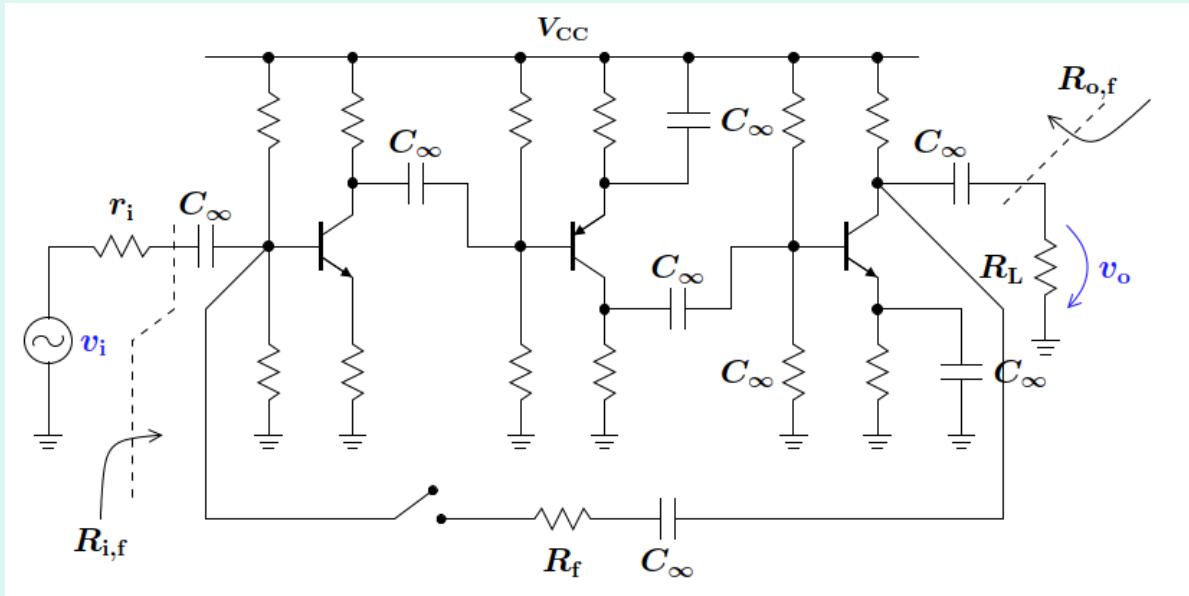
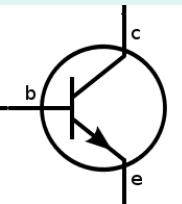


ELEC 301 - BJT small signal model, biasing circuit

L11 - Sep 29

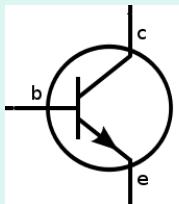
Instructor: Edmond Cretu





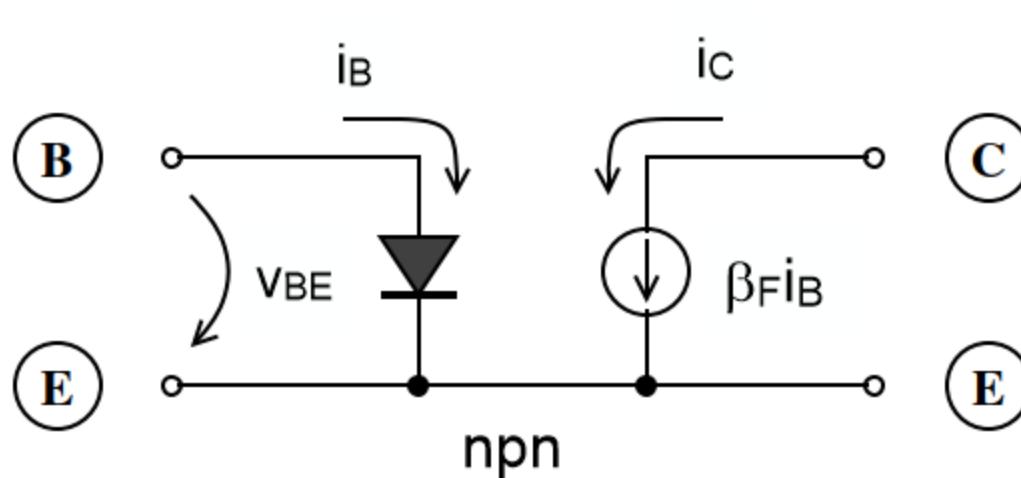
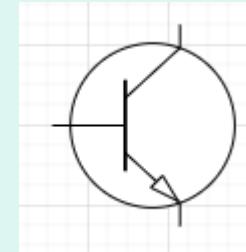
Last time

- Large signal models vs small signal models
- Diodes - large signal, small signal model
- BJTs - operating principle, operating modes, large signal model, simple small signal model

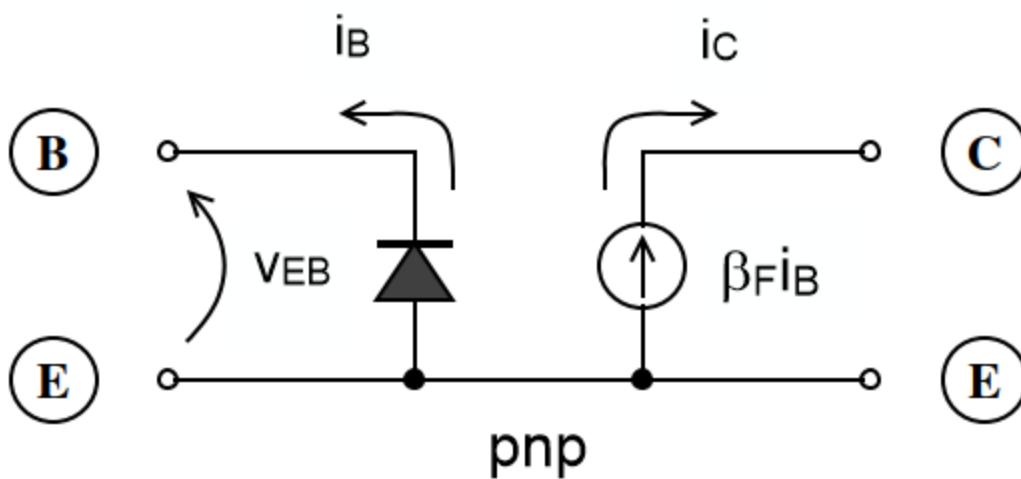
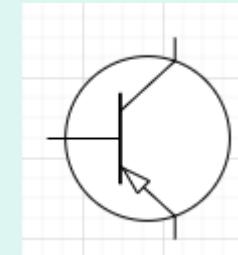


Large-signal model for BJT

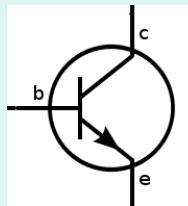
- REM: controlled current source orientation



$$i_C = I_S e^{\frac{v_{BE}}{V_T}}, i_B = \frac{I_S}{\beta} e^{\frac{v_{BE}}{V_T}}$$

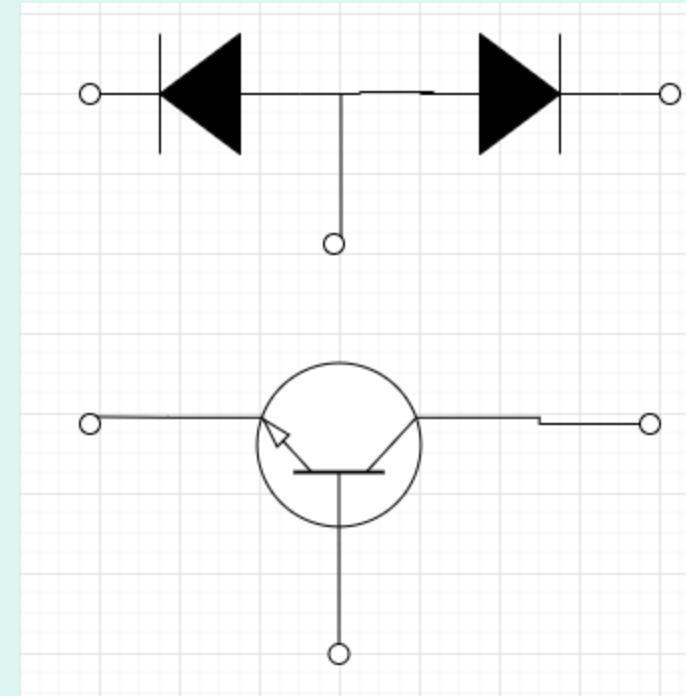


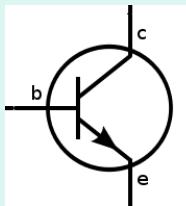
$$i_C = I_S e^{\frac{v_{EB}}{V_T}}, i_B = \frac{I_S}{\beta} e^{\frac{v_{EB}}{V_T}}$$



L11 Q01 - diodes and BJT

- Which one is the **wrong** statement when comparing two back-to-back diodes with a BJT structure?
 - A. They are the same three-terminal device
 - B. If we increase the base width significantly, they become the same device
 - C. A BJT is characterized by two coupled junctions



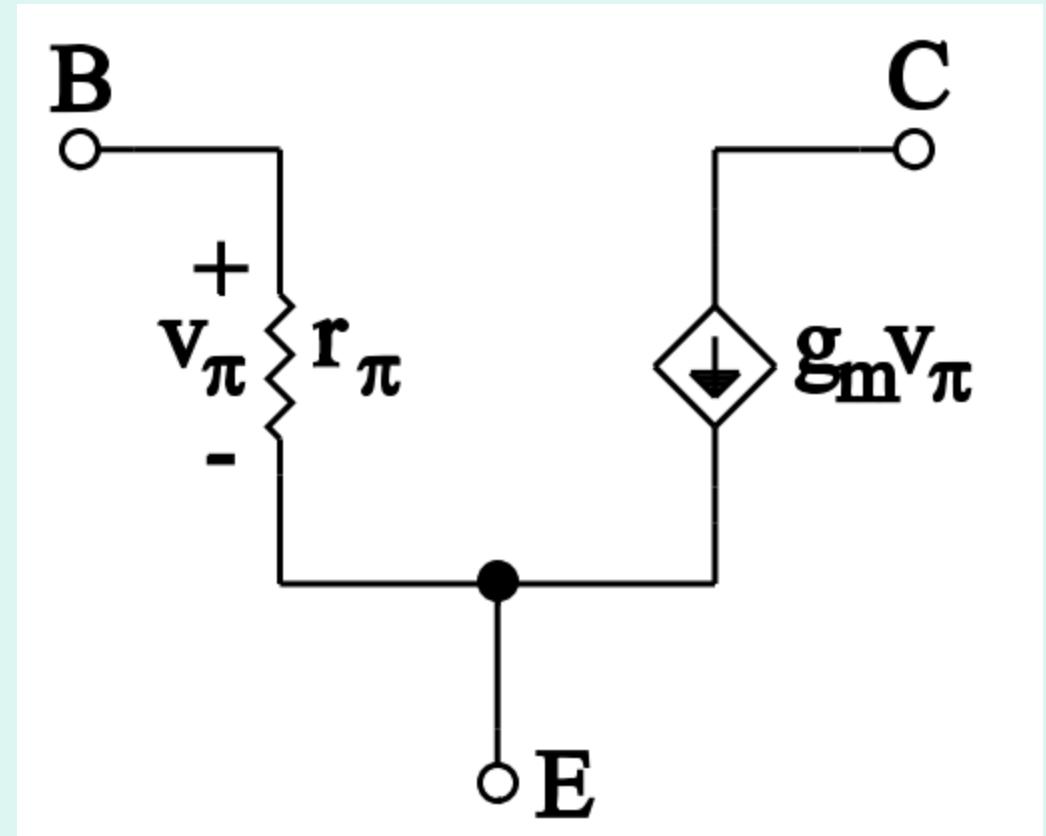


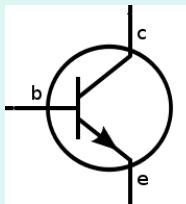
Basic Hybrid- π model for BJT

- Small signal model without considering capacitive effects, nor the Early effect

$$r_\pi = \frac{v_{be}}{i_{be}} = \frac{\beta}{g_m} = \beta \frac{V_T}{I_C} = \frac{V_T}{I_B}$$

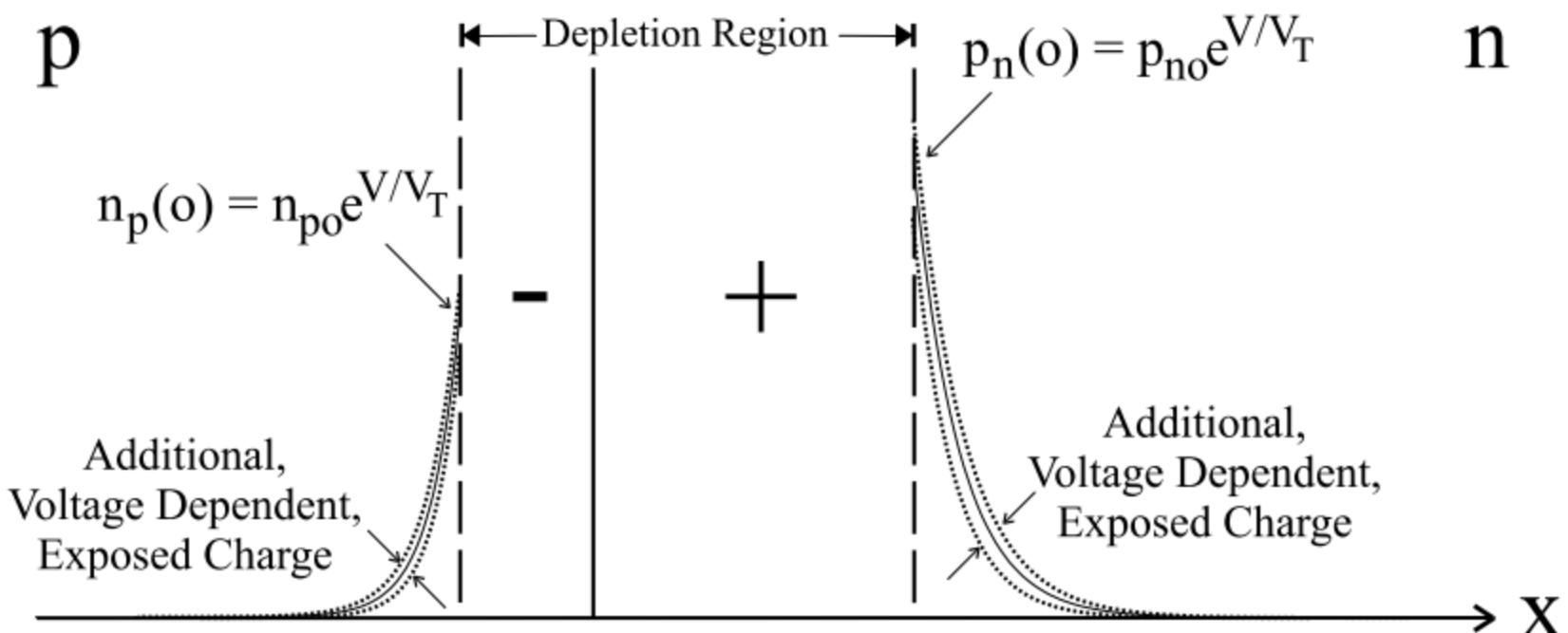
$$g_m = \frac{I_C}{V_T}$$

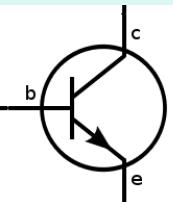




Junction capacitance EBJ

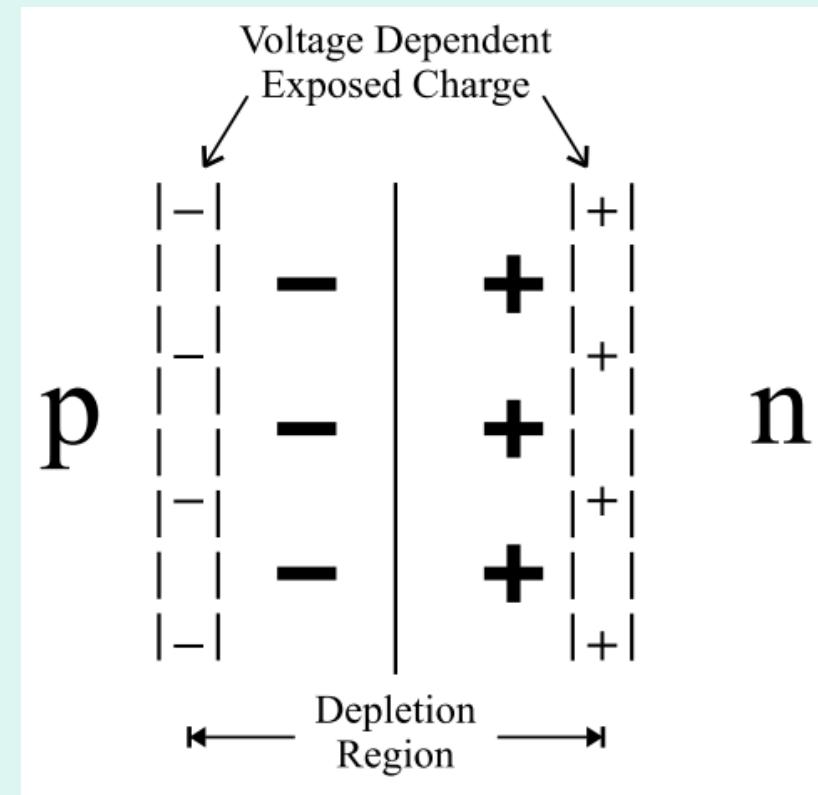
- $C = dQ/dV$
- EBJ - forward biased - diffusion capacitance (change in minority carrier concentrations on either side of junction)

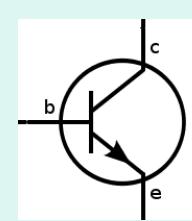




Junction capacitance CBJ

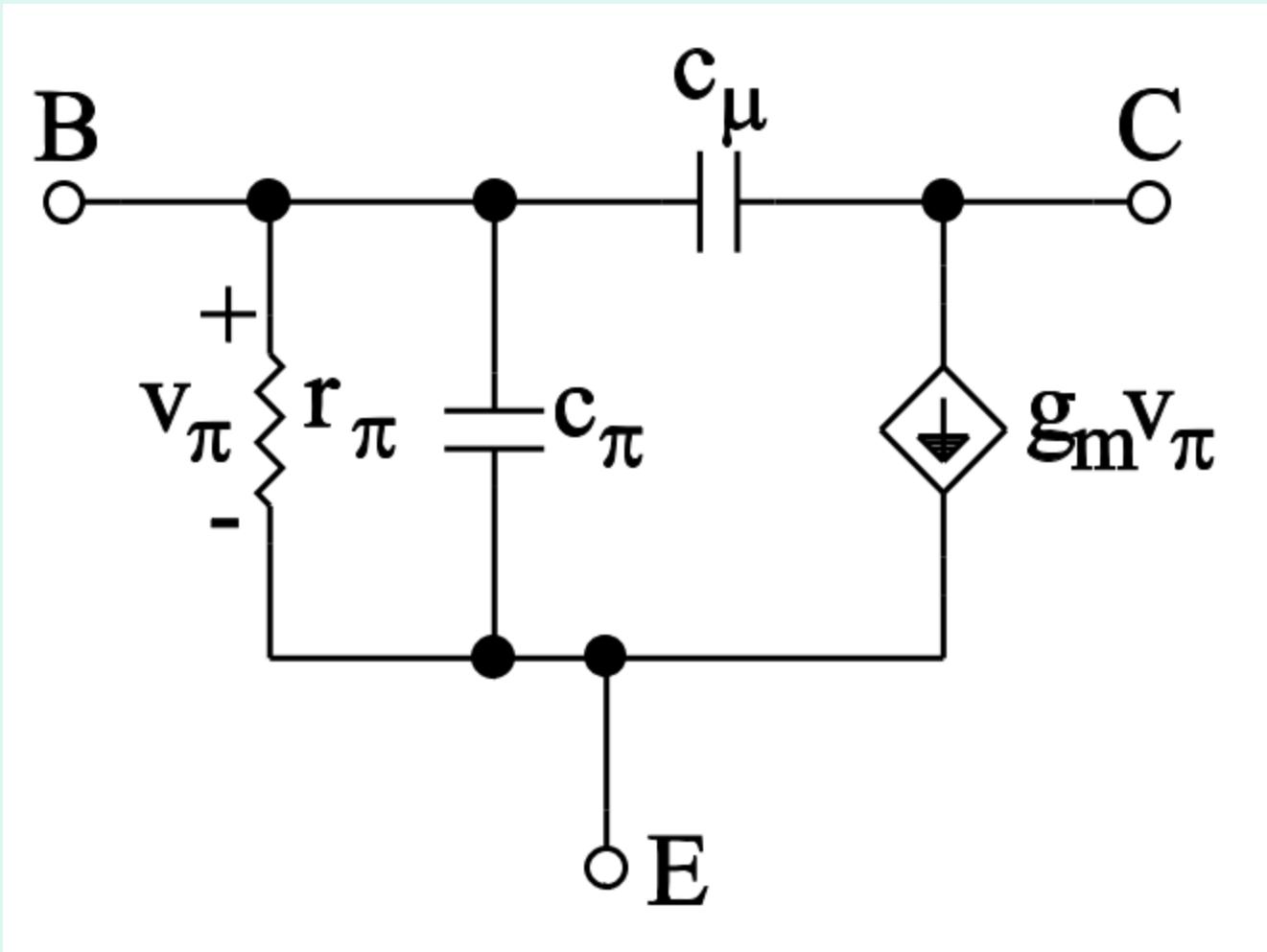
- Active mode => reverse biased CBJ
- “Space-charge capacitance” - dominant mechanism is the change in exposed charge on either side of the depletion region - $Q=f(V_{CB})$
- For small-signals the relation charge-voltage is linear => constant capacitance

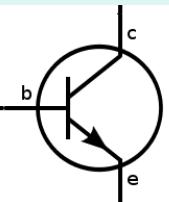




Hybrid-p model with junction capacitances

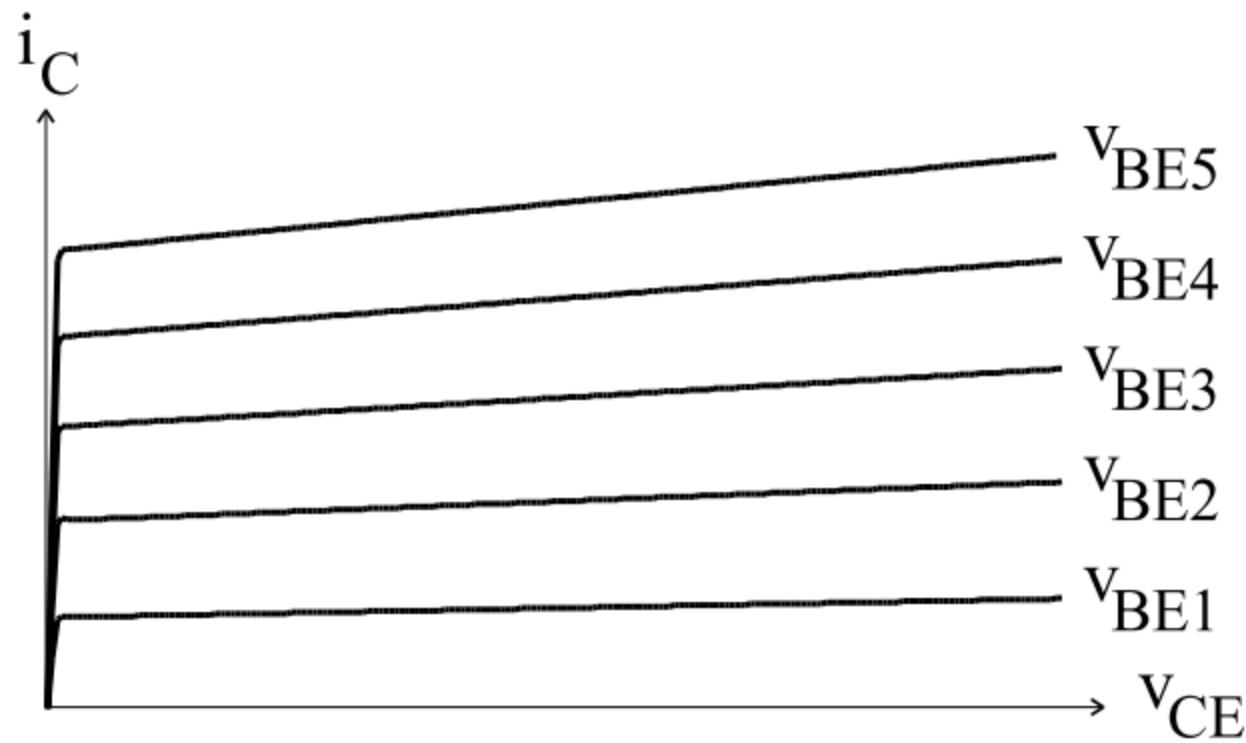
- Improved small-signal model

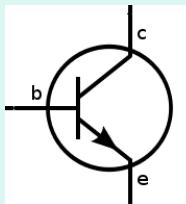




Further refinement - output resistance

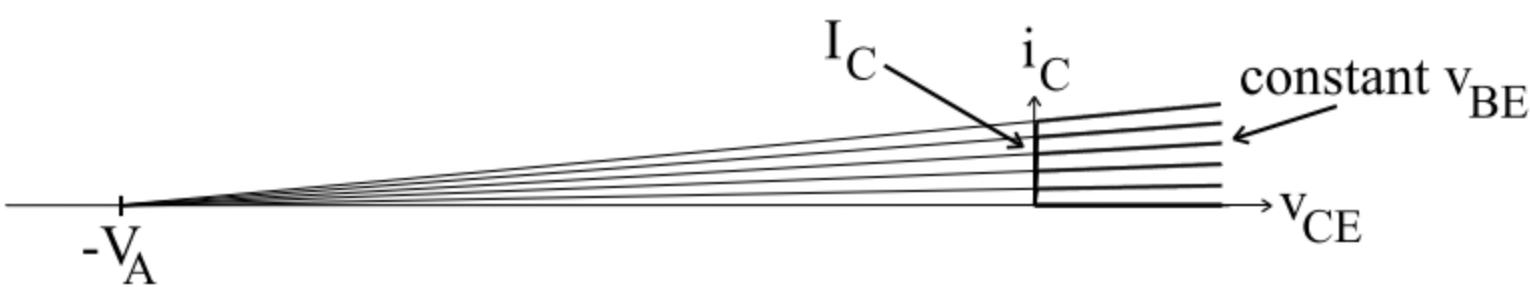
- Ideally i_C depends solely on v_{BE} , but it shows as well a dependence on v_{CE}





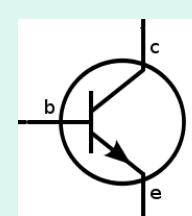
Early voltage and output resistance

- Early effect - widening of the CB depletion region as V_{BC} increases
- V_A = Early voltage - for modern BJTs $\sim 50..500V$, lower for pnp



$$i_C = i_C(v_{BE}, v_{CE}) = I_S e^{\frac{v_{BE}}{V_T}} \left(1 + \frac{v_{CE}}{V_A} \right)$$

$$r_o \simeq \frac{V_A}{I_C}$$



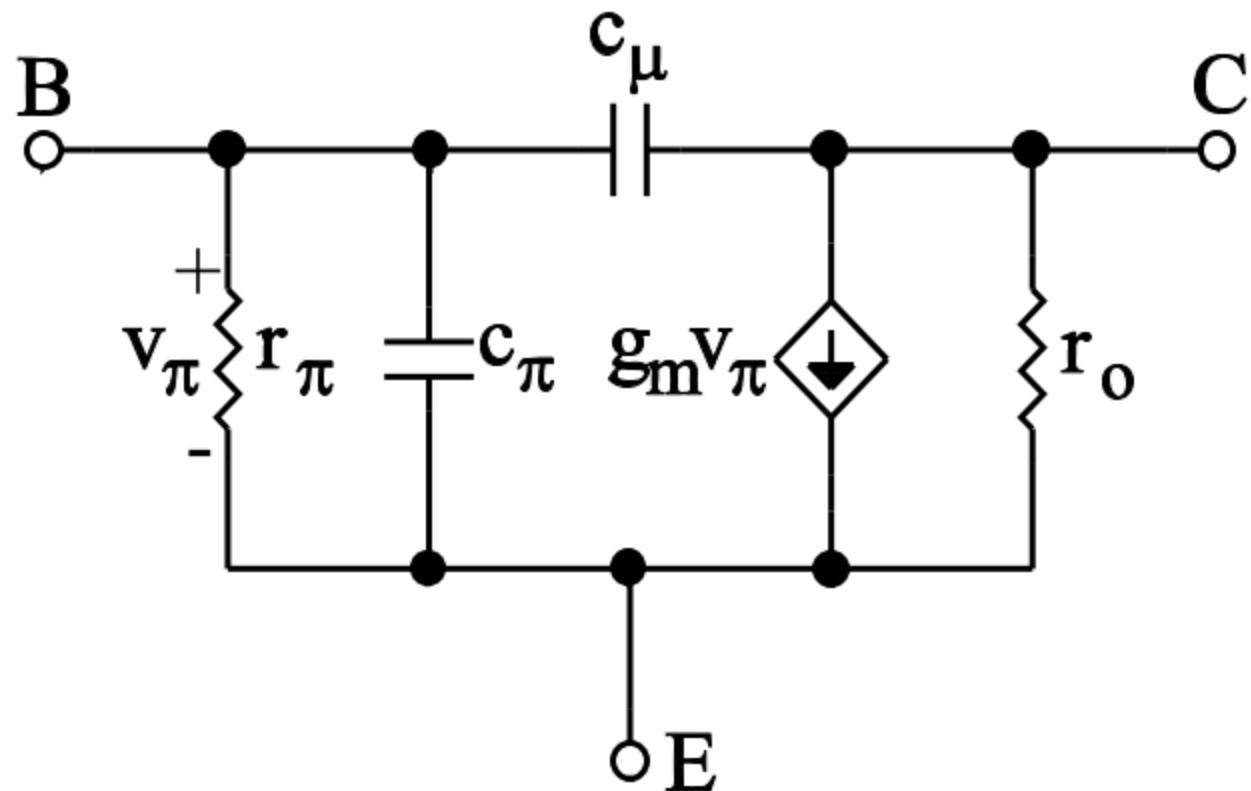
Complete Hybrid- π small-signal model

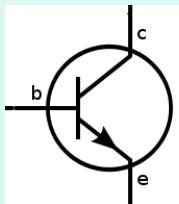
- Adding all the effects so far

$$r_\pi = \frac{v_{be}}{i_{be}} = \frac{\beta}{g_m} = \beta \frac{V_T}{I_C} = \frac{V_T}{I_B}$$

$$g_m = \frac{I_C}{V_T}$$

$$r_o \simeq \frac{V_A}{I_C}$$

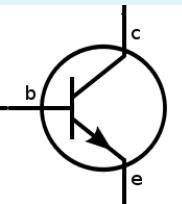




BJT biasing

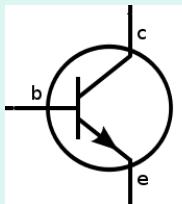
- The basic bias circuit
- V_{CC} often imposed by application
- Biasing trade-off:
 - operation in active mode
 - gain
 - dynamic operating range
 - power consumption
 - input impedance
 - quiescent point stability





L11 Q02 - R_C role

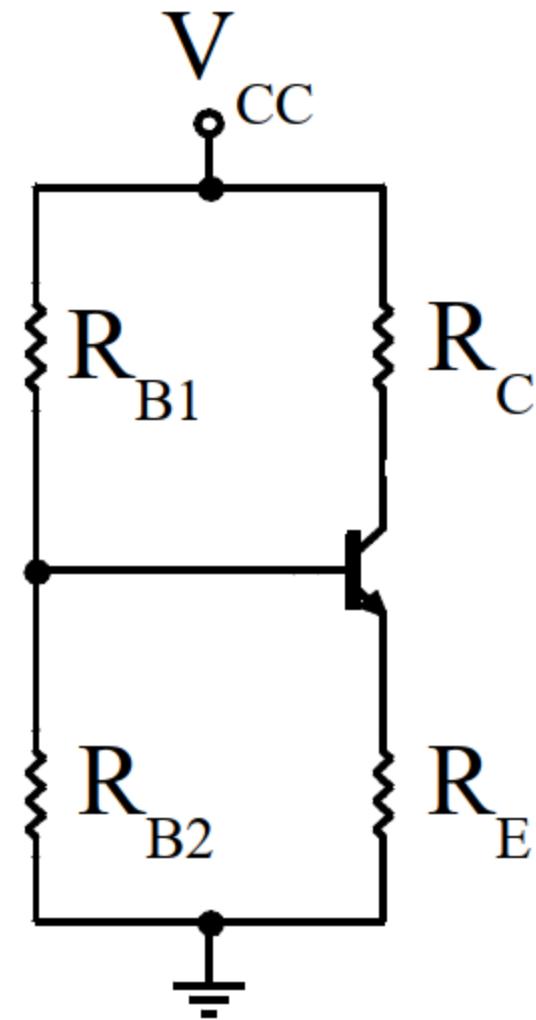
- What happens if, for given V_{CC} , R_{B1} , R_{B2} , R_E , and β , we increase R_C ?
 - A. we decrease the voltage gain
 - B. we increase the power consumption
 - C. BJT gets closer to operating in the saturation regime

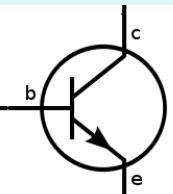


L11 Q03 - bias current

- How do we want the current through R_{B2} to be, in comparison with the base current I_B ?

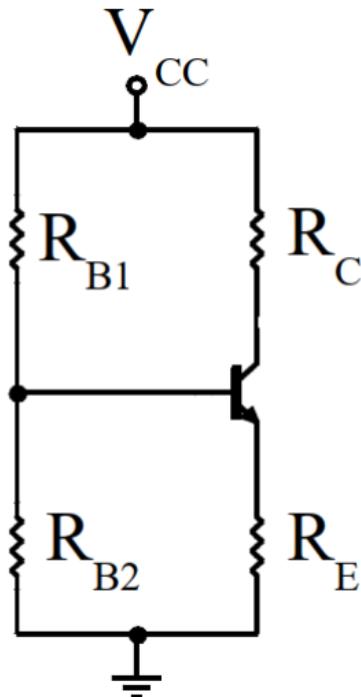
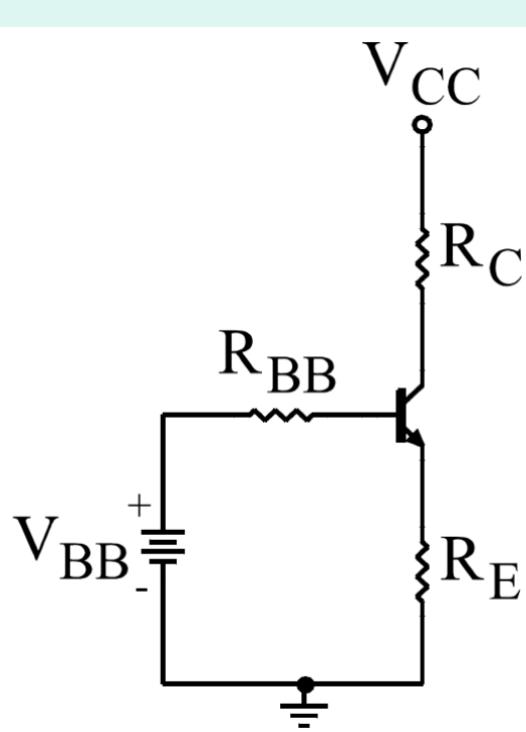
- A. $I_{RB2} \gg I_B$
- B. $I_{RB2} \approx I_B$
- C. $I_{RB2} \ll I_B$





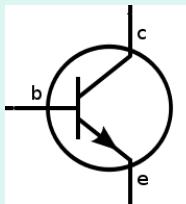
BJT biasing

$$I_B = - \frac{V_{BE}}{(1+\beta) R_E + R_{BB}} + \frac{V_{BB}}{(1+\beta) R_E + R_{BB}}$$



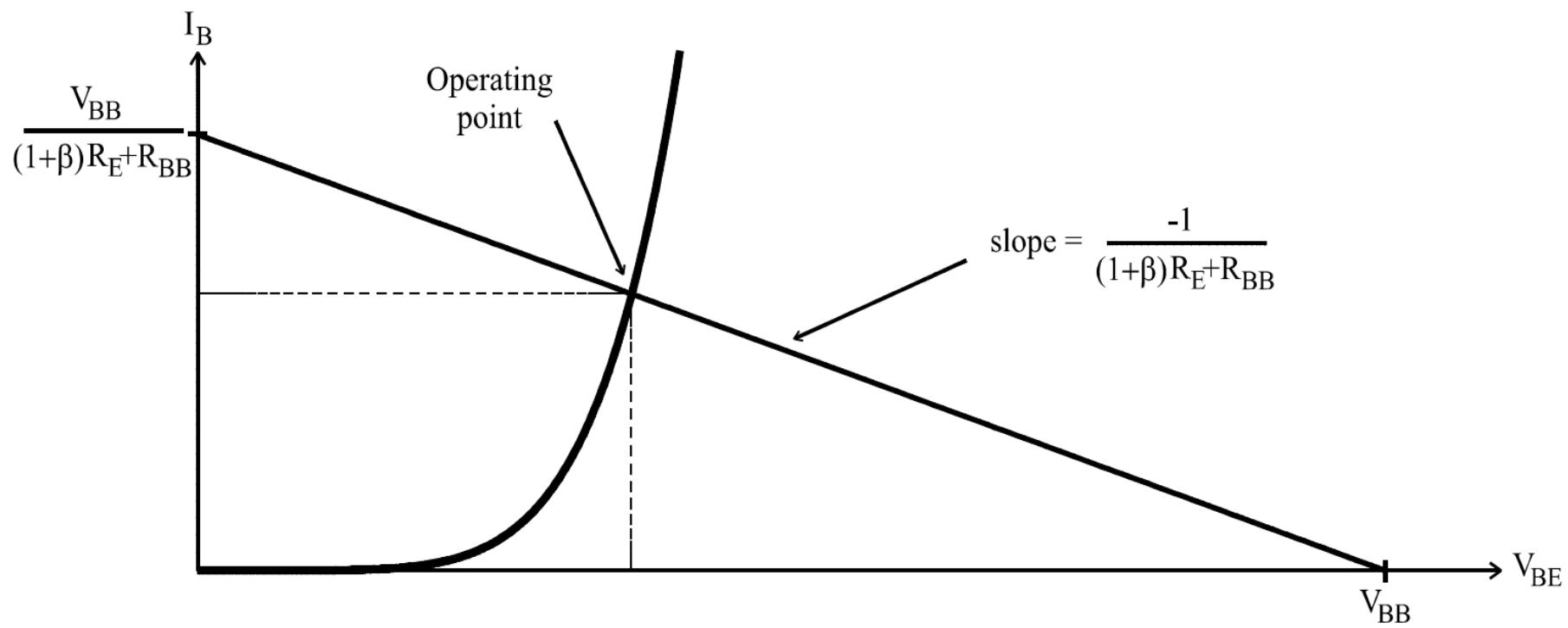
$$I_B = \frac{I_C}{\beta} = \frac{I_S}{\beta} e^{\frac{V_{BE}}{V_T}}$$

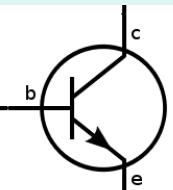
$$V_{BB} = V_{CC} \frac{R_{B2}}{R_{B1} + R_{B2}}, \quad R_{BB} = R_{B1} \parallel R_{B2}$$



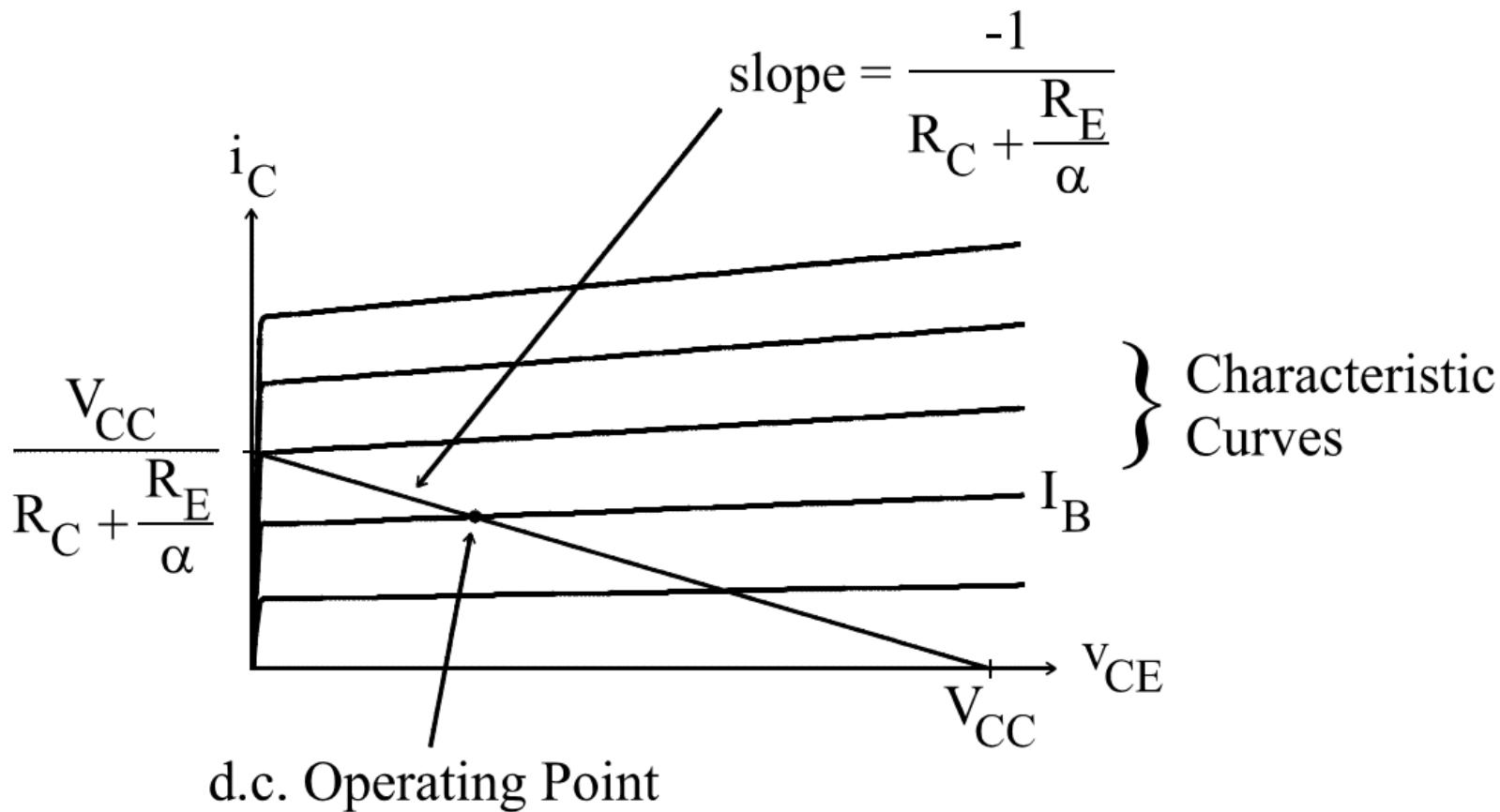
Operating point - (V_{BE}, I_B)

- I_B vs V_{BE}





Operating point (V_{CE} , I_C)



$$I_C = - \frac{V_{CE}}{\left(R_C + \frac{R_E}{\alpha} \right)} + \frac{V_{CC}}{\left(R_C + \frac{R_E}{\alpha} \right)}$$

