 21H. In other words, an SJMP with a
displacement of 0FEH would be a one-instruction infinite loop.

Operation: SJMP rel
(PC) ← (PC) + 2
(PC) ← (PC) + rel

Encoding: 1 0 0 0 0 0 0 0 rel. address

SUBB A, <src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together from

the accumulator, leaving the result in the accumulator. SUBB sets the
carry (borrow) flag if a borrow is needed for bit 7, and clears C otherwise.
(If C was set before executing a SUBB instruction, this indicates that a
borrow was needed for the previous step in a multiple precision

subtraction, so the carry is subtracted from the accumulator along with
the source operand). AC is set if a borrow is needed for bit 3, and cleared
otherwise. OV is set if a borrow is needed into bit 6 but not into bit 7, or
into bit 7 but not bit 6.

When subtracting signed integers OV indicates a negative number
produced when a negative value is subtracted from a positive value, or a
positive result when a positive number is subtracted from a negative
number. The source operand allows four addressing modes: register,
direct, register indirect, or immediate.

Example: The accumulator holds 0C9H (11001001B), register 2 holds 54H
(01010100B), and the carry flag is set. The instruction

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry
flag and AC cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the
above result is due to the (borrow) flag being set before the operation. If
the state of the carry is not known before starting a single or multiple-
precision subtraction, it should be explicitly cleared by a CLR C
instruction.

Operation: SUBB A, Rn
(A) ← (A) – (C) – (Rn)

Encoding: 1 0 0 1 1 r r r

Operation: SUBB A, direct
(A) ← (A) – (C) – (direct)

Encoding: 1 0 0 1 0 1 0 1 direct address

Operation: SUBB A, @ Ri
(A) ← (A) – (C) – ((Ri))

Encoding: 1 0 0 1 0 1 1 i

Operation: SUBB A, #data
(A) ← (A) – (C) – #data

Encoding: 1 0 0 1 0 1 0 0 immediate data

SWAP A

Function: Swap nibbles within the accumulator

Description: SWAP A interchanges the low and high-order nibbles (four-bit fields) of

the accumulator (bits 3-0 and bits 7-4). The operation can also be
thought of as a four bit rotate instruction. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction

SWAP A

leaves the accumulator holding the value 5CH (01011100B).

Operation: SWAP A
(A3-0) (A7-4), (A7-4) ← (A3-0)

Encoding: 1 1 0 0 0 1 0 0

XCH A, <byte>

Function: Exchange accumulator with byte variable

Description: XCH loads the accumulator with the contents of the indicated variable, at

the same time writing the original accumulator contents to the indicated
variable. The source/ destination operand can use register, direct, or
register-indirect addressing.

Example: R0 contains the address 20H. The accumulator holds the value 3FH
(00111111B). Internal RAM location 20H holds the value 75H
(01110101B). The instruction

XCH A, @R0

will leave RAM location 20H holding the value 3FH (00111111 B) and
75H (01110101B) in the accumulator.

Operation: XCH A, Rn
(A)↔ (Rn)

Encoding: 1 1 0 0 1 r r r

Operation: XCH A, direct
(A) ↔ (direct)

Encoding: 1 1 0 0 0 1 0 1 direct address

Operation: XCH A, @Ri
(A) ↔ ((Ri))

Encoding: 1 1 0 0 0 1 1 i

XCHD A, @Ri

Function: Exchange digit

Description: XCHD exchanges the low-order nibble of the accumulator (bits 3-0,

generally representing a hexadecimal or BCD digit), with that of the
internal RAM location indirectly addressed by the specified register. The
high-order nibbles (bits 7-4) of each register are not affected. No flags
are affected.

Example: R0 contains the address 20H. The accumulator holds the value 36H
(00110110B). Internal RAM location 20H holds the value 75H
(01110101B). The instruction

XCHD A, @R0

will leave RAM location 20H holding the value 76H (01110110B) and 35H
(00110101B) in the accumulator.

Operation: XCHD A, @Ri
 (A3-0) ↔ ((Ri)3-0)

Encoding: 1 1 0 1 0 1 1 i

XRL <dest-byte>, <src-byte>

Function: Logical Exclusive OR for byte variables

Description: XRL performs the bitwise logical Exclusive OR operation between the

indicated variables, storing the results in the destination. No flags are
affected.

The two operands allow six addressing mode combinations. When the
destination is the accumulator, the source can use register, direct,
register-indirect, or immediate addressing; when the destination is a
direct address, the source can be accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value
used as the original port data will be read from the output data latch, not
the input pins.

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH
(10101010B) then the instruction

XRL A, R0

will leave the accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can
complement combinations of bits in any RAM location or hardware
register. The pattern of bits to be complemented is then determined by a
mask byte, either a constant contained in the instruction or a variable
computed in the accumulator at run-time. The instruction

XRL P1, #00110001B

will complement bits 5, 4, and 0 of output port 1.

Operation: XRL A, Rn
(A) ← (A) v (Rn)

Encoding: 0 1 1 0 1 r r r

Operation: XRL A, direct
(A) ← (A) v (direct)

Encoding: 0 1 1 0 0 1 0 1 direct address

Operation: XRL A, @Ri
(A) ← (A) v ((Ri))

Encoding: 0 1 1 0 0 1 1 i

Operation: XRL A, #data
(A) ← (A) v #data

Encoding: 0 1 1 0 0 1 0 0 immediate data

Operation: XRL direct, A

(direct) ← (direct) v (A)

Encoding: 0 1 1 0 0 0 1 0 direct address

Operation: XRL direct, #data
(direct) ← (direct) v #data

Encoding: 0 1 1 0 0 0 1 1 direct address immediate data

