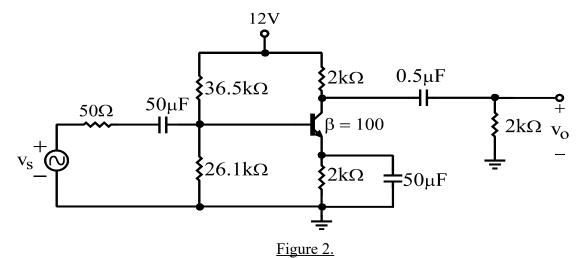

ELEC301 Problem Set #3

P. 1


- 1) For the circuit shown in figure 1, use the $1/3^{\rm rd}$ rule with $V_B = V_{CC}/3$ to find R_{BI} , R_{B2} , R_C , and R_E given that $V_{CC} = 15 {\rm V}$ and $I_C = 2 {\rm mA}$.
- 2) For the circuit shown in figure 1, use the $1/3^{\rm rd}$ rule with $V_E = V_{CC}/3$ to find R_{BI} , R_{B2} , R_C , and I_C given that $R_E = 8{\rm k}\Omega$ and $V_{CC} = 12{\rm V}$. (Answers: $R_{BI} \approx 146{\rm k}\,\Omega$, $R_{B2} \approx 104{\rm k}\,\Omega$, $R_C \approx 8{\rm k}\,\Omega$, and $I_C \approx 0.5{\rm mA}$)
- 3) What are g_m and r_{π} for the transistors in P1 and P2 above?

(Answers: P1
$$g_m = 80 \,\mathrm{m}\,\Omega^{-1}$$
 and $r_\pi = 1.25 \,\mathrm{k}\,\Omega$; P2 $g_m = 20 \,\mathrm{m}\,\Omega^{-1}$ and $r_\pi = 5 \,\mathrm{k}\,\Omega$)

4) Assuming that a small-signal a.c. voltage source with a 50Ω source impedance is coupled to the amplifier of P2 above via a $10\mu F$ coupling capacitor and that R_E is bypassed using a $50\mu F$ capacitor and that the hybrid-model has the following parameters $c_{\pi}=10 {\rm pF}, \ c_{\mu}=2 {\rm pF},$ and $r_o=\infty$, what are A_M , $\omega_{\rm 3dBL}$, and $\omega_{\rm 3dBH}$? (Answers: $A_M\!\approx\!-158$, $\omega_{\rm 3dBL}\!\approx\!400/s$, and $\omega_{\rm 3dBH}\!\approx\!4.4\!\times\!10^7/{\rm s}$)

- 5) For the circuit shown in figure 2:
 - i. Draw the low frequency circuit, the midband circuit and the high frequency circuit and
 - ii. Derive the complete transfer function using $I_E \approx I_C = 2\text{mA}$, $c_{\pi} = 10\text{pF}$, and $c_{\mu} = 2\text{pF}$.

