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@ [ ast time

» Laplace transform, transfer functions
e The use of LT 1n solving ODEs

* The use of LT for mapping circuits from the
time domain to s-domain

 Introduction in Bode plots




@ Bode - Network analysis and
feedback amplifier design

* Old reference (1945),
Network Analysis and available on the internet
archives
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@ Transfer function - example

« Amplifier with all poles and zeros 1n the negative
half-plane, real and distinct
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T(s)=K n<nN
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Frequency response - phasor representation
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@ Magnitude and phase separation

Magnitude:
20log|T ( jw)| = 20log|K|

+ 20 log w> + mfj + 20log w> + mi; + ... + 20log\ W + UJ;

— 20log| w” + w,, — 20logy w” + w,, — ... — 20log| W’ + W,y

Phase: we must add 0 if K>0 and = if K is negative
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@ Remarks

* The log operation separates the frequency
response into additive primitive components

* While related, we can separate the visual
representations for magnitude and phase

* We only need to identify the patterns of
variations 1n the magnitude - phase
representation for the primitive components
(poles/zeros)
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@ Effects of a single zero on magnitude

* Zeroat ®,
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0>, %

. Magnitude (20log|H(jo)| §
increase rate of .
+20dB/dec ,

0.001 0.01 0.1 1 10
log,,

Function = 20log,,\ @2 + 1
Actual Function

100

1000



@ Simple pole pl=-1

e Contribution of
a single pole to
the magnitude
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Iy
\ 3
L Y
L Y
*
\
\
A Y
\
\
\
\
\
\
\
\
\
A Y
Y
\
\
\

\

\

T TTTTH I T TTTI T TTTTI I TTTTI T T TTTI T T TTTI

0.001 0.01 0.1 1 10 100 1000

log,,®

Function = -20log,,V @? + 1

Actual Function



*’@ Effects of a single pole on magnitude

e pole at o, \

e (Global effect on \

magnitude for \
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@ Phase contributions of single poles/zeros

* A zero adds a phase term +arctan(ow/o,)
* A pole adds a phase term -arctan(w/m,)
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@ Phase contribution approximation

* Phase contribution of a zero o,
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 Simple zero at o,

A zero contribution to phase

* Localized effect for 0.1o <o<100,

* Phase increase with +45deg/dec, total change +90deg
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@ Phase contribution approximation - pole

* Simple pole at o
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@ Simple pole contribution to phase
* Simple pole at @
* Localized effect for 0.1o <o<10w

* Phase decrease with -45deg/dec, total change -90deg
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@ Constant term contribution

* Magnitude plot: a constant gain K contributes
with a straight horizontal line of magnitude

20log(K)
» Phase plot - zero phase contribution (or
180deg contribution for K<0)

20 log10(H)
20 logio(K)
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b

Individual zero at the origin
* H(s)=s => H(jw)=jo (1deal derivator)

e Magnitude plot: positive slope line with +20db/dec, passing
through w=1

» Phase plot: +90deg phase shift for each zero
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scale)

LIF +90 deg

® (log)




*’@ Simple pole at origin
 H(s)=1/s == H(o)=1/(jo) (1deal integrator)

* Magnitude plot: line passing through ®w=1 with a drop of
20dB/dec

* Phase plot: -90deg phase shift
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@ Simple zeros and poles not at origin

Zero: H(jo)=(1+jw/z;)
* Pole: Hjm)=1/(1+jw/p;)

e Magnitude plot: no contribution below the critical frequency (break

frequency). Above the critical frequency, they add a ramp unction
of +20db/dec for a zero, and -20dB/dec for a pole

» Phase plot: a zero will introduce a +90 phase shift within two
decades, and a pole a phase shift of -90deg within two decades
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@ Phase plot - Zeros not at the origin

* terms of the form (1+j®/z;) - no phase shift for
0<0.1z, +45deg shift at z; and +90deg shift
for w>10z,




@ Phase plot - poles not at the origin

* Terms of the form 1/(1+Hw/p;)

* No phase shift for ®<0.1p;, -45deg for ®=p,,
and a -90deg shift for ®>10p;
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Logarithmic scale

When drawing by hand - 1,2,5,10 are almost
equidistant: log(2)~0.3, log(3)=0.477,
log(5)~0.7
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*’@ Exm 1- simple low-pass filter

I o L
O e 100, s = Hi ) 100, @
- o1t
50 w50

* Low-pass filter
* Hp=0.01 => 20log,,(0.01)=-40dB
* Pole with critical frequency p;=50rad/s
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20 log|TF|

Bode - magnitude and phase plots
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@ Exm 2

* Second order system
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*’@ Steps

1. Draw the segments for each individual term on
the graph

2. Start from the origin (©0<<1)

3. Add the constant offset of the gain as starting
line

4. Add the effects of the poles/zeros working from
left to right along the log(m) axis




@ Exm?2 - log-magnitude plot
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@ Phase plot (j)=20 jo
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: Exm 3
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Exm 3 - Bode magnitude plot
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Exm 3 - Bode phase plot
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@ Approximation errors

* Bode techniques are visual asymptotic approximations of the
real magnitude and phase plots => there are approximation
€rrors

* The largest errors for the magnitude plots - at the critical
frequency (~3dB for simple zeros/poles)
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@ Phase plot approximation errors

* The largest errors for the phase plots occur at

0.101(0q aNd 100 4. (~6deg for simple
pole/zero)
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@ Higher order poles/zeros

* The asymptotic trend: Nth order pole
1/(1+ co/pl)N will decrease the log-magnitude
with -N*20dB/dec, and cause a phase shift of
-N*90deg

* The max errors at the critical frequency will

increase for higher order poles/zeros, but the
asymptotic convergence remains
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