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@ Last time - system level perspective

« Key performance indicators for a system

* Information processing - Shannon channel
capacity - link B, S,

 Structured electronic circuits design from
information flow perspective - design by
separate optimizations for N, B, S

* Open loop vs. closed loop systems




@ Physical implementation perspective

* PCB vs. ASIC design

» The circuit design strategy can vary

significantly, depending on the final design
target
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@ ASIC design =
» Specialized (costly) microfabrication technologies: Si

CMOS/bipolar for signal processing, S1C or GaN for
power/radiation resistant applications, GaAs for HF, Si
photonics (PICs)

 International Roadmap for devices and systems - CMOS
downscaling: Snm process (gate length = 18nm)

e Usually surface components (2..10um region of Si wafer)
* Advanced technologies: 3D structures, TSV, TGV

« For interconnects: 6-15 metal layers (Cu), min interconnect
widths ~ 10—25nm

Isolation
diffusion

6 um
200 um t




*’@ IBM Airgap technology

« IBM Airgap technology, to minimize parasitic
capacitances — present microelectronics 1s constrained by
the transmission of information (scaling problem)

e Some chips contain more than 500km of metal
interconnects!!!
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*’@ Scaling “laws”

 Moore’s law: with every new
technology generation, the
transistor area (MOSFET) has
been reduced by a factor of
about 2 - lasted for about of
almost 50 years (MOSFET
channel length reduced by a
factor of 2 about every 5
years)

e “More than Moore” - use
different approaches than just
scgeometry scaling
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Structural innovations in Si-based
Z  transistors
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Source: https://www.semiconductor-digest.com/new-structure-transistors-for-

advanced-technology-node-cmos-ics
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ASIC challenges and design strategies

e Challenges:

large individual tolerances (10%), but very good matching of component
pairs (<1%) (improved through physical layout)

Downscaling makes 2" order effect to become more important - need for
complex simulation tools

Technology optimized for one dominant component: BJT. CMOS,
MOSFET - microelectronics progress driven by technology advances

poor L, poor high R - large area, minimize their use

msulation between blocks/components through reversed biased junctions
(voltage-depending C coupling) - signal integrity aspects

® Design strategies:

All blocks rely on the optimized component: resistor as transistor in the
linear region, voltage source (PTAT), current mirrors (Widlar)

Specific techniques: switched-capacitor, current mode amplifiers

Minimize chip area, use differential transistor pairs
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: Texas Instruments - LM741
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PCB - based design

off-the-shelf components ~ cwe
poor differential matching as individual OTS devices

trade-off tolerance/cost

good R,L,C, D, transformers - discrete components

4-124 layers (7.6mm thick) PCB, rigid or flexible

Minimum trace width - std 1s 6mils (0.152mm), depends on Cu thickness,
4mils (0.101mm) achievable

Different insulating material layers - trade-off performance/cost (dielectric
constant (DK), dissipation factor (DF), thermal conductivity (TC), CTE
Materials: FR4, flexible polyimide, rigid polyimide - PTFE/glass,
PTFE/ceramic, etc.

innovation in high-density interconnect (HDI), microvias, optical
interconnects
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: PCB structure

Source: https://www.pcbaaa.com/pcb-structure
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*’@ PCB design

» Specialized software: Altium Designer, Cadence
OrCAD, Siemens PADS, Zuken CADSTAR PCB,
etc

* Al modules for optimizing routing, vias

 Differential/balanced traces, separation of digital
and analog paths, ground planes shielding

 COTS Commercial off-the-shelf) components

* Focus on interconnects - components mounted top
and bottom
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NanoDimension - DragonFly

e

e Multimaterial, multi-layer 3D printer - substrate,
conductive traces, passive components
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@ Signal amplification principle

* Goal: signal energy amplification, not only the
voltage/current amplitude

A transformer 1s not an active device that provides
power gain! (energy conservative diport)
11 12

—> In €— e n=transformer
modulus/ratio
Q\m 2\'2 » voltage -> voltage
* Constitutive relations:

Homework: what is a gyrator? [ (n 0
: J [V1 J

L
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@ Generalized gyrator (across -> through)

e n=gyrator modulus
* Across -> through

 Constitutive relations:
0 n)
v,
1
\ 7N /[ﬁj
v + f,v,

* Two chained gyrators = transformer => gyrator 1s 1rreducible
element

e Impedance transformation using transformers/gyrators




Gyrator as impedance converter

= 11 = (glg2/joC)v, or Z = jo(C/glg2) = joL => a capacitive reactance 1s
converted to an inductive reactance. The circuit effectively inverts its load
impedance, changing 1/j0C into joC.

» Electronic implementation: GIC (Generalized Impedance Converter) (with

op amps)
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@ Signal amplification

* Requirements:

 separation iput-output => diport for signal
propagation

* min. absorption input signal energy

* Pout™ Vour lout = Pin = Vin™ Lig

* Energy conservation: where do we get the
extra power?
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@ Amplification principle

e Transfer of energy from DC to signal - 1it1is
required to have a nonlinear device!

« Amplification 1s a nonlinear process!
y=f(u)

ru(t)zUDC +Au(t)=U,. +u, (1),

| y(t):YDC +Ay(t):YDC T Ve (t),

Small signal model: Yoo + Vo = F (Upe +u, )~ f(Upe )+ (%4
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@ Example - Bipolar junction
transistor (BJT)

* Active mode of operation: BE junction forward
biased, BC junction reverse biased

Forward-biased Reverse-biased : B
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@ Signal amplification operation

* Input signal: v, , output signal 1_
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Amplification
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@ Amplification principle

* We need separate input output ports

* Energy 1s transferred from DC (battery) to signal
through the inherent nonlinearity of the device

e Question: 1s this the best we can do? DC levels are
very prone to noise

* Comparison BJT vs MOSFET:
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