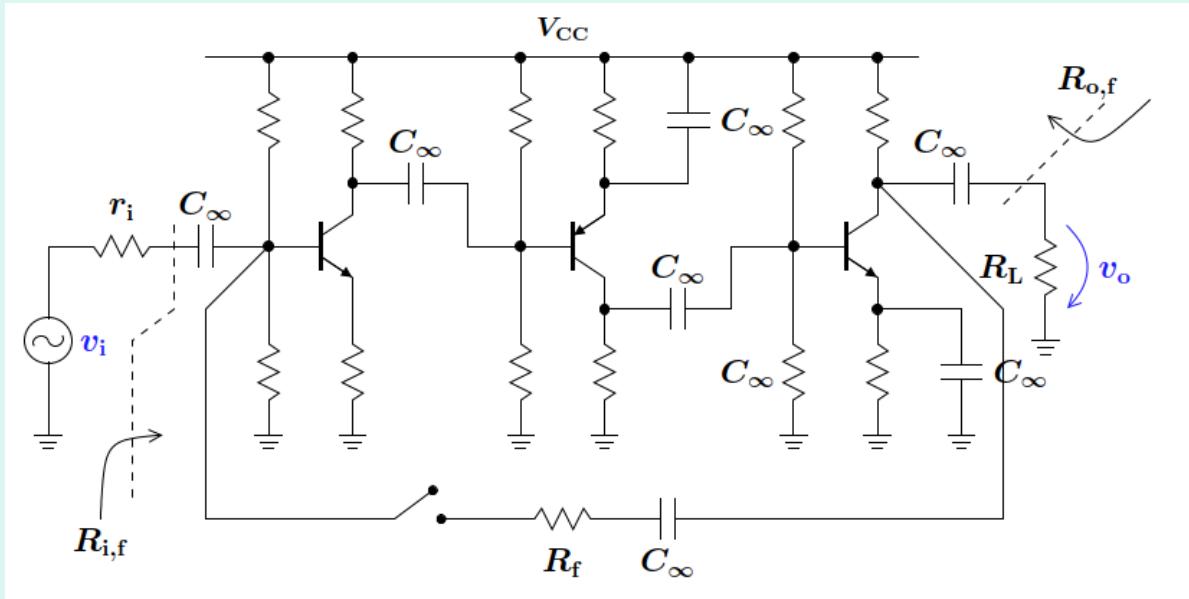
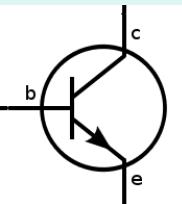


# ELEC 301 - Bode plots

L07 - Sep 18

Instructor: Edmond Cretu

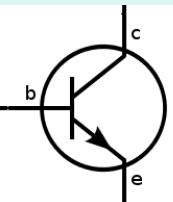




# Last time

- Laplace transform, transfer functions
- The use of LT in solving ODEs
- The use of LT for mapping circuits from the time domain to s-domain
- Introduction in Bode plots





# Bode - Network analysis and feedback amplifier design

## Network Analysis and Feedback Amplifier Design

By  
HENDRIK W. BODE, Ph.D.,  
*Research Mathematician,*  
BELL TELEPHONE LABORATORIES, INC.

TENTH PRINTING



D. VAN NOSTRAND COMPANY, Inc.

TORONTO

NEW YORK

LONDON

- Old reference (1945), available on the internet archives

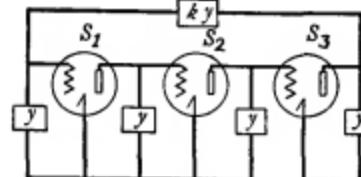


FIG. 8.20

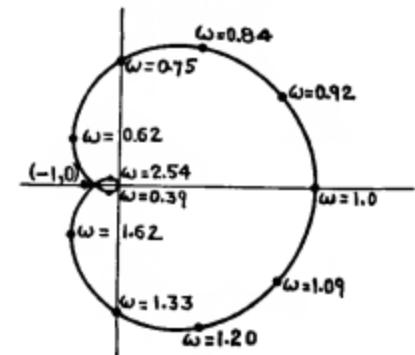
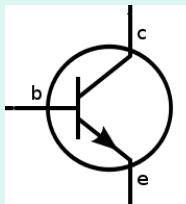


FIG. 8.21



# Transfer function - example

- Amplifier with all poles and zeros in the negative half-plane, real and distinct

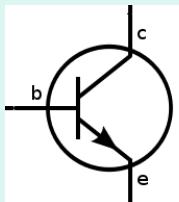
$$T(s) = K \frac{(s + \omega_{z1})(s + \omega_{z2}) \dots (s + \omega_{zn})}{(s + \omega_{p1})(s + \omega_{p2}) \dots (s + \omega_{pN})}$$

$$n < N$$

Frequency response - phasor representation

$$T(j\omega) = K \frac{(j\omega + \omega_{z1})(j\omega + \omega_{z2}) \dots (j\omega + \omega_{zn})}{(j\omega + \omega_{p1})(j\omega + \omega_{p2}) \dots (j\omega + \omega_{pN})}$$

$$T(j\omega) = K \frac{M_{z1}(\omega) e^{j \tan^{-1} \frac{\omega}{\omega_{z1}}}}{M_{p1}(\omega) e^{j \tan^{-1} \frac{\omega}{\omega_{p1}}}} \frac{M_{z2}(\omega) e^{j \tan^{-1} \frac{\omega}{\omega_{z2}}}}{M_{p2}(\omega) e^{j \tan^{-1} \frac{\omega}{\omega_{p2}}}} \dots \frac{M_{zn}(\omega) e^{j \tan^{-1} \frac{\omega}{\omega_{zn}}}}{M_{pN}(\omega) e^{j \tan^{-1} \frac{\omega}{\omega_{pN}}}}$$



# Magnitude and phase separation

Magnitude:

$$20\log|T(j\omega)| = 20\log|K|$$

$$+ 20\log\sqrt{\omega^2 + \omega_{z1}^2} + 20\log\sqrt{\omega^2 + \omega_{z2}^2} + \dots + 20\log\sqrt{\omega^2 + \omega_{zn}^2}$$

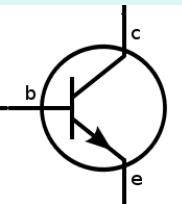
$$- 20\log\sqrt{\omega^2 + \omega_{p1}^2} - 20\log\sqrt{\omega^2 + \omega_{p2}^2} - \dots - 20\log\sqrt{\omega^2 + \omega_{pN}^2}$$

Phase: we must add 0 if  $K>0$  and  $\pi$  if  $K$  is negative

$$\phi(\omega) = \tan^{-1}\frac{\omega}{\omega_{z1}} + \tan^{-1}\frac{\omega}{\omega_{z2}} + \dots + \tan^{-1}\frac{\omega}{\omega_{zn}}$$

$$- \tan^{-1}\frac{\omega}{\omega_{p1}} - \tan^{-1}\frac{\omega}{\omega_{p2}} - \dots - \tan^{-1}\frac{\omega}{\omega_{pN}}$$

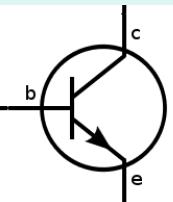




# Remarks

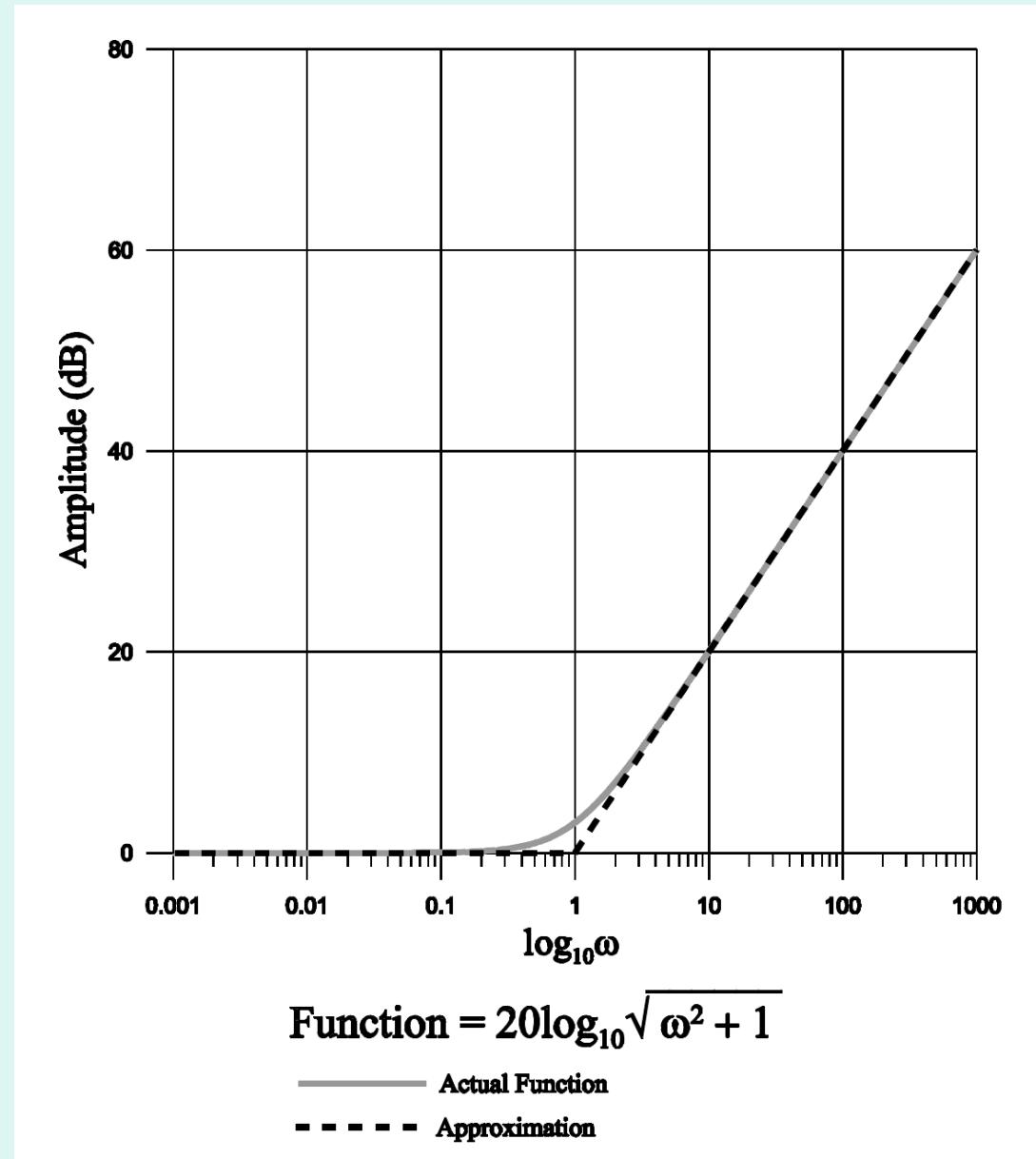
- The log operation separates the frequency response into additive primitive components
- While related, we can separate the visual representations for magnitude and phase
- We only need to identify the patterns of variations in the magnitude - phase representation for the primitive components (poles/zeros)

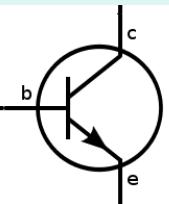




# Simple zero $z_1=-1$

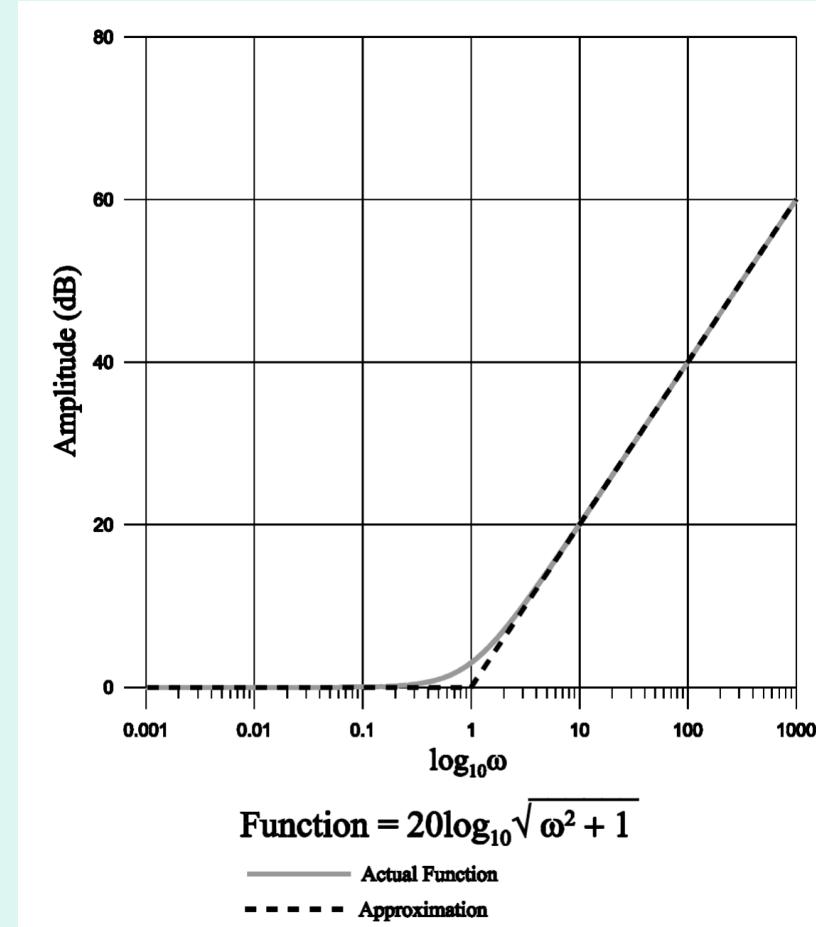
- Assume a simple zero in the transfer function

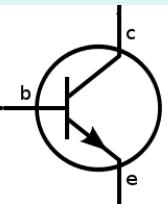




# Effects of a single zero on magnitude

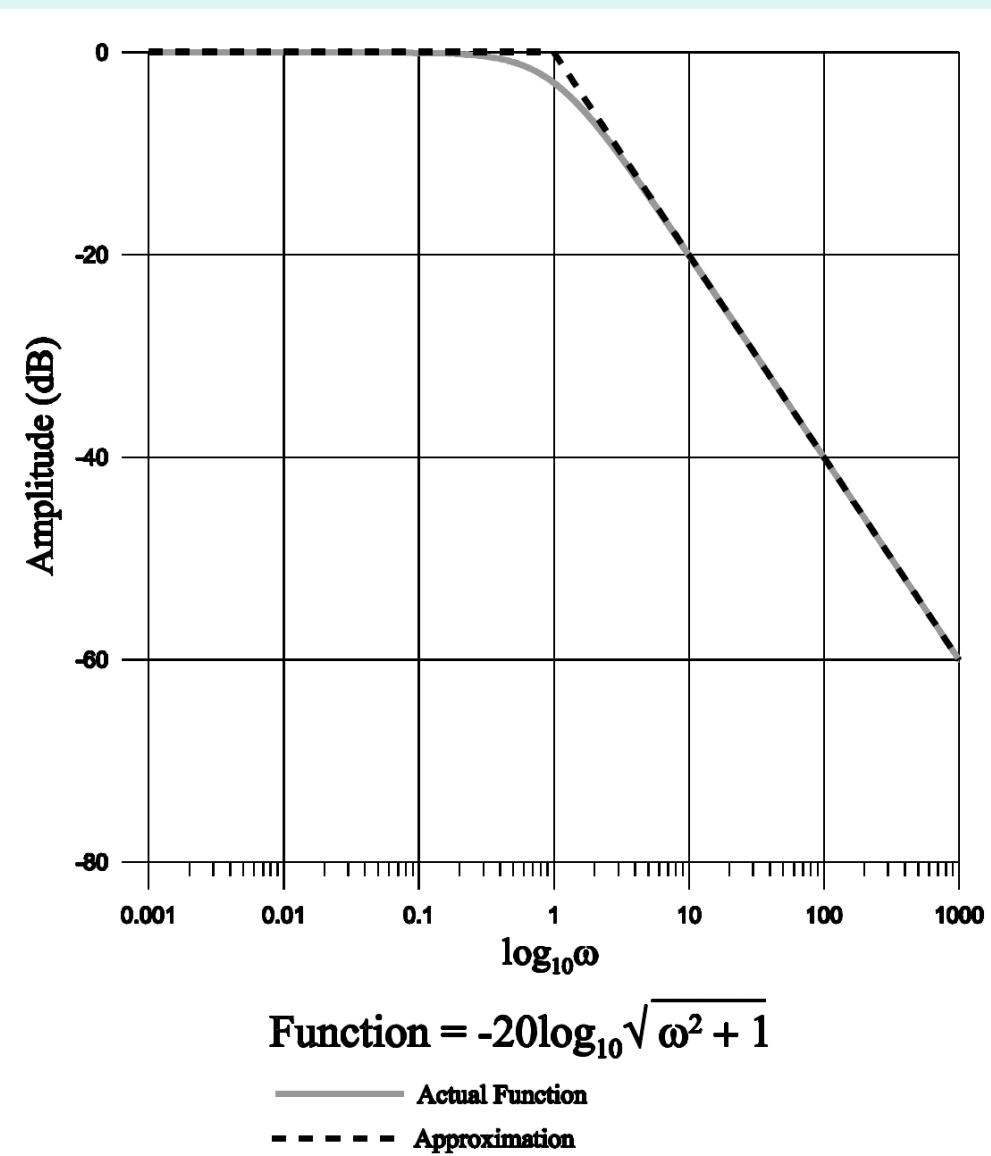
- Zero at  $\omega_z$
- Global effect felt for  $\omega > \omega_z$
- Magnitude  $(20\log|H(j\omega)|)$  increase rate of +20dB/dec

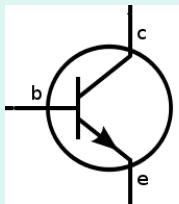




# Simple pole $p_1 = -1$

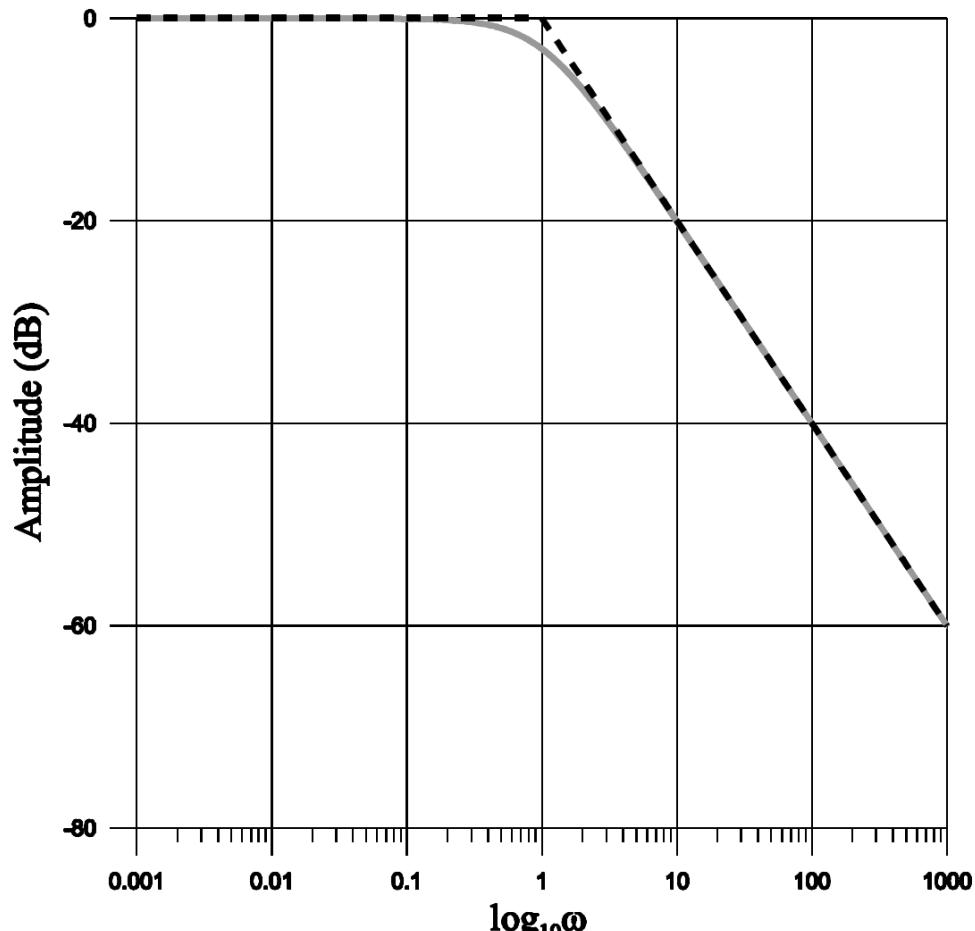
- Contribution of a single pole to the magnitude





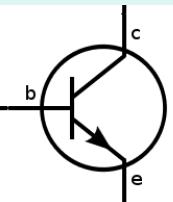
# Effects of a single pole on magnitude

- pole at  $\omega_p$
- Global effect on magnitude for  $\omega > \omega_p$
- Magnitude  $(20\log|H(j\omega)|)$  decrease rate of -20dB/dec



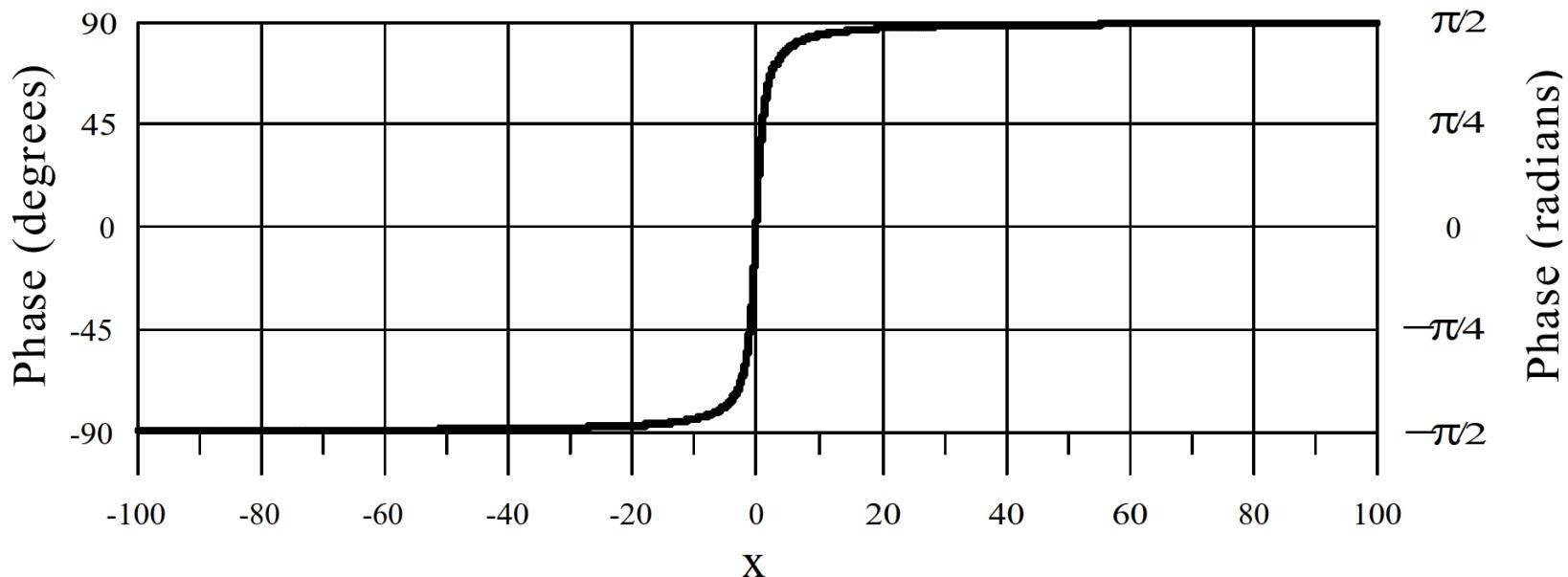
$$\text{Function} = -20\log_{10}\sqrt{\omega^2 + 1}$$

— Actual Function  
 - - - - Approximation



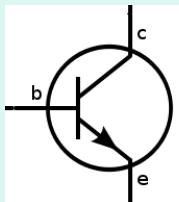
# Phase contributions of single poles/zeros

- A zero adds a phase term  $+\arctan(\omega/\omega_z)$
- A pole adds a phase term  $-\arctan(\omega/\omega_p)$



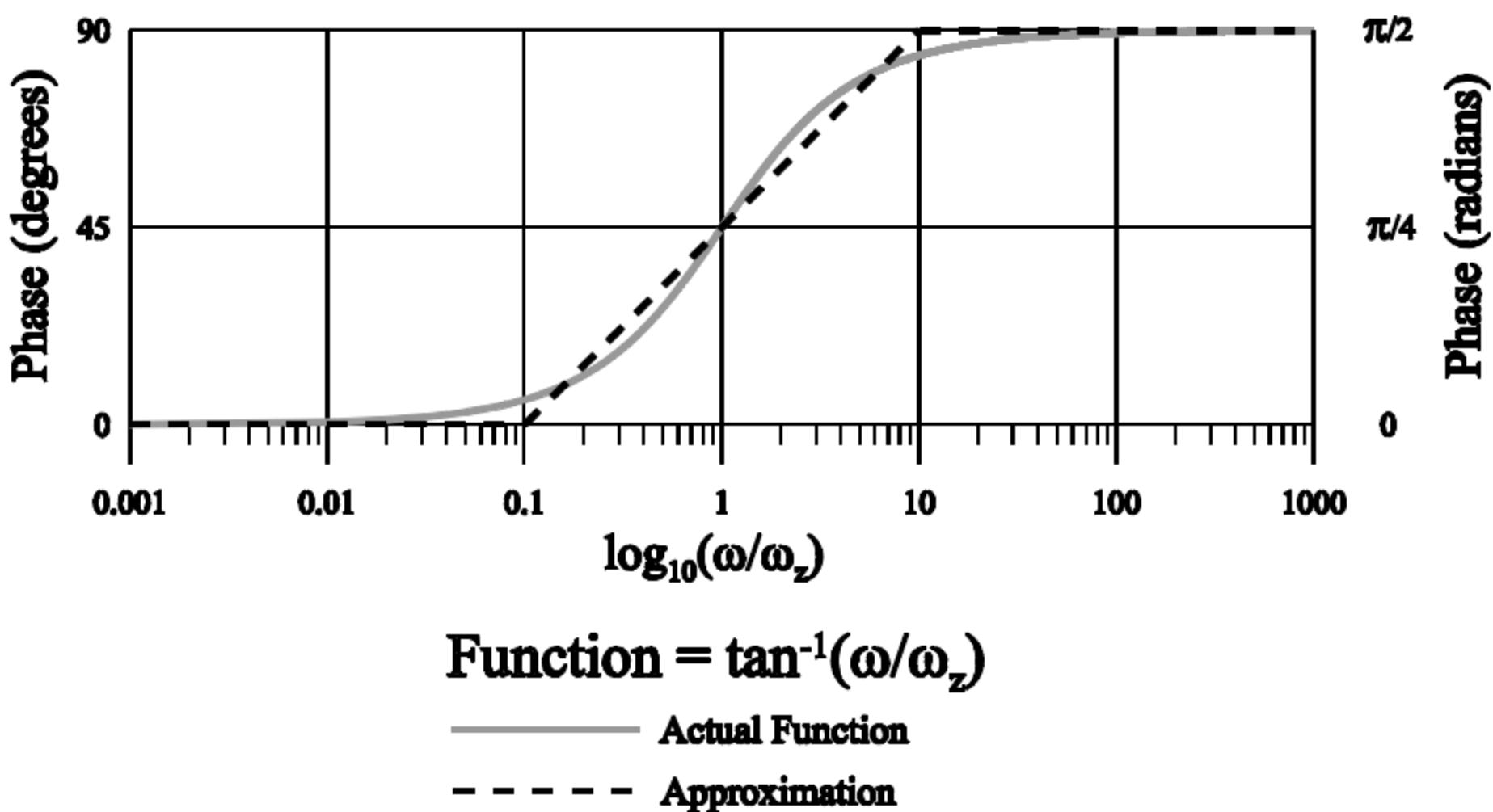
$$\text{Function} = \tan^{-1}x$$

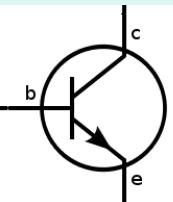




# Phase contribution approximation

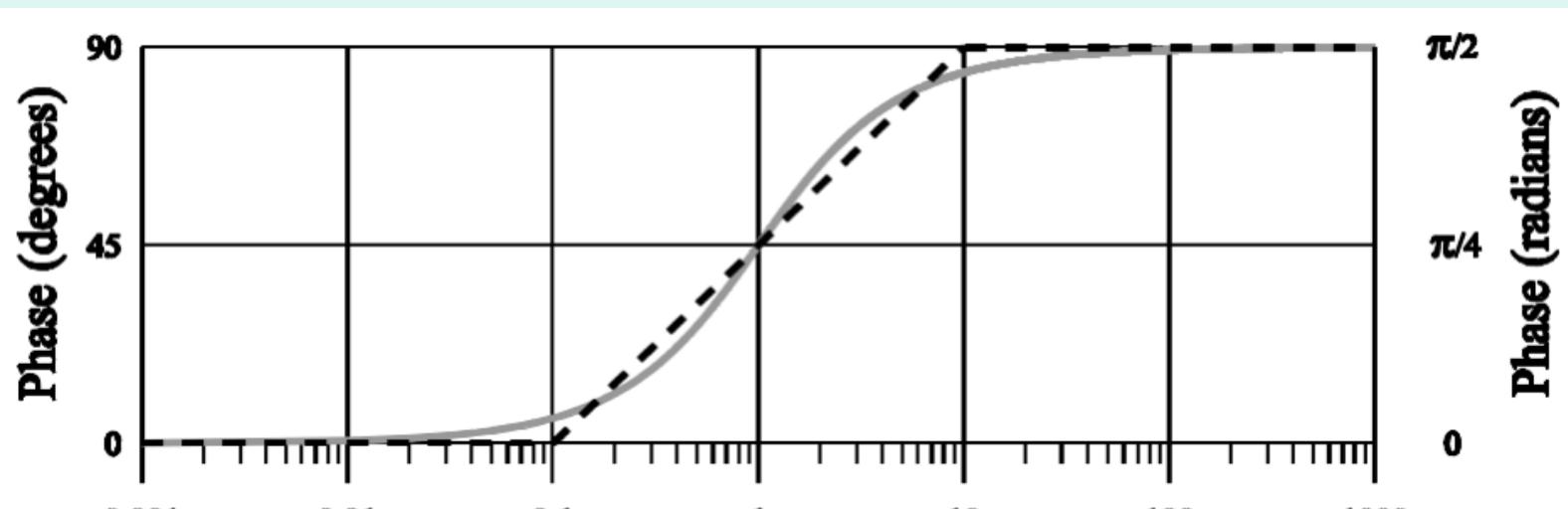
- Phase contribution of a zero  $\omega_z$





# A zero contribution to phase

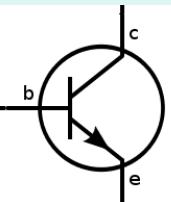
- Simple zero at  $\omega_z$
- Localized effect for  $0.1\omega_z < \omega < 10\omega_z$
- Phase increase with  $+45\text{deg}/\text{dec}$ , total change  $+90\text{deg}$



$$\text{Function} = \tan^{-1}(\omega/\omega_z)$$

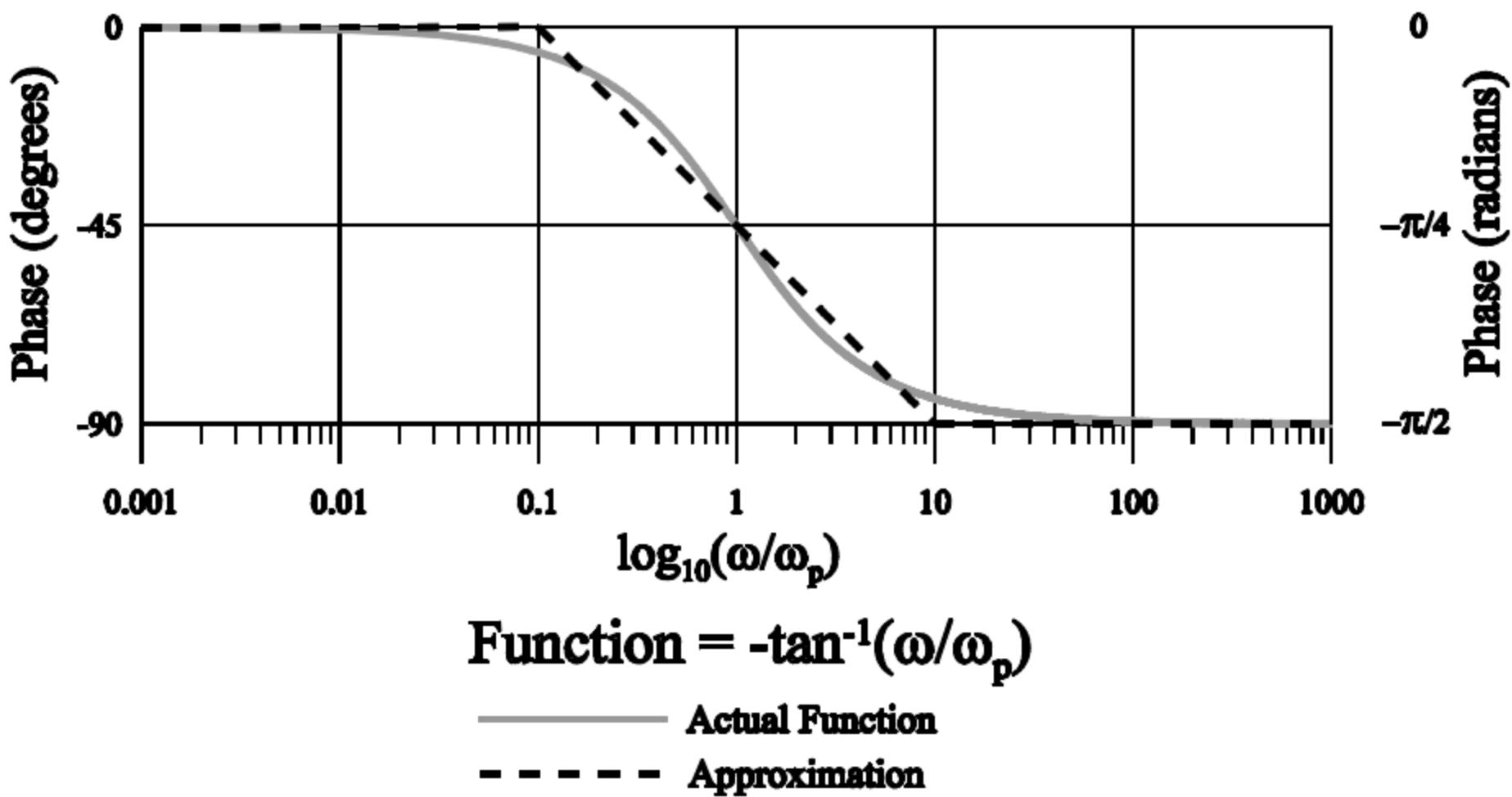
— Actual Function  
- - - - Approximation

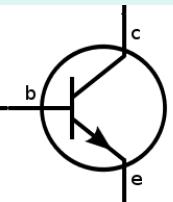




# Phase contribution approximation - pole

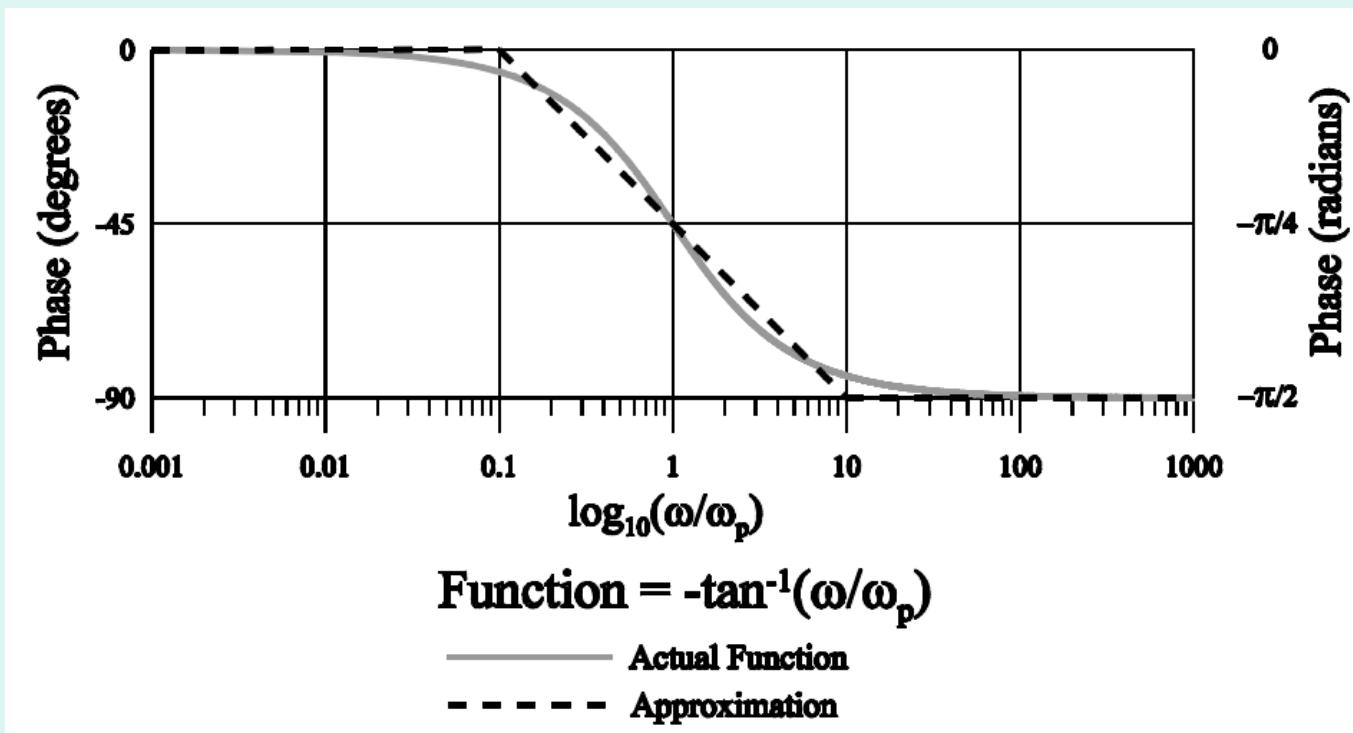
- Simple pole at  $\omega_p$

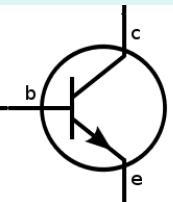




# Simple pole contribution to phase

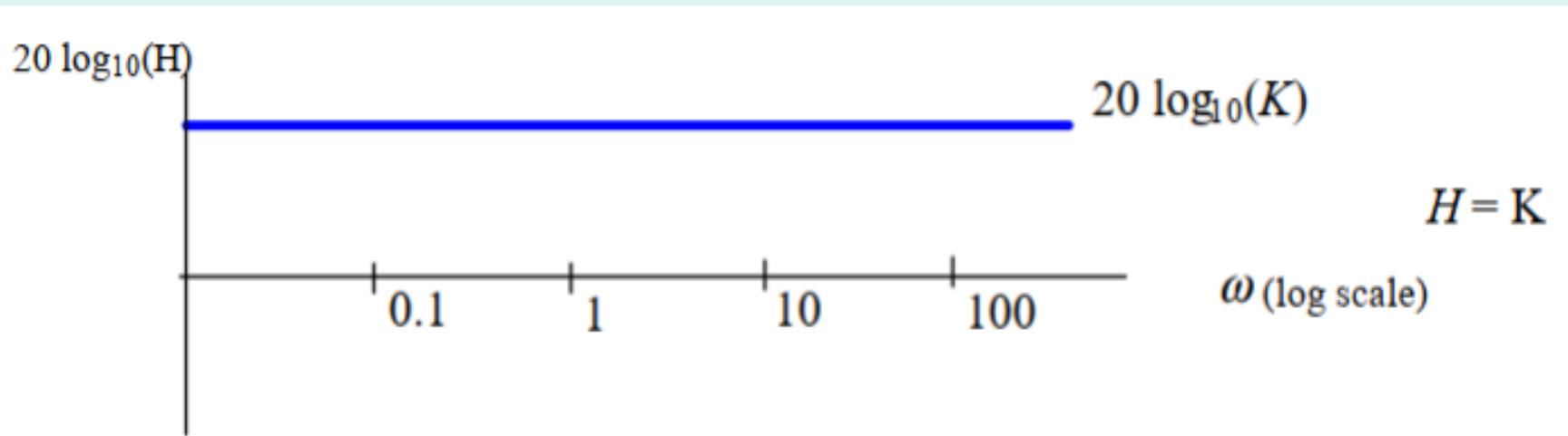
- Simple pole at  $\omega_p$
- Localized effect for  $0.1\omega_p < \omega < 10\omega_p$
- Phase decrease with  $-45\text{deg}/\text{dec}$ , total change  $-90\text{deg}$

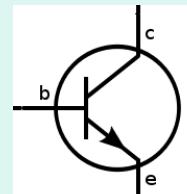




# Constant term contribution

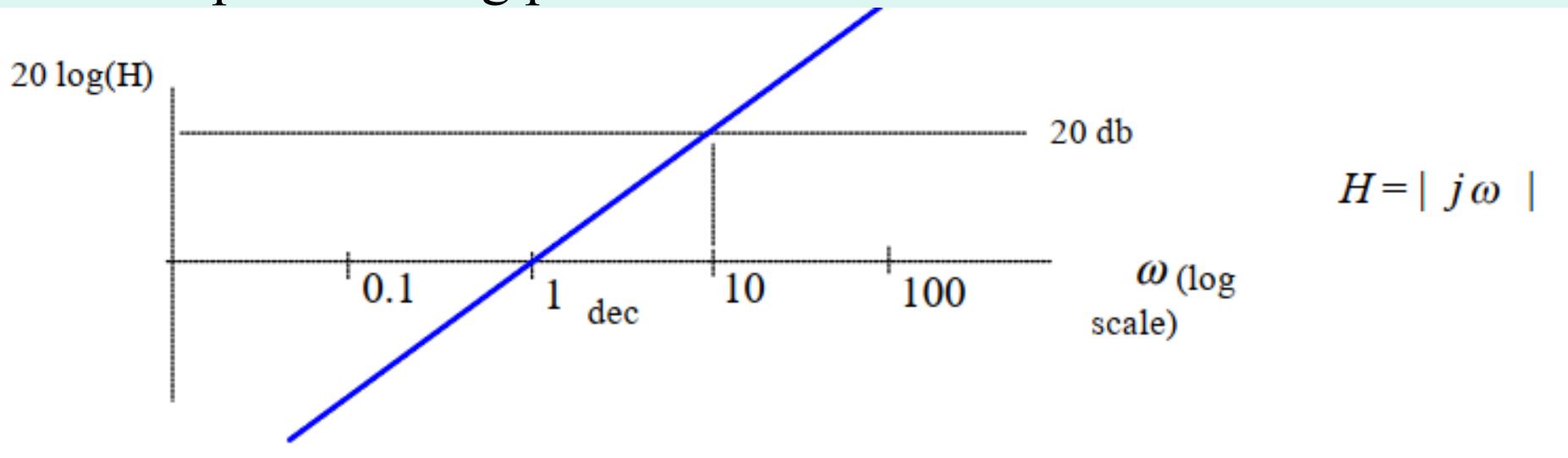
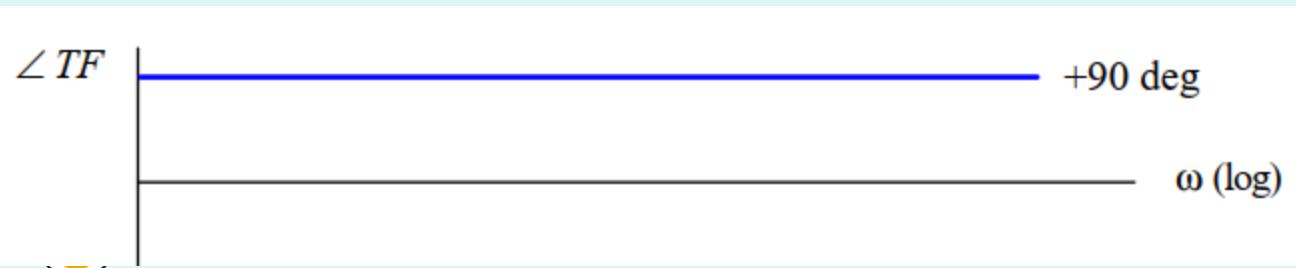
- Magnitude plot: a constant gain  $K$  contributes with a straight horizontal line of magnitude  $20\log_{10}(K)$
- Phase plot - zero phase contribution (or  $180\text{deg}$  contribution for  $K < 0$ )

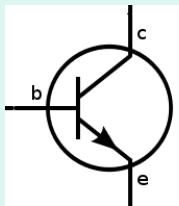




# Individual zero at the origin

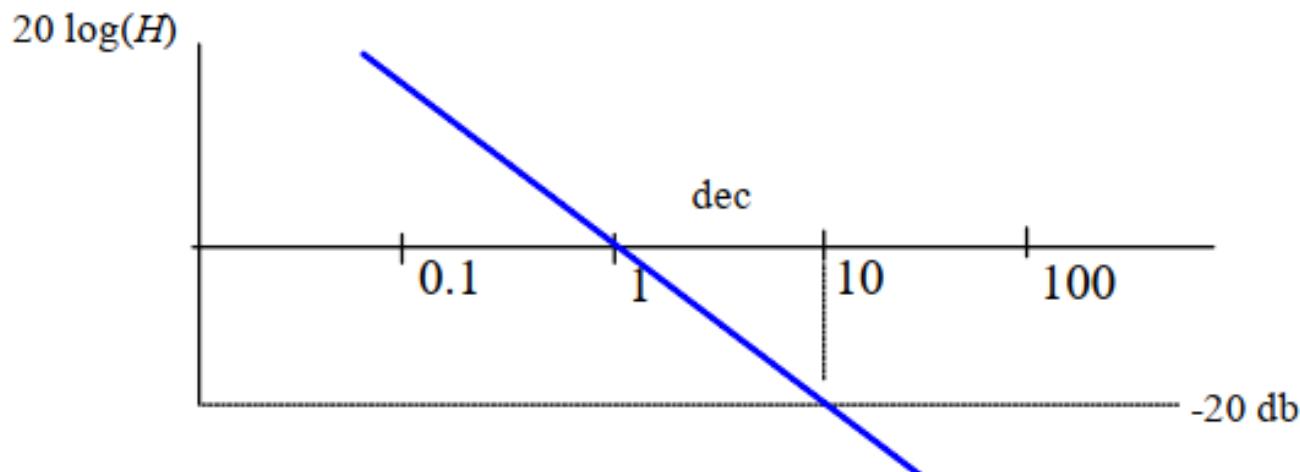
- $H(s)=s \Rightarrow H(j\omega)=j\omega$  (ideal derivator)
- Magnitude plot: positive slope line with  $+20\text{db/dec}$ , passing through  $\omega=1$
- Phase plot:  $+90\text{deg}$  phase shift for each zero



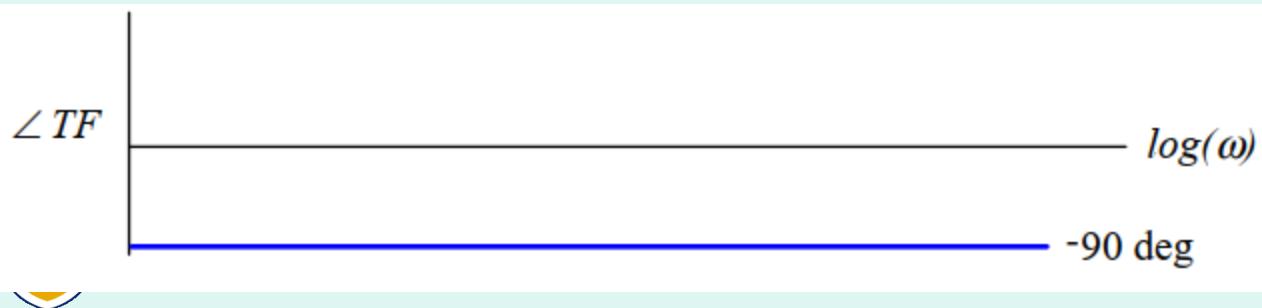


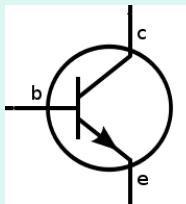
# Simple pole at origin

- $H(s)=1/s \Rightarrow H(j\omega)=1/(j\omega)$  (ideal integrator)
- Magnitude plot: line passing through  $\omega=1$  with a drop of 20dB/dec
- Phase plot: -90deg phase shift



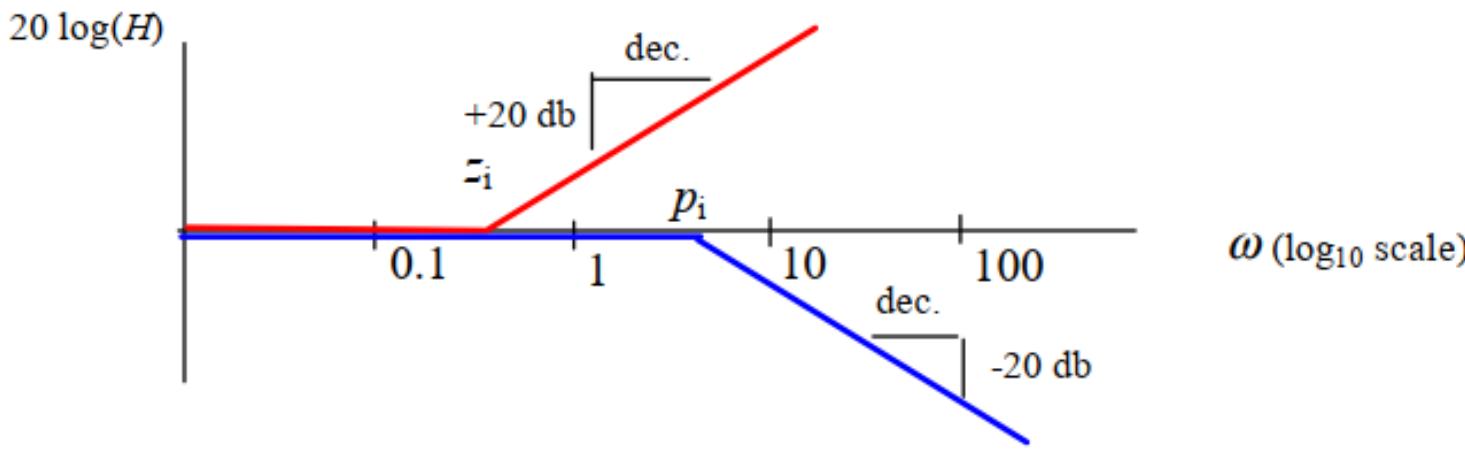
$$\omega \text{ (log scale)} \quad H = \frac{1}{j\omega}$$



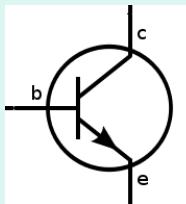


# Simple zeros and poles not at origin

- Zero:  $H(j\omega) = (1 + j\omega/z_i)$
- Pole:  $H(j\omega) = 1/(1 + j\omega/p_i)$
- Magnitude plot: no contribution below the critical frequency (break frequency). Above the critical frequency, they add a ramp function of +20db/dec for a zero, and -20dB/dec for a pole
- Phase plot: a zero will introduce a +90 phase shift within two decades, and a pole a phase shift of -90deg within two decades

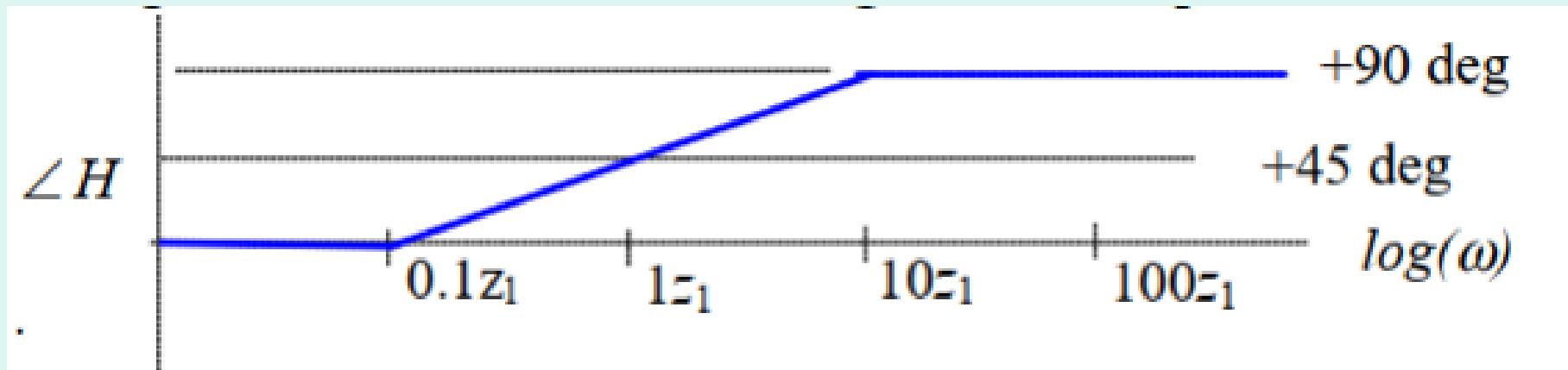


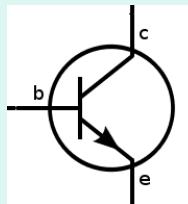
$$H = \frac{\left| 1 + \frac{j\omega}{z_i} \right|}{\left| 1 + \frac{j\omega}{p_i} \right|}$$



# Phase plot - Zeros not at the origin

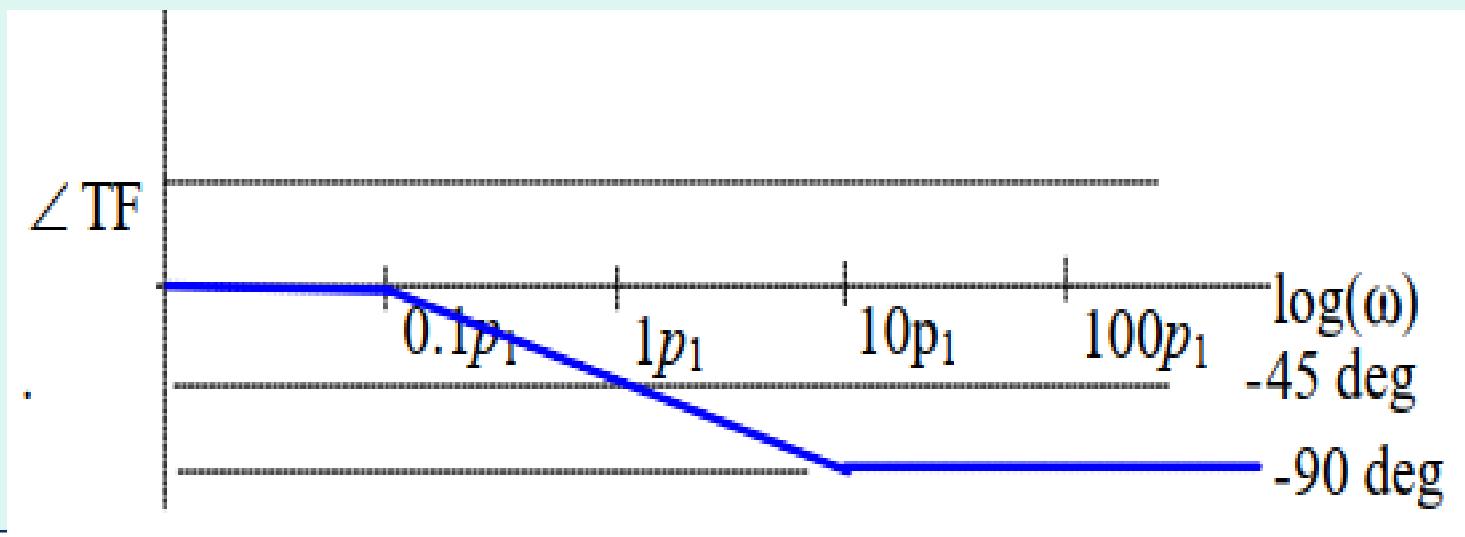
- terms of the form  $(1+j\omega/z_1)$  - no phase shift for  $\omega < 0.1z_1$ ,  $+45\text{deg}$  shift at  $z_1$  and  $+90\text{deg}$  shift for  $\omega > 10z_1$

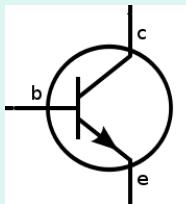




# Phase plot - poles not at the origin

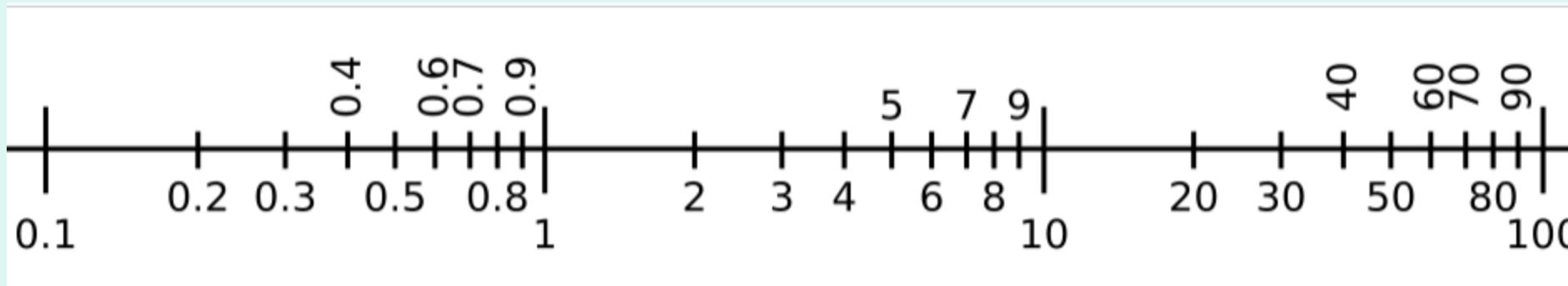
- Terms of the form  $1/(1+j\omega/p_1)$
- No phase shift for  $\omega < 0.1p_1$ ,  $-45\text{deg}$  for  $\omega = p_1$ , and a  $-90\text{deg}$  shift for  $\omega > 10p_1$

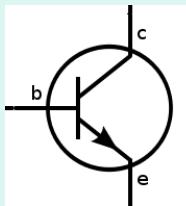




# Logarithmic scale

- When drawing by hand - 1,2,5,10 are almost equidistant:  $\log(2) \approx 0.3$ ,  $\log(3) = 0.477$ ,  $\log(5) \approx 0.7$

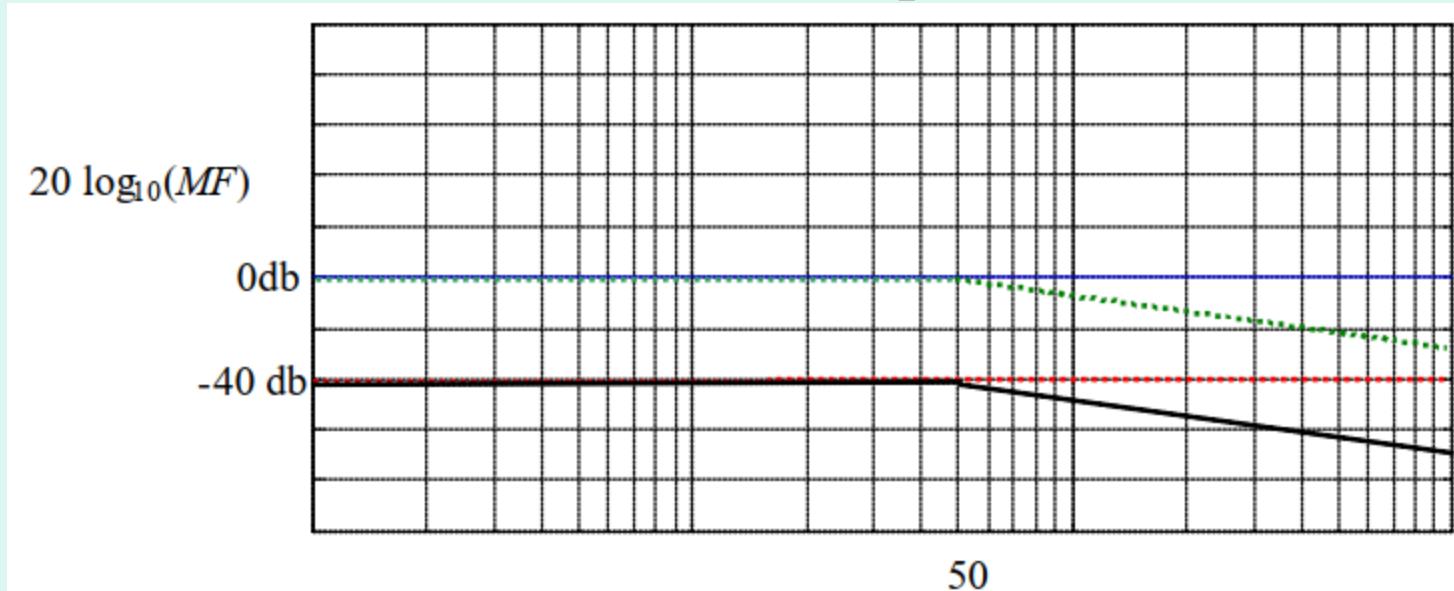




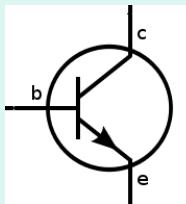
# Exm 1- simple low-pass filter

$$H(s) = \frac{1}{2s+100} = \frac{1}{100} \frac{1}{1 + \frac{s}{50}} \Rightarrow H(j\omega) = \underbrace{\frac{1}{100}}_{H_{DC}} \frac{1}{1 + j \frac{\omega}{50}}$$

- Low-pass filter
- $H_{DC}=0.01 \Rightarrow 20\log_{10}(0.01)=-40\text{dB}$
- Pole with critical frequency  $p_1=50\text{rad/s}$

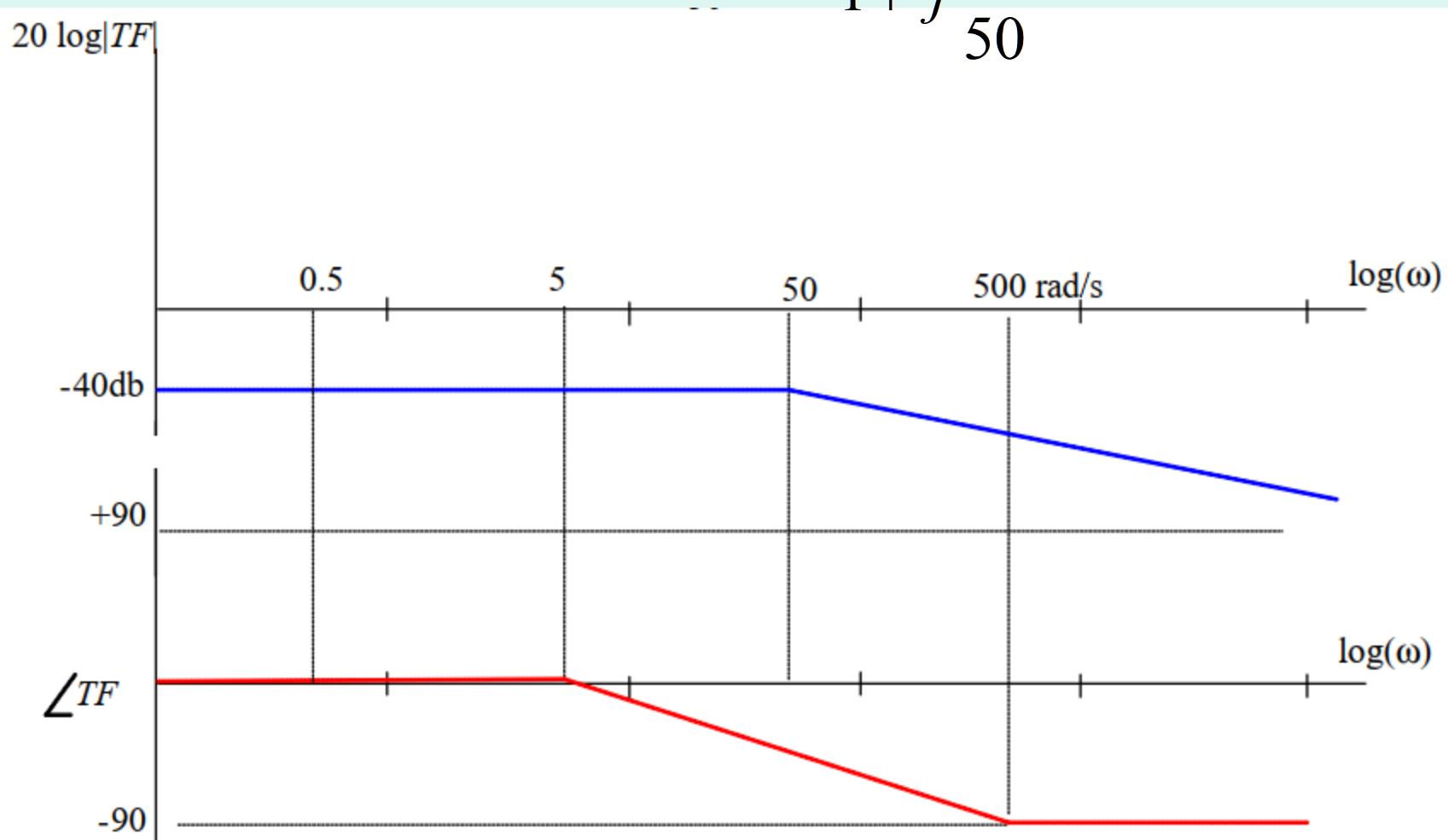


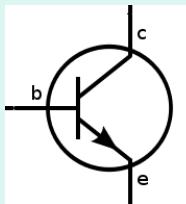
$\log_{10}(\omega)$



# Bode - magnitude and phase plots

$$H(j\omega) = 0.01 \frac{1}{1 + j \frac{\omega}{50}}$$





## Exm 2

- Second order system

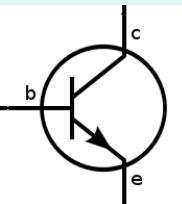
$$H(s) = \frac{5 \cdot 10^4 s}{s^2 + 505s + 2500} = \frac{5 \cdot 10^4 s}{(s+5)(s+500)} = \frac{5 \cdot 10^4}{5 \cdot 500} \frac{s}{\left(1 + \frac{s}{5}\right)\left(1 + \frac{s}{500}\right)}$$

$$H(j\omega) = 20 \frac{j\omega}{\left(1 + j\frac{\omega}{5}\right)\left(1 + j\frac{\omega}{500}\right)}$$

$$20 \log(|H(j\omega)|) = \underbrace{20 \log(20)}_{26.02} + 20 \log(\omega) - 20 \log\left(\sqrt{1 + \left(\frac{\omega}{5}\right)^2}\right) - 20 \log\left(\sqrt{1 + \left(\frac{\omega}{500}\right)^2}\right)$$

$$\varphi(\omega) = 0 + 90^\circ - \tan^{-1}\left(\frac{\omega}{5}\right) - \tan^{-1}\left(\frac{\omega}{500}\right)$$

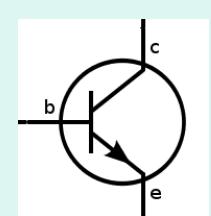




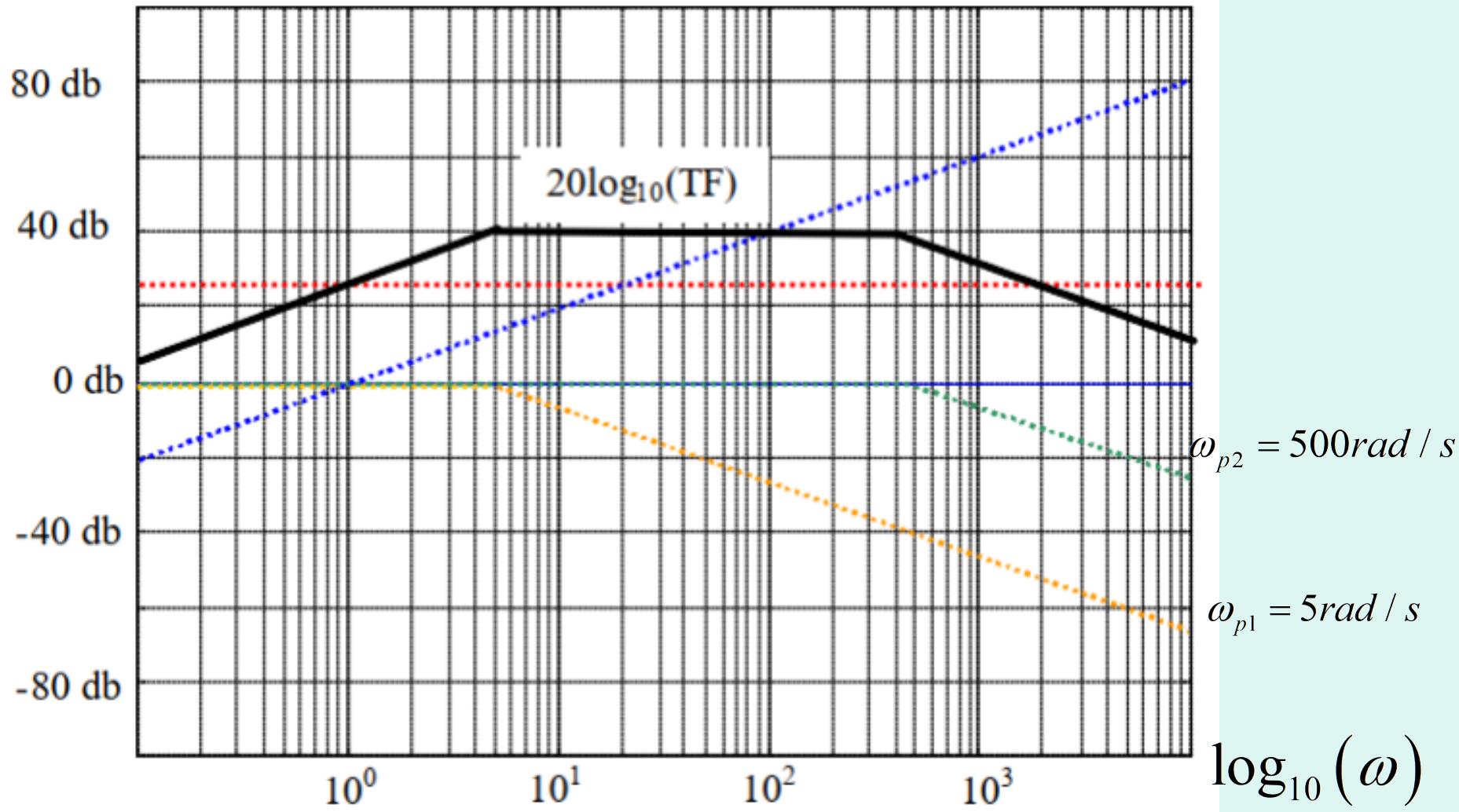
# Steps

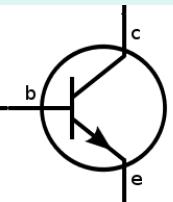
1. Draw the segments for each individual term on the graph
2. Start from the origin ( $\omega \ll 1$ )
3. Add the constant offset of the gain as starting line
4. Add the effects of the poles/zeros working from left to right along the  $\log(\omega)$  axis





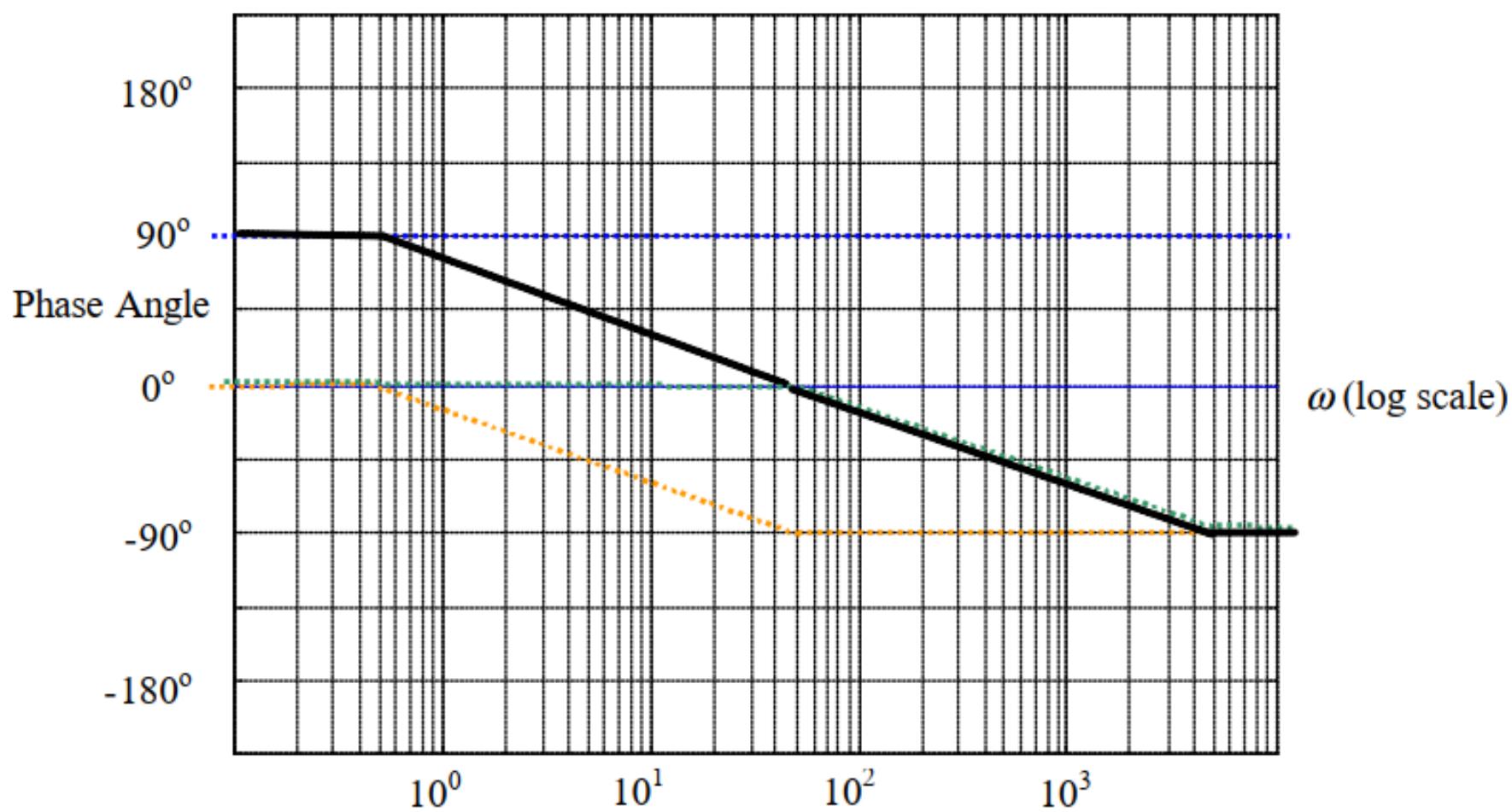
# Exm2 - log-magnitude plot

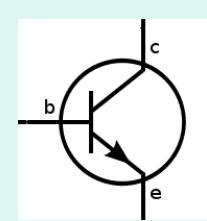




# Phase plot

$$H(j\omega) = 20 \frac{j\omega}{\left(1 + j\frac{\omega}{5}\right)\left(1 + j\frac{\omega}{500}\right)}$$





# Exm 3

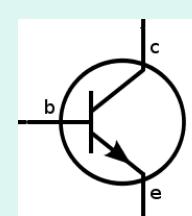
$$H(s) = \frac{200(s+20)}{s(2s+1)(s+40)} = \frac{200 \cdot 20}{40} \frac{1 + \frac{s}{20}}{s \left(1 + \frac{s}{0.5}\right) \left(1 + \frac{s}{40}\right)}$$

$$H(j\omega) = 100 \frac{1 + j \frac{\omega}{20}}{j\omega \left(1 + j \frac{\omega}{0.5}\right) \left(1 + j \frac{\omega}{40}\right)}$$

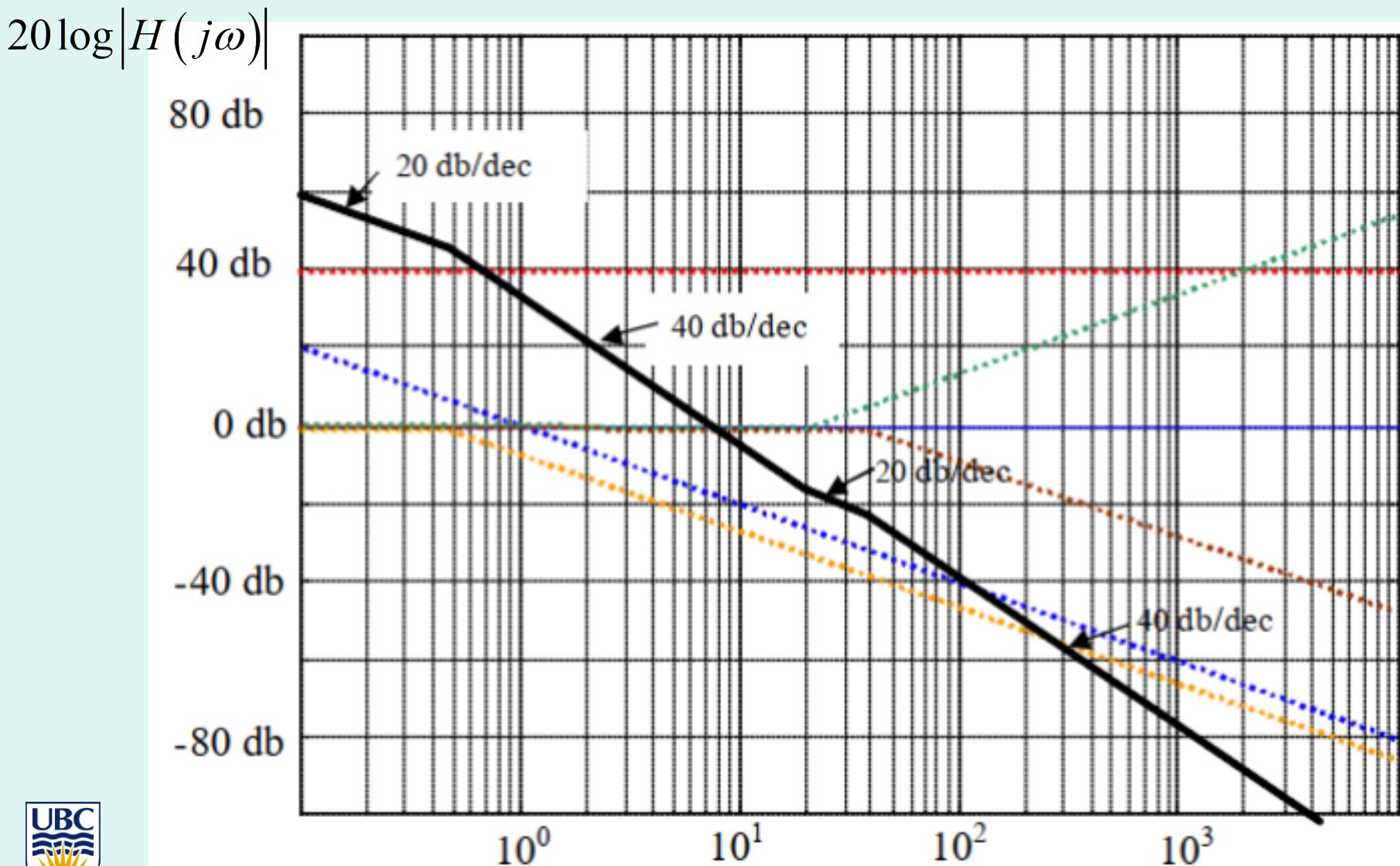
$$20 \log |H(j\omega)| = 40 \text{dB} + 20 \log \left( \sqrt{1 + \left( \frac{\omega}{20} \right)^2} \right) - 20 \log(\omega) - 20 \log \left( \sqrt{1 + \left( \frac{\omega}{0.5} \right)^2} \right) - 20 \log \left( \sqrt{1 + \left( \frac{\omega}{40} \right)^2} \right)$$

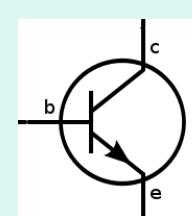
$$\varphi(\omega) = 0^\circ + \tan^{-1} \left( \frac{\omega}{20} \right) - 90^\circ - \tan^{-1} \left( \frac{\omega}{0.5} \right) - \tan^{-1} \left( \frac{\omega}{40} \right)$$





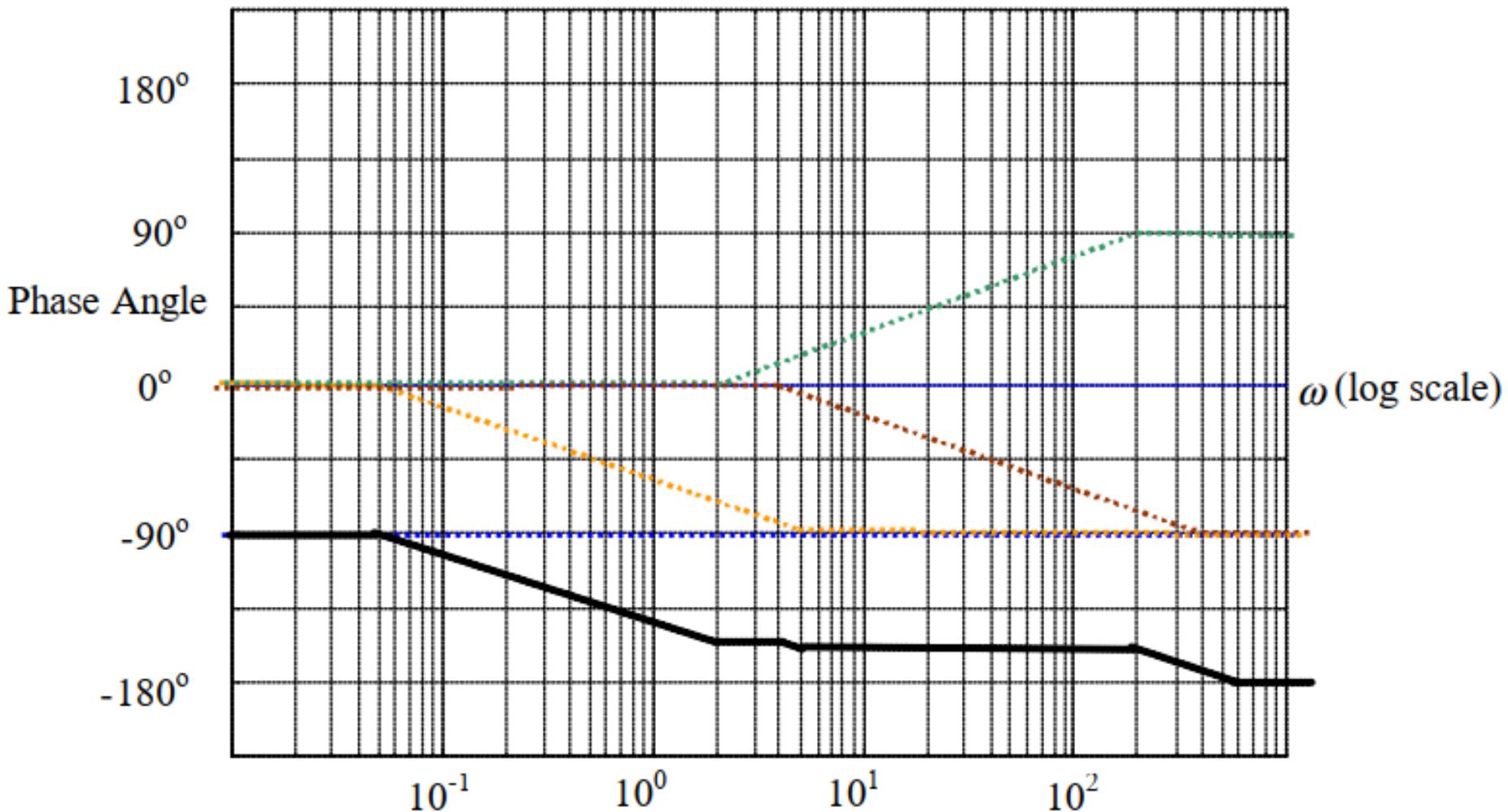
# Exm 3 - Bode magnitude plot

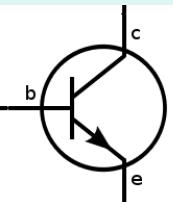




# Exm 3 - Bode phase plot

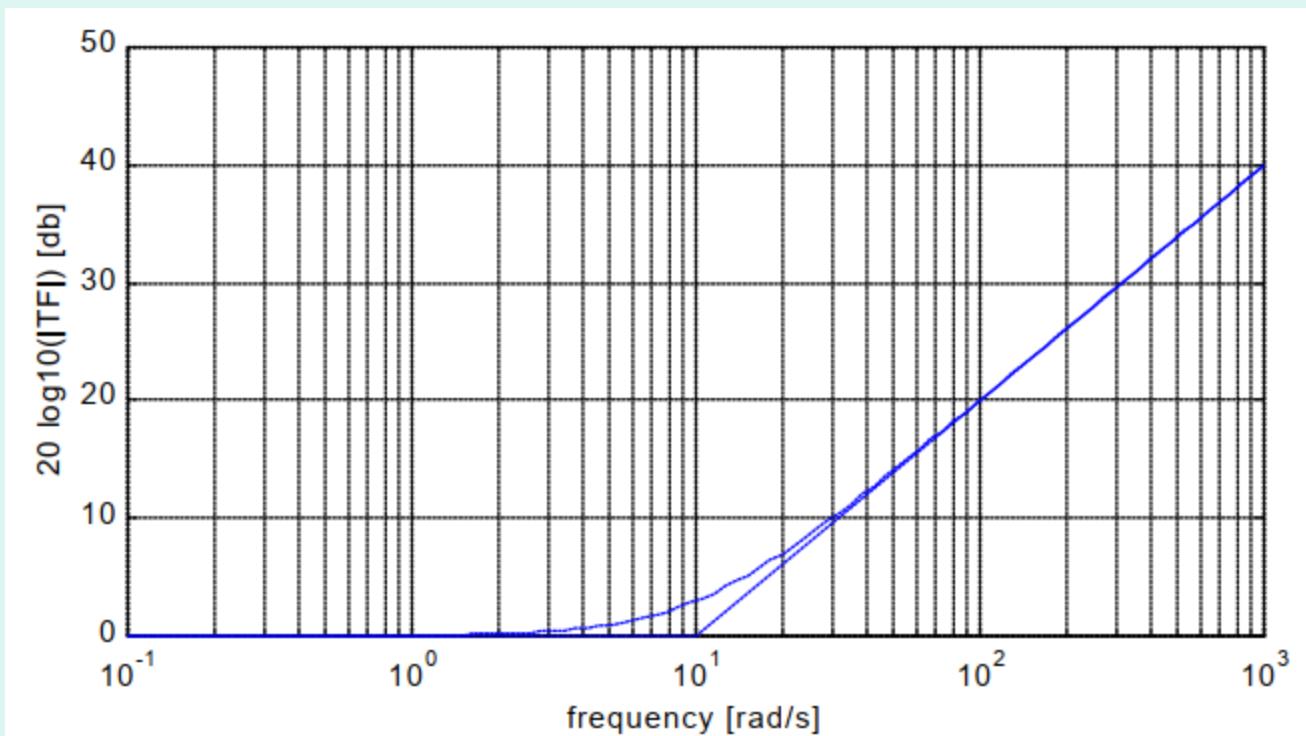
$$H(j\omega) = 100 \frac{1 + j \frac{\omega}{20}}{j\omega \left(1 + j \frac{\omega}{0.5}\right) \left(1 + j \frac{\omega}{40}\right)}$$

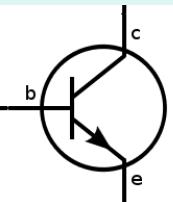




# Approximation errors

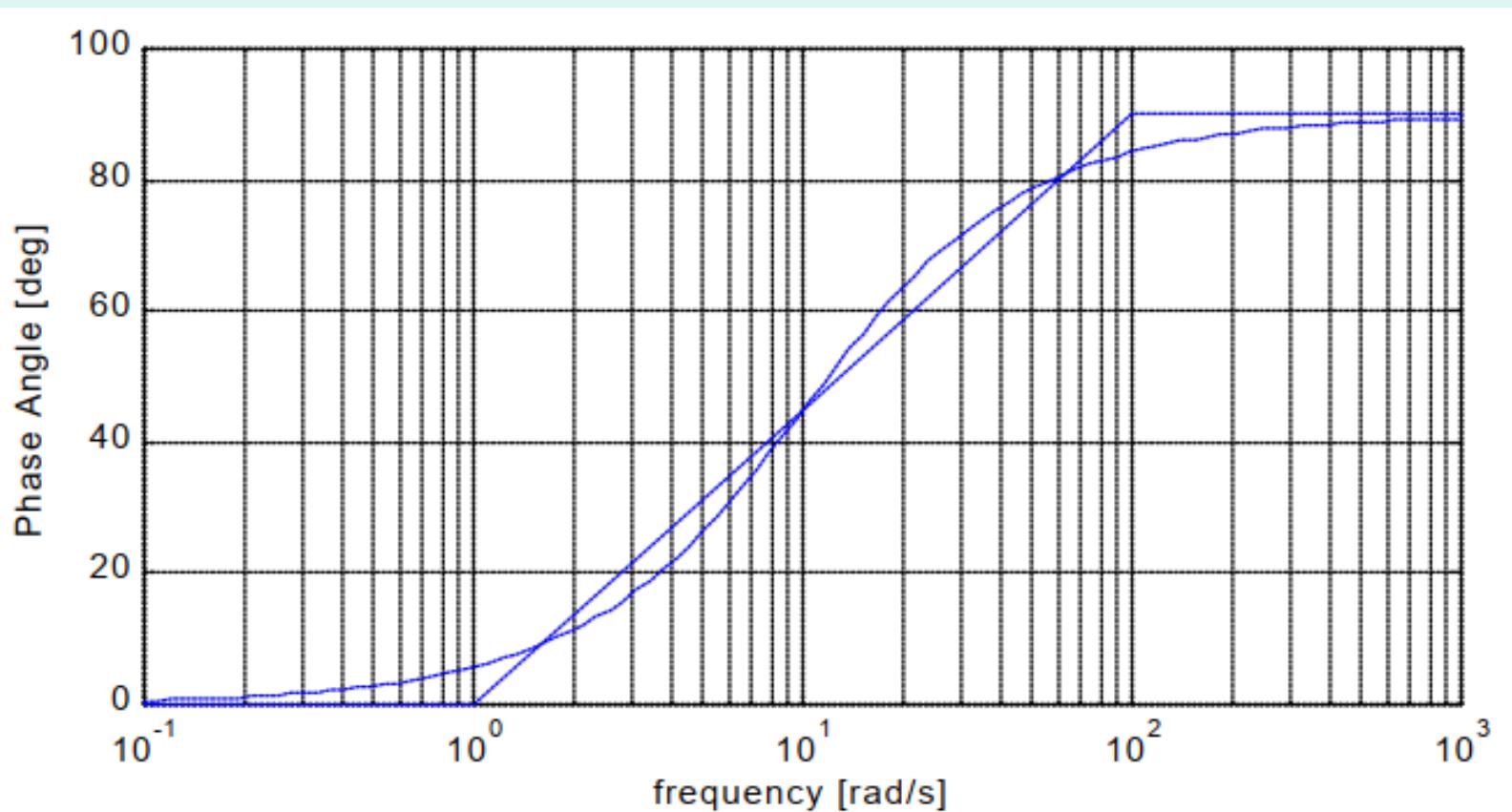
- Bode techniques are visual asymptotic approximations of the real magnitude and phase plots => there are approximation errors
- The largest errors for the magnitude plots - at the critical frequency ( $\sim 3$ dB for simple zeros/poles)

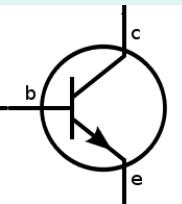




# Phase plot approximation errors

- The largest errors for the phase plots occur at  $0.1\omega_{\text{critical}}$  and  $10\omega_{\text{critical}}$  ( $\sim 6\text{deg}$  for simple pole/zero)





# Higher order poles/zeros

- The asymptotic trend: Nth order pole  $1/(1+j\omega/p_1)^N$  will decrease the log-magnitude with  $-N*20\text{dB/dec}$ , and cause a phase shift of  $-N*90\text{deg}$
- The max errors at the critical frequency will increase for higher order poles/zeros, but the asymptotic convergence remains

