EECE301 Problem Set #5

- 1. For the circuit in Figure 1, do the following:
- a) Draw the high-frequency small-signal model.
- b) Show that $v_{\pi 1} = v_{\pi 2}$ at midband, irrespective of whether $\beta_1 = \beta_2$ or not.
- c) Find expressions for the 3 high-frequency poles.
- d) Which of the 3 high-frequency poles do you think will be the dominant pole. Briefly explain your choice.
- 2) Give the transfer function of the circuit shown in figure 2 with numerical values for the poles, zeros and mid band gain. You may assume that $V_{C1} = V_{B2} = 10V$ and that $V_{E1} = 5V$. You may also assume that the pole and zero associated with $c_{\pi 2}$ cancel one another.
- 3) The designers of the circuit shown in figure 3 have used a 1/3 rule to bias the amplifier shown. They have also used "pole-zero cancellation" to give the amplifier the low frequency amplitude response of a single time-constant circuit and have put ω_{L3dB} at 1500/s. Assume that $\beta_1 = 100$ and that $\beta_2 = 1000$. What are the values of C_E and C_{CI} ? ($C_E = 26.6 \ \mu F$; $C_{CI} = 3.8 \ \mu F$)
- 4) Assuming that the differential amplifier shown in figure 4 is attached to a load consisting of a 10 k Ω resistor in parallel with a 100 pF capacitor, find the value of the mid band gain and the high frequency 3 dB point. (A_M = -196 V/V; $\omega_{3dB~H} = 1.98 \times 10^6/s$)

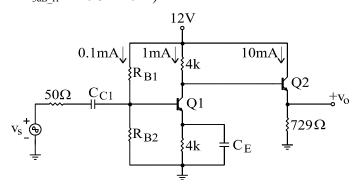


Figure 3.

Figure 1.

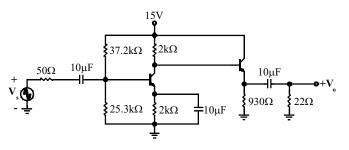


Figure 2.

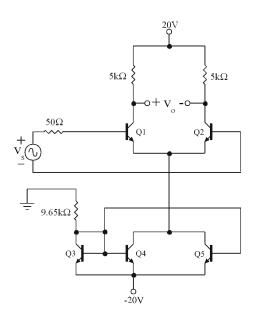


Figure 4.