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@ [ ast time

* General analysis approaches for LTI systems

* From time domain analysis to Fourier
Transform

* From Fourier Transform to Laplace transform

e LT properties and usage




“’@ The unilateral Laplace transform

x(t)(L—”>X(S)
The unilateral Laplace transform: X (S) =L {x(t)} = J. x(t)e_s’dt
0—

O+ joo
The inverse unilateral transform: x(t)u (t) =L {X (S)} = % X (S) e ds
TJ

O—joo

y(t) :h(t)*x(t)<L>Y(s) :H(S)X(S)

e Main applications:

- solving linear differential equations with constant coefficients

- solving electrical circuits (transfer functions) by mapping them into s-
domain




@ Laplace Transform as “Operational
calculus”™

® Technique for solving linear systems (e.g. electrical
circuits)

* First developed on a large scale by Oliver Heaviside (UK)
as a collection of rules (operational calculus)

“Shall I refuse my dinner because I do not fully
understand the process of digestion?” — O. Heaviside




@ Linear differential equations with initial
conditions - linear circuits

e |s perhaps the main application of the unilateral
Laplace transform
e Main used properties:

— - differential operators transformed 1nto
algebraic operations in the complex domain

— - in1tial conditions explicitly incorporated
into the solution (differentiation property)




@ Linear differential equations

* Physical LTI systems reduced to differential
equations (1mplicit dynamics description of
input-output relation)

* Example: y iy e

a, s (t)+a15(t)+a0y(t)zblg(t)erox(t)

* Mapping to Laplace domain:
a, (szY(s)—sy(O)—%(O )}ral (SY(S)—y(O_))-I-ClOY(S) =b, (SX(S)—X(0_>)+Z?0X(S)

bs+b b a,s +a a
Y _ 1 0 X _ 1 0— 2 1 0— 2 ' 0—
() () a,s’ +a,s +a, x( )+ a,s’ +a,s+a, y( )+ a,s’ +a,s +a, " ( )

T 2
a,s” +a,s+a,




Initial- and final-value theorems

We can compute the initial value x(0+) and the final
value x(+) of x(t) directly from X(s)

The initial-value theorem:

Restriction: it does not apply to rational functions X (O+ ) = }1_{2 sX (S )
X(s)= IZ’ES§ , with gmde{Z(S)} > gmde{P(S)}
s

Interpretation: small time behavior is dominated by high frequencies (poles far from the
Re{s} axis)

x(o0) =limsX (s)

s—0

The final-value theorem:
Restriction: it applies only if all the poles of X(s) are in the left half of s-plane, with at most a
single pole at s=0

Interpretation: the long time behavior is dominated by low frequencies or poles close to or on
the Re{s} axis




Example

S+o
2 2
(s+a) +o,

x(t) = e cos @yt ) u(t) «——> X (s) = L[x(1)] =
First alternative: computation in time domain

x(0+) =limx(¢) =lime * cos (@, )u(t)=1

t—0 t—0

x(0)=limx(7)=0

[

Computation using Laplace initial- and final-value theorems

s(s+a)

x(07)=limsX (s)=Ilim =1
( ) s> (5) H°"(S+05)2+a)02
x(o0) = lim sX (5) = lim stova)

=0 50 (S+6¥)2 + @,




Linear differential equations (2)

* Clear separation between the effects of initial conditions
and the input signal

* The effect of ICs, for a stable system, attenuates
exponentially 1n time, disappearing in the steady-state

solution

bs+b b _ a,s+d _ a _

) (S) = 21 0 X (S)— > L X(O )-l— 22 L y(O )-l— > 2 y'(O )
a,s +as—+a a,s +as+a a,s +as—+a a,s +as+a
2 1 0 N 2 1 0 2 1 0 2 1 0

ICs

_Y(s)| __ Bs+h

o 2
a,s” +a,s+a,

The transfer function:

The effect of the ICs in the steady-state solution, for a stable system (no pole in the rhp):

()ozlsifo”(_ 2b1 x(07 )+ —24y(0)+ ! y'(O)j:()

2 2
a,s” +as+a, a,s” +as+a, a,s” +as+a,




@ Poles and zero

LT links the transfer function description with the implicit
description as dynamical system

The transfer function for LTI systems characterized by
differential equations 1s in the form of rational function:

H(s)= (s—z)(s—2,)-(5—2,)
S) =H,

(S _pl)(S_p2)°"(S _pN)
The roots of the numerator polynomial=the zeros of H(s) (marked 0),
H(z)=0
The roots of the denominator polynomial=the poles of H(s) (marked
X), H(p;)—>©
The location of poles and zeros in the s-plane uniquely specifies H(s)
up to a constant gain factor




‘b@ The s-plane. Poles and zeros

LT introduces an exponential damping factor G, besides the
sinusoidal frequency o => complex s-plane

FT operates only on the imaginary axis => if x(t) is absolutely
integrable, then we may obtain FT from LT by setting =0
System stability behavior?

o Right-half of s-plane
pole:p, = |

Left-half of s-plane

zero.zy =—4+2j

x
O
x

s-plane




:@ Example
2(s*+1) _ 2(s+/)(s-))

Log([H(s)) plot H{s)= S +2s+5  (s+1-27)(s+1+2;)

100

S0

50

-100

0

Damping = 2 - 0
-3 i Frequency




@ Some common unilateral Laplace transforms

5(1) L1 cos (@t )u(t) > ——"—
s“+w
u(f) ety sin (et )u (1) «ts— 2
S s“+ o
| _
() et | o cos(wr)u (1) ety S
() | eos(onulr) o
1 0,
e“u(t)L—s e” sin(wt ) u (1) <>
() s—a ( ) () (S—az+a)2




Solving circuits using Laplace
transform

® Convert the circuit from time domain to Laplace s-domain
(ICs on capacitors and inductors will become equivalent
voltage/current sources)

® Solve the circuit to find the required output Y(s) like you
would do for DC networks (incremental circuit reduction
techniques, mesh or nodal analysis)

® Once Y(s) 1s determined, compute y(t) through inverse
Laplace transform (usually through partial fraction expansion)

17




@ LT 1n energy flow modeling: RC circuit analysis

L k2 ©(1) =2 eV (r)
+ 5

y(07)=-2r

Alternative (2) approach - ODE in time
domain from circuit analysis

x(1) 200 mF =< y(1)

x(1)= Ri(£)+ y(t)= RC %(z)+ (2)

RC Ccll_)t/(t)+ y(t)z x(t)—”—) RC(SY(S)— y(O_))+ Y(S)z X (S)

I RC 13 200
¥ (s)= 0 )= Sy _
= (S)+1+5Rcy( ) LTI
3 v e

; ((:S ) ~ 1000 ( A 2)( o1 0.005)  $10.005 Partial fraction decomposition + ILT




@ Mapping circuits in the s-domain

Linear circuits with R,LL,C + sources elements can be directly mapped
into the complex frequency space (Alternative (3)

Vg(s) — + Vi(s) = t Vels) = =
o o o— Y &8 5 I 20 "
e % — sL -w o S Il\ ¢
Ig(s) I1(s) Lig(0) Ic(s) = ve(07)
A

{a) (b) (c)

0 :L%(1)<L—>VL (s) = L1, (s)—Li, (0°)
dav _
i (1) = 7;(1)<L—>Ic (5)=sCV.(s)—Cv, (O )
ILH}_:'
. Cvo(0)
) —
+ Vi (s) _ \ 4 w
e AN ') O— + Vi(s) - ¢—0 O——8 + Vels) ——0
—_— R —_— —_—
Ip(s) IL{.‘EJ ; f{-{.‘i} H



The use of Laplace transform

Transform
Plus
Intial Conitions

Integrodifferential Laplace ___y,
Equation Transform
Standard

Solution Methods

v

Solution

Algebraic
Manipulations

v

«—Inverse Laplace ___
Tranform

Revised
Transform




@ Frequency response - Bode plots

e Steady-state response of a system to a sinusoidal
input test signal (no ICs)

* Frequency response is the transfer function H(s)
when s=j®

* Bode plots - graphically display the log- magnitude
and phase of H(s) vs. log(m)

« REM: Bode plots are graphical approximation
techniques 1n the spectral domain

* System bandwidth concept

o (sm2) (- 2) 52
B =t N =)o —po)




@ Frequency response methods

* Developed by Nyquist and Bode 1n the 1930s
* Advantages in system design and analysis:

— modeling transfer functions from physical data

— finding stability conditions and stability margins
(gain margin, phase margin)
— designing compensator networks to shape the

desired response (steady-state error and transient
response requirements)




Frequency response

* Frequency response = steady-state response to a sinusoidal input signal

e Harmonic inputs to an LTI system generate harmonic response at the same
frequency, but with differences in amplitude and phase angle from the input
(these differences are functions of frequency)

M) Zp(w) M (0)Z¢ (@)
> Mw)Lp(w) -

Frequency response: T'(s)

= 1(jo) =1 (o) 20(0) = M(0) 20 (o)

S=jw

~ JM, ~ 1 M(,:Mj!w
I
| I
I I
- - : A -y
I I
I I
: \/ :(f)n= \/
—a-: ;= —--:d;-{- + (-

Input Output




*’@ Simple Bode plot sketch example

* Draw the Bode plots for the following transfer
function

» zero: z1=-10rad/s
* poles: pl=-1rad/s, p2=-100rad/s

100(s+10)
(s+1)(s+100)




@ Transfer function - example

« Amplifier with all poles and zeros 1n the negative
half-plane, real and distinct

(s +w,) (s +w,) ... (s + w,)

T(s)=K n<nN

(s +w,;) (s +w,,) ... (s +w,y)

Frequency response:

(jLU + mjl) (_]UJ + U‘}:E) T (_]U) + w:u)

T'(jw)=K — _ .
(Jw+w,) (jw+w,)..(jwtow,y)
J ‘ran_li J ‘ran_li j tzml_li
M. Ve M. O
T(jUJ) — K _,J:(UJ)Q _E(U‘J)e m(w)e

jtan™’




@ Transfer function exm (2)

 rewrite the transfer function, separating phasor
magnitudes from phasor phases

jtan™ = jtan™' = jtan =

M, (w)e ™ M,(w)e = ... M, (w)e

r(jw) = k MalWe ™ Malwe ™ .. M,we *
jtan— Jtan™ — Jtan—

ﬂﬁ(pj(w)é’ Wy ﬂfpg(w)e Opz AJPN’(LU)Q 2

J tan~'— + t::m_lfw + ...+ tan'li)

M (w)M _,(w "'AJTH w)e W W, w,,

M M _, M
I(jw) = K Jw)M,(w) f

"""" n

: e — mn_.'—-
- . - . ’ w., W p
M, (w)M ,,(w)...M




@ Transfer function (3)

w 1 W -1 W Lo

(UJ) ;( fan " — 4+ ...+ tan — — tan —— — ... — tan
e

M_(w)M_,(w)...M_,
M, (w)M ,(w)...M,,(w)

M_, = w’ + mi , M, = w’ + L,Ui;, g oo s M=y W’ + wi

and

M, = w + w,,,

ol M,=\w"+w,, .., M

2 2
P}"-'r — "|, ) + N Phr

Separate components: magnitude and phase of T(jo)

20log|T (jw)| = 20log|K|

2

+ 20 log \ w® + w?, + 20logy| w® + w2, + ... + 20log| w’* + w

Zn

— 20log\ w” + m; — 20log| w” + m; — ... — 20log\ w* + wiﬁr

W Wop W pr L

PN



@ Magnitude and phase separation

Magnitude:
20log|T ( jw)| = 20log|K|

+ 20 log w> + mfj + 20log w> + mi; + ... + 20log\ W + UJ;

— 20log| w” + w,, — 20logy w” + w,, — ... — 20log| W’ + W,y

Phase: we must add 0 if K>0 and = if K is negative

1

_ -1_ -1 _( -1
q::((,u)—tan w—ﬂthan ¢+...+tan o

n

—1 —1 1
— tan =L — tan L
™,

0 -
—— — ... — tan
O, O




@ Intermediate remarks

* The log operation separates the frequency
response into additive primitive components

* While related, we can separate the visual
representations for magnitude and phase

* We only need to identify the patterns of
variations 1n the magnitude - phase
representation for the primitive components
(poles/zeros)




Simple zero z1=

c
b
e

-1

* Assume a )
simple zero 1n )
the transfer _
function =

§ w
5‘

0.001

"I'I'|'I|1'h|"|'l'|'|'|1'|||'=|‘rrrm|| T T TTTI0 T T 1T

0.01

10 100

Function = 20log,,V @2 + 1

Actual Function

1000



@ Effects of a single zero on magnitude

* Zeroat ®,

 (Global effect felt for .
0>, %

. Magnitude (20log|H(jo)| §
increase rate of .
+20dB/dec ,

0.001 0.01 0.1 1 10
log,,

Function = 20log,,\ @2 + 1
Actual Function

100

1000
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