- 1) For the circuit shown in figure 1, find I_1 , I_2 , I_C , I_E , g_m , and r_π .
- 2) For the circuit shown in figure 2, find A_M , $\omega_{3{\rm dBL}}$, and $\omega_{3{\rm dBH}}$ given that $\beta\!=\!100$ and that the hybrid- model has the following parameters $c_\pi=10{\rm pF},\ c_\mu=2{\rm pF},$ and $r_o\!=\!\infty$.
- 3) For the circuit shown in figure 3:
 - Draw the low frequency circuit, the mid band circuit and the high frequency circuit and
 - ii. Derive the mid band gain, A_M , and $F_L(s)$.
- 4) For the circuit shown in figure 4, use the $1/3^{\rm rd}$ rule (your choice) to bias the circuit and find C_E , C_{CI} , and C_{C2} that will put the low frequency poles at $1000/{\rm s}$, $100/{\rm s}$ and $10/{\rm s}$. Choose the lowest cost combination of capacitors.

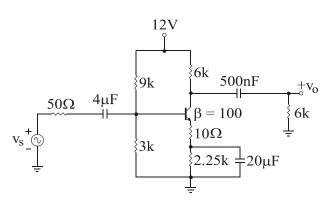


Figure 3.

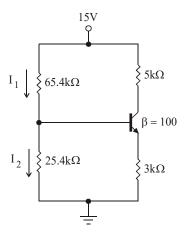


Figure 1.

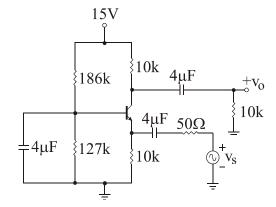


Figure 2.

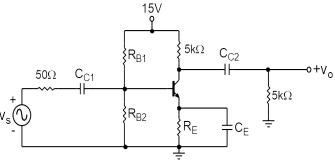


Figure 4.