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@ [ast time

 BJT vs MOSFET (current-controlled vs voltage-
controlled)

* Systems aspects: design, analysis, optimization,
synthesis, approximation
* Linear (and time-invariant) systems - linearity,

superposition, Thevenin/Norton reduction,
Millman and Miller theorems




*’@ Miller’s theorem - decoupling feedback

* Replace the Z feedback with two impedances
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@ Today

» Review of analysis methods for LTI systems

— time-domain (unit impulse response + convolution
product)

— Spectral domain - Fourier transform

— (Extended) spectral domain - Laplace transform,
operational calculus

— transfer function h(t) <=> H(s)

* Next: Frequency response - Bode plots, LP-
BP-HP transfer functions




@ General analysis principle

* Decompose the input signal into elementary
components (a complete base set of signals)

* Characterize the system response to the
elementary signals

» Use superposition and time invariance to
reconstruct the output from the responses to
clementary components




System modeling and analysis 1n the
time domain

LTI systems are completely characterized by their
unit impulse response

Main principle: “divide et impera” — break a complex
problem into simpler one: decompose signals using
an elementary signals set (basis), and exploit
linearity and time invariance for LTI systems




—"@ Time-domain analysis of LTI systems

The response of a given LTI system to unit impulse 1s
enough 1n order to know everything about the system
behavior

Principle: decompose signals in terms of Dirac/unit
impulses

e +00

x(t): j x(r)é(t—r)dz',x[n] = Z x[k]5[n—k]

—00 k=—OO




‘b@ LTI description

Time-domain description — based on representing signals
as linear combination of shifted impulses

Easy signal decomposition, but the unit impulse changes
its shape 1n propagating through a system (unit impulse
response)

400
0

x[n]= Y x[k]s[n-k] ——  H{ |  S@=x(a]*sln]= 3 *[k]h[n-k]

k=—x k=—o0

A more general perspective: because of linearity, any linear
decomposition of the input signal 1n terms of a set of basic signals
will give an output as a linear combination of the system’s responses
to the basic signals considered

Hy} —— y[n]=2akH{fk[”]}

10




@ Frequency-domain analysis of LTI
- systems

Principle: decompose the input signal in terms of harmonic
exponentials [Why?]

Fourier transform :x(t) = J‘X(a))e"'“”a’a)@)((a)) = Ix(t)e‘ja”a’t
h(t)«—— H () = transfer function = I h(t)e™ dt

—00

x(1)—Eoy(1)=h*x(1) o X (0)=F(x(1))—>Y(0)=H(0) X (o)




@ The Fourier Transform

Used to represent a continuous-time nonperiodic signal as a
superposition of complex sinusoids

1 o0 . o0 .
x(?) T . j X(jo)e'"do«—— X (jo)= j x(t)e’dt
T b

/ \

The inverse Fourier transform The (direct) Fourier transform
x(1)=F{X (jo) X (jo)=Fi{x (1)}

We say that x(t) and X(jo) are a Fourier transform pair

The transform X(jw) describes the signal as a function of frequency

and 1t 1s called the frequency-domain representation of x(t)
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Exm: electrocardiograms

EGG waveform analysis — normal heart beat vs. ventricular

tachycardia — first 60 coefficients
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@ Key points:

The importance of exponential and harmonic signals:

* For LTI systems — such signals propagate without
changing their shape

* [n nature — many natural sensors operate based on the
harmonic decomposition of the signals (e.g. ear)

* Periodic signals — attention to the periodicity of DT
signals

* You need a minimum 2" order differential eqn. to
generate an oscillatory solution!
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@ Interpretation of the frequency

response
Sinusoidal steady-state response:

H(o)= ‘H(a))‘ejarg{H(w)} - polar form

|H(w)| 1s the magnitude response of the system — 1t
shows the scaling of the input

arg{H(w)} 1s the phase response of the system — it
shows the (frequency-dependent) delay in propagating a
sinusoid through the system

The frequency response 1s reduced to two real-valued
functions
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*’@ LTI systems analysis

Time vs. frequency — 2" look

5(1) S - h(t)
v(1)= [ x(e)(1=1)dz i (1) =x2h(0)= [ (e W(e=r)
, LTI |
e](()t S ﬁ~ H(ja))e]a)l

1 ¢ -
H=— | X(io)H(jw)e'"dw
— rlel= || e
S —>
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@ Input-output perspective

LTI system

LTI
h(t)

©(1)

FT

FT

y(l) =x*h§l)

FT

H(jo)

LTI

+00

I x(r)h(l—r)dr

—0o0

t— Y(jo)=H(jo)X(jo)
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@ (Unilateral) Laplace Transform

Laplace Transform as extension of Fourier Transform

® (Unilateral) Laplace Transform — extend the range of possible
signals (useful for stability analysis, transient analysis)

¢ Unlike Fourier Transform, Laplace Transform does not
preserve the energy of the signal in the spectral domain = the
numerical inversion of Laplace Transform 1s difficult

o LT - used as “operational calculus” directly mapping circuits

(+ their 1nitial conditions) from time domain into the s-domain
(d/dt — s, [dt — 1/s)




The unilateral Laplace transform

e

In normal analysis procedures, we are interested with what happens with the
evolution of a system only after a certain moment of time t,, and store all the
past history in only a couple of values (“initial conditions™)

we assume an arbitrary time origin (t,=0), and all the input signals as causal
(zero for t<0)

The causality assumption removes the ambiguity existent in bilateral LT (so we
do need to consider the ROC)

Main applications: the analysis of linear electrical circuits, or systems described
by differential equations with initial conditions

x(t)(L)X(S)

The unilateral Laplace transform: X (S) =L {x(t)} = J. x(t) e dt
0—

The inverse unilateral transform: x(t)u (t) =L {X (S)} =— | X (S) e ds
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@ Remarks

o0

X (s) :(t)es’dt

® The lower 0" limit means that we do include in the integral
discontinuities and impulses that occur at t=0 (e.g. Dirac impulse)
the unilateral and bilateral Laplace transforms are equivalent for
causal signals (zero for t<0)

® The inverse LT 1s generally computed not by using contour
integration in the complex plane, but by combining properties with
partial-fraction expansion

* Convergence: for a signal x(t) to have a Laplace transform, it 1s

sufficient to satisfy T‘x (t)‘e_‘” J <o for some real positive >0
0—




Fourier vs. Laplace transform

Definitions: o0 0
x(t):zL X(jol " do———X(jo)= Ix(t)e_j“”dt
T i
1 O+ joo 2o
x(t)=—— | X(s)e"ds<—>X(s)=| x(t)eds,
0 | x0 )= >0

s=0+ jo,withc >0_._

* Energy preservation: only FT preserves the energy (orthogonal transform)=
easier to numerically compute both the direct and inverse FT (good numerical
stability)

® C(lass of signals: LT allowed for an extended class of (causal) signals

® Linearity: both FT and LT are linear operators

® Transformations on calculus operators (d/dt, integral): mapping to

algebraic operations (o™ or 1/(jo) )

#=| ® [nitial conditions: explicitly kept in LT (transient +steady-state solutions)
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* LT properties
Linearity: ax(t)+by(t)<L>aX(s)+bX(s)

Convolution (causal signals): x(7)* y (1) «——> X (s)Y (s)

Scaling: x(at)(%l)((ij, fora>0
a \a

Time shift: X(l—f)(%e_”X( ) for >0
s-plane shift: ™ x ( )(—)X (s s )

s-domain differentiation: —rx(7) PRRETEEN g X(s)

ds

Time differentiation: %x(l) PERTEENG'S 6 (s)—x (O_ )
d*x N\ dx_
2 (t) = >52X(S)—Sx(0 )—E(O )
Time integration
f X(s) 1 _

dr <L (0 here x'™V (0
Ix(r) T S +Sx ( )WCI‘CX ( )




: Laplace transform pairs

Table 2.3 Important Laplace Transform Pairs

f(t) F(s)
Step function, u(t) v
s
e'(l! 1
s+ a
sin wt w
52 + a)2
cos wt A)
sz + wz
f” n!
S”+1
£ = d*f(1) skF(s) — sK71f(07) — sk72F7(07)
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: Laplace transform pairs (2)

Table 2.3 Important Laplace Transform Pairs

f(t) F(s)
t 0
F(s 1
/ﬁ f(t) dt E') + ;/ f(¢) dt
Impulse function §(¢) 1
e " sin wt ¢
(s + a)* + o
e "' cos wt s+a
(s + a)® + o
1 1/2 il S -+ (04
;[ & — (1)2 4 a)Z] e “sin(wt + ¢), T (1)2 + o
¢ = tan!
a—a
2

w
——— ¢ %“n’sin w1 — {:21‘, e | Wy,

V1 - ¢* s2+2§wns+w,2,

Sy
— gy g
-y
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@ Transfer function

 In the case of a general dynamical system
description (1mplicit characterization through a
system of differential eqns.):

d"y d" 'y dy d" x d"'x
dt—N+ a,_, = +...+aq Eﬂloy =b,, dt—MerM_l e
* The mput-output transfer function 1s obtained

when all ICs are set to zero:

+..+b,x

CY(s)|  b,sM+b, M+ +bs+b,
a N
S

N -1
s +ay s t.tas+a,

1C=0
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