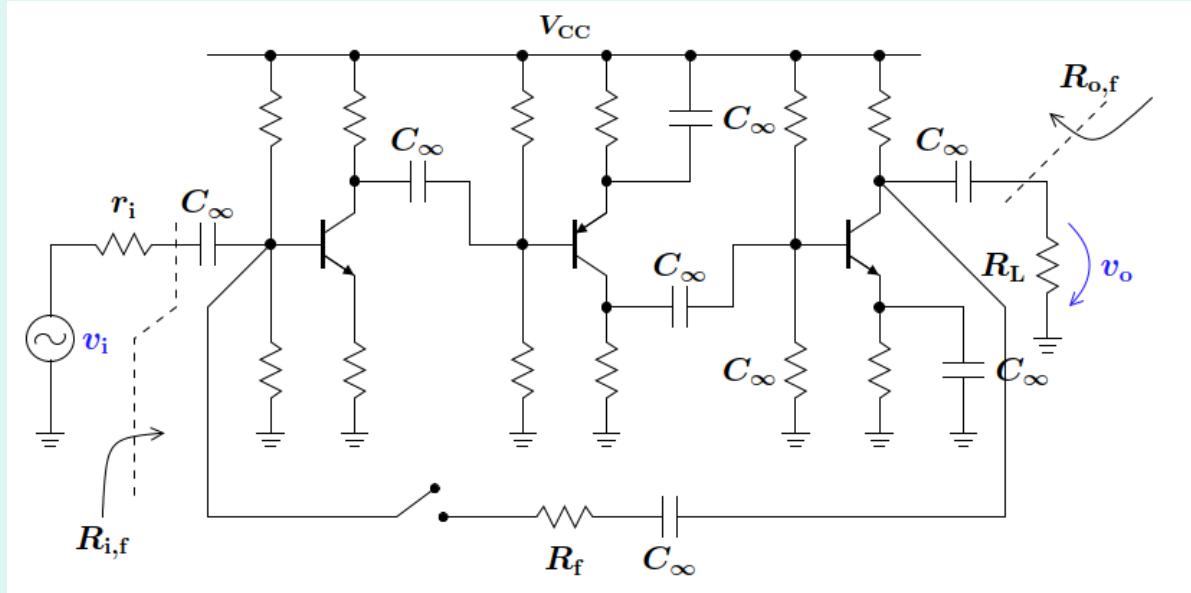
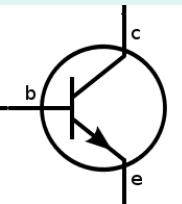


ELEC 301 - CB, CC amplifier configurations

L15 - Oct 09

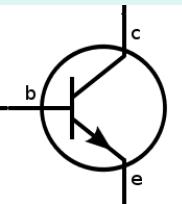
Instructor: Edmond Cretu





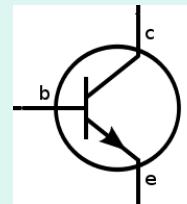
Administrative issues

- Midterm - Monday, Oct 20 - L1-15
- Sample problems to be posted on Canvas
- Office hours: after lectures or by email



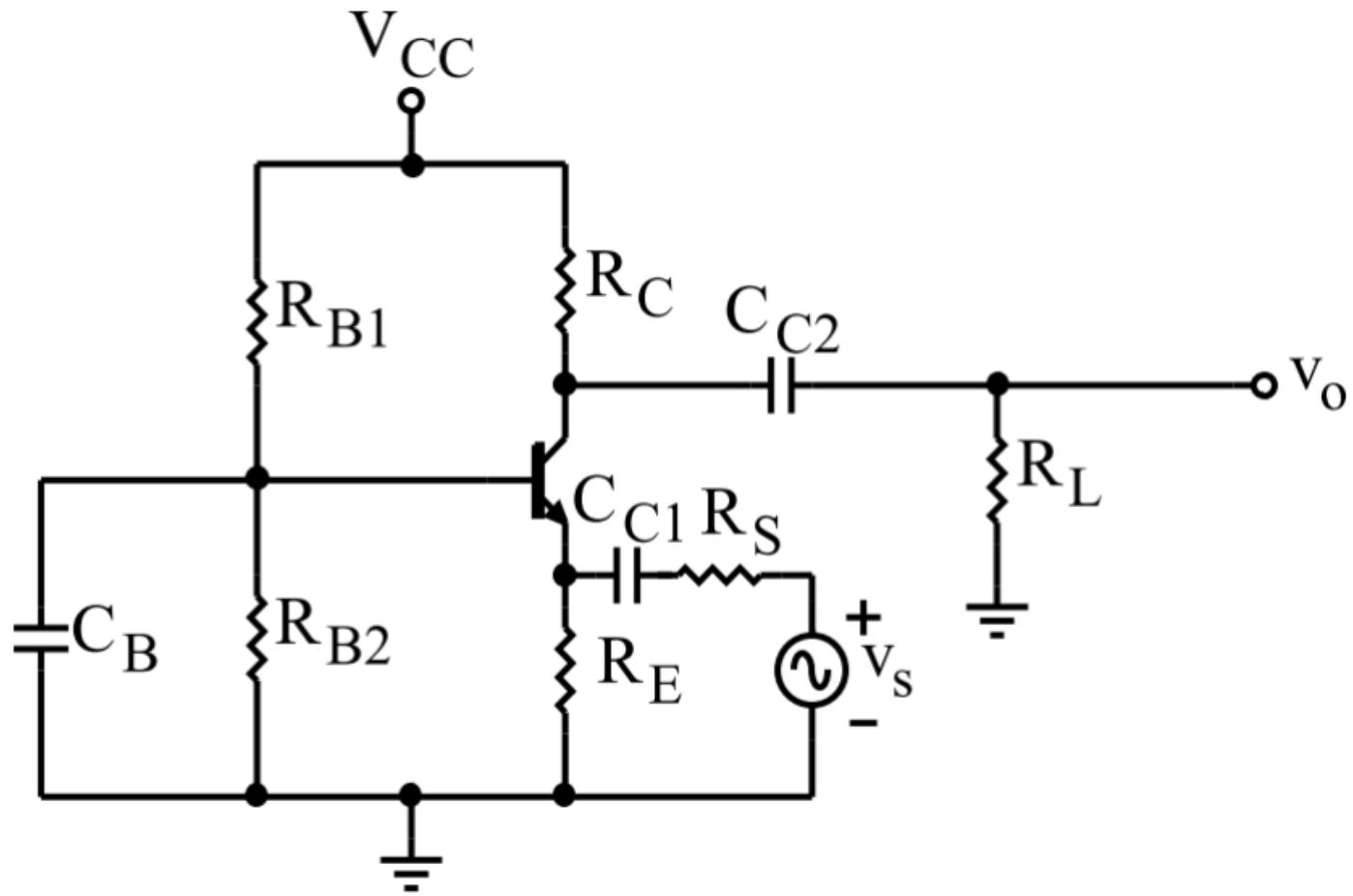
Last lecture

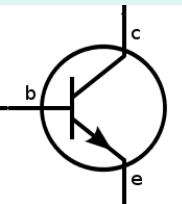
- CB amplifier
- General diports discussion
- Frequency response of the CB amplifier



The common-Base amplifier

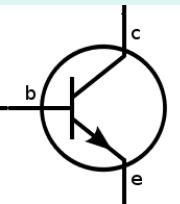
- Input port: E, Output port: C
- We assume proper biasing (1/3 rule); C_B to ground B in AC mode





Aspects of interest

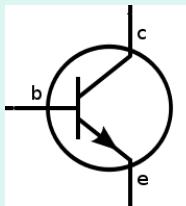
- Mid band response: voltage gain, current gain
- Input impedance
- Output impedance
- General frequency response - what limits ω_L , ω_H
- Typical use



Recall: Ideal amplifiers - diports

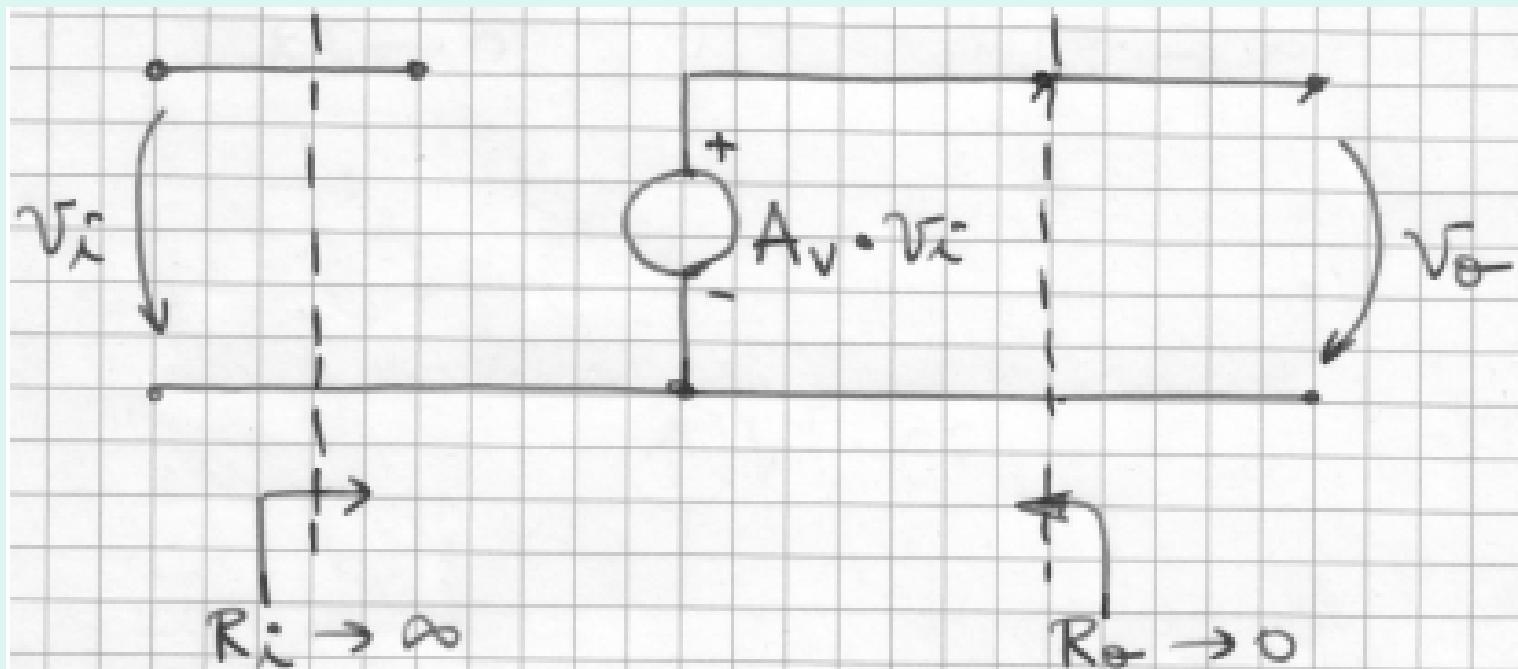
- Goal: to become an information/signal flow block/subsystem
- Requirements:
 - to not absorb power at the input port
 - to not lose power internally at the output port
 - to not have backward propagation from output to input (to not deliver power at the input port)
 - high gain, controlled with good accuracy and reproducibility
 - a frequency response that matches the bandwidth of the input signal
 - to not add any internal noise to the output signal ($NF = 1$)

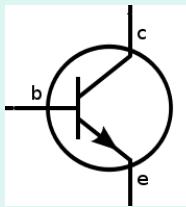
$$\text{Noise Factor } (F) = \frac{\left(\frac{S_{in}}{N_{in}}\right)}{\left(\frac{S_{out}}{N_{out}}\right)}$$



Ideal voltage amplifier

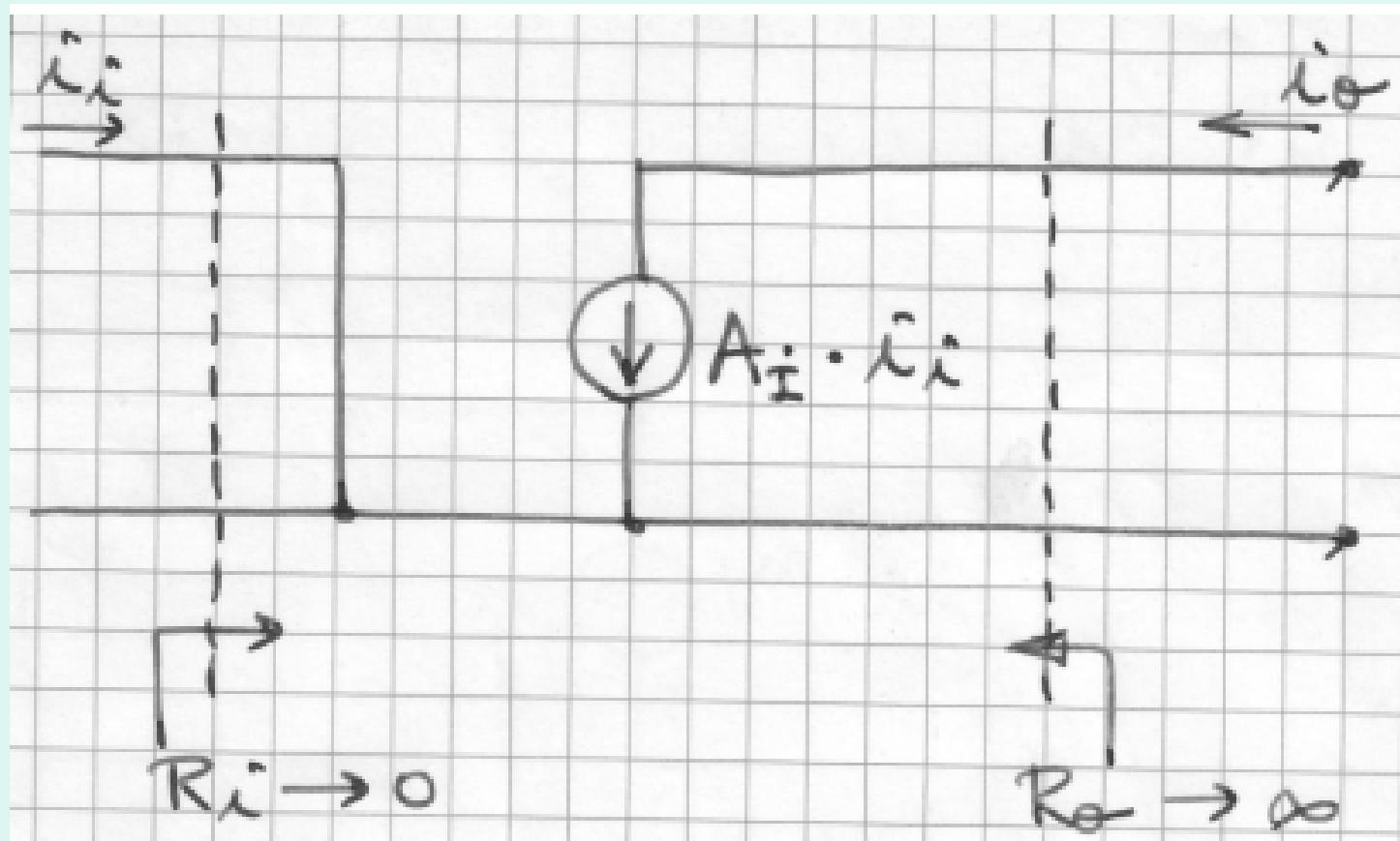
- Approximation of the real world, within given constraints
- Input port signal = voltage, output port signal = voltage
- $Z_{in} = \infty$, $Z_{out} = 0$

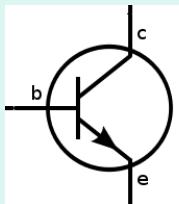




Ideal current amplifier

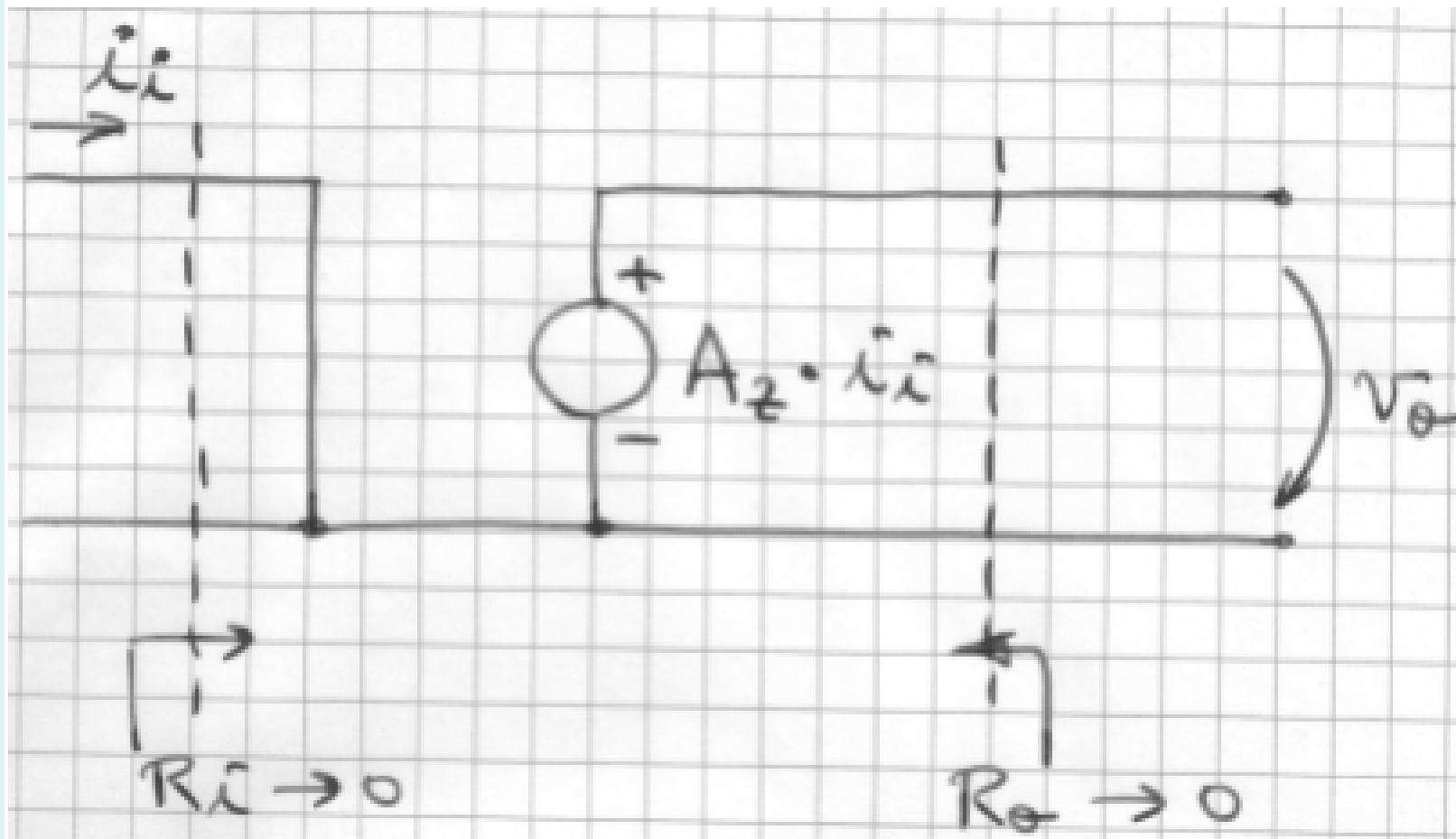
- Input port signal=current, output port signal=current
- $Z_{in}=0, Z_{out}=\infty$

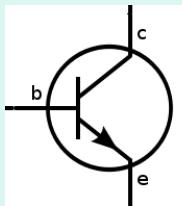




Ideal transimpedance amplifier

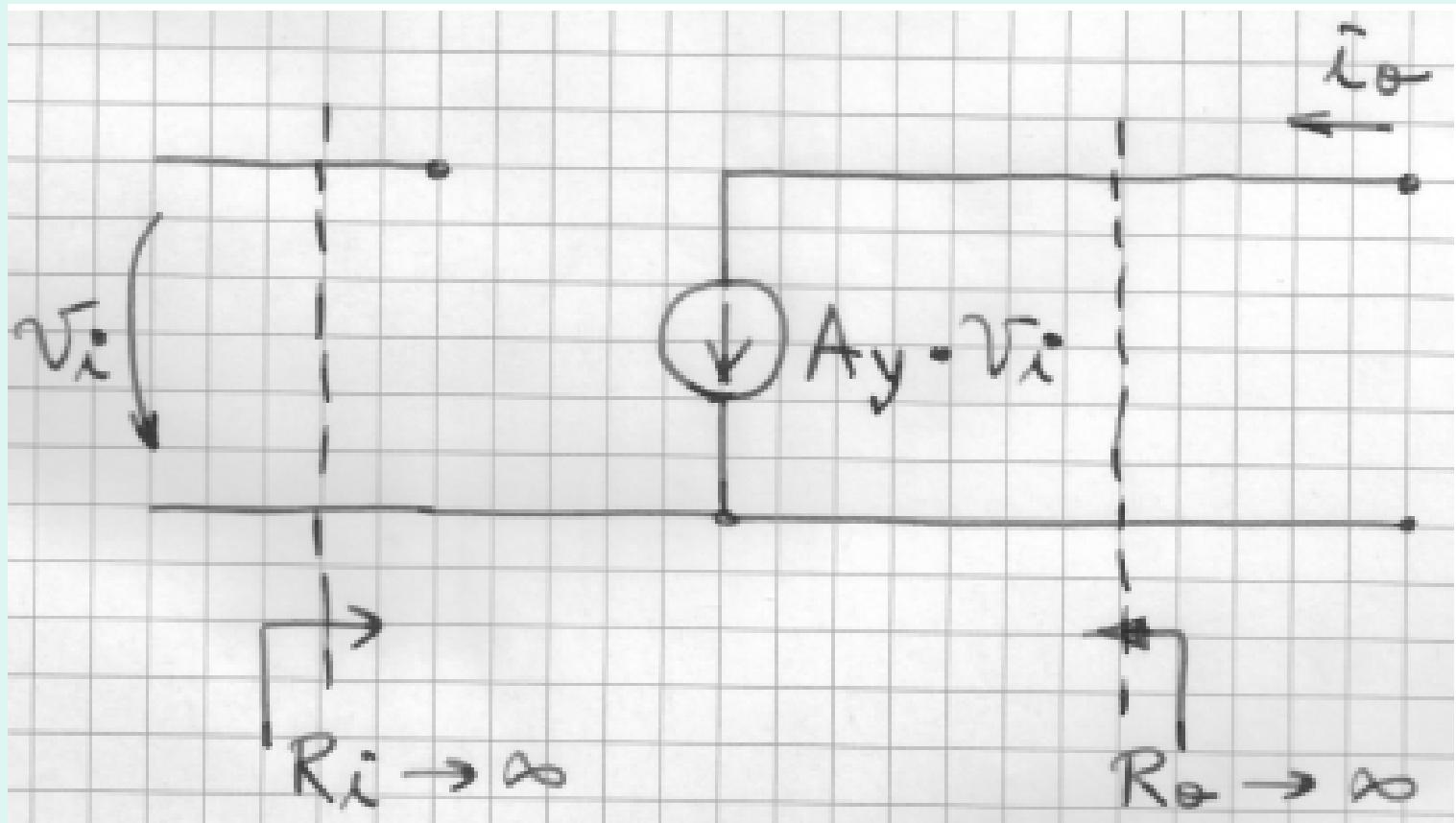
- Input port signal=current, output port signal=voltage
- $Z_{in}=0, Z_{out}=0$

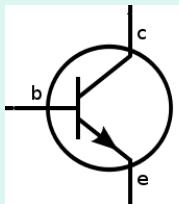




Ideal transadmittance amplifier

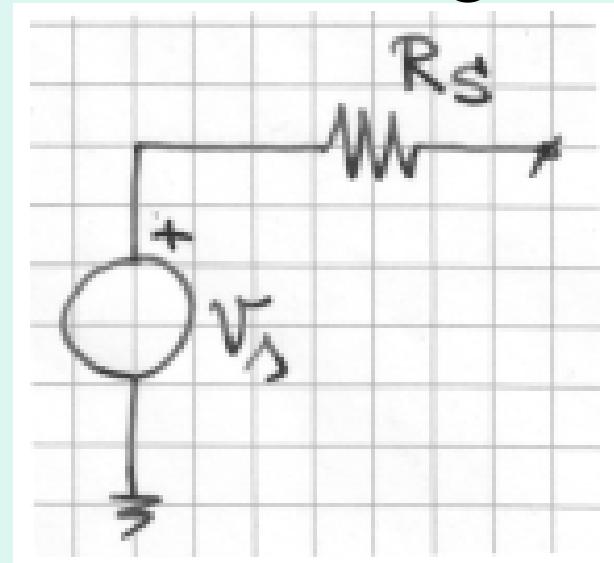
- Input port signal=voltage, output port signal=current
- $Z_{in}=\infty$, $Z_{out}=\infty$

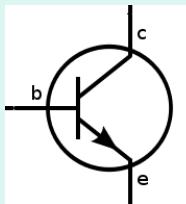




Design: choosing the right amplifier

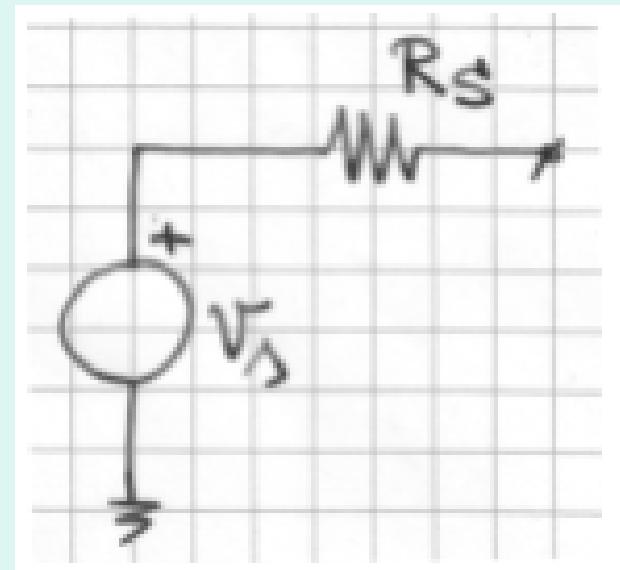
- Choosing a particular category of amplifier depends on the application
 - input matching with the preceding stage
 - output matching with the characteristics of the subsequent block
- Exm: microphone amplifier: small signal, high input resistance

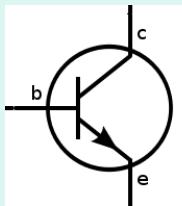




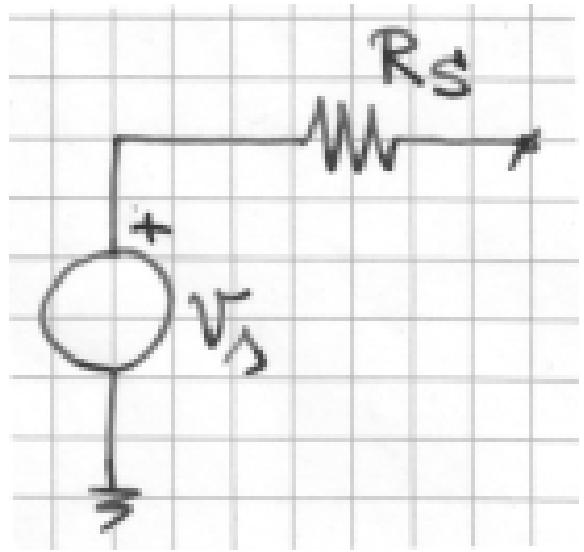
L15 Q01 - microphone amplifier

- If the desired output signal for a microphone amplifier is the voltage, what type of amplifier should we choose?
 - A. voltage amplifier
 - B. current amplifier
 - C. transimpedance amplifier
 - D. transadmittance amplifier



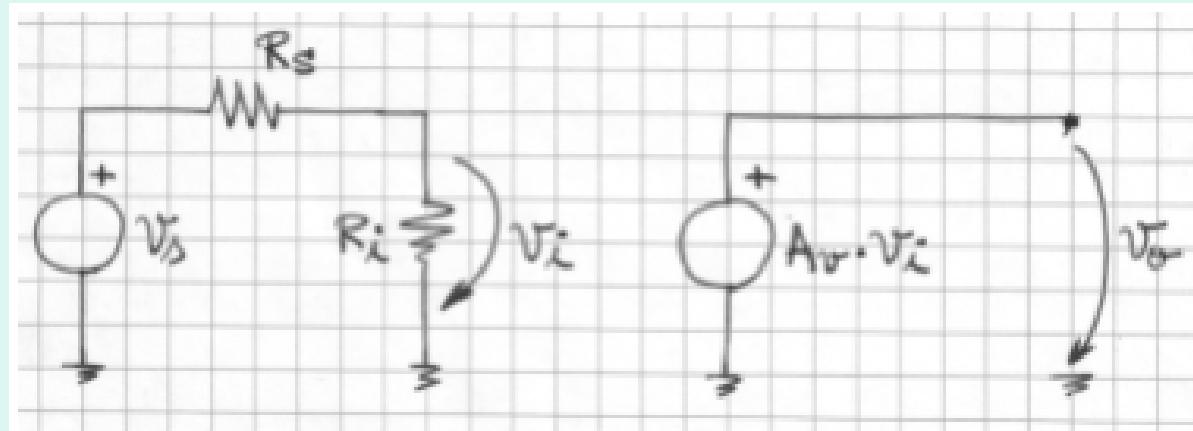


Microphone amplifier

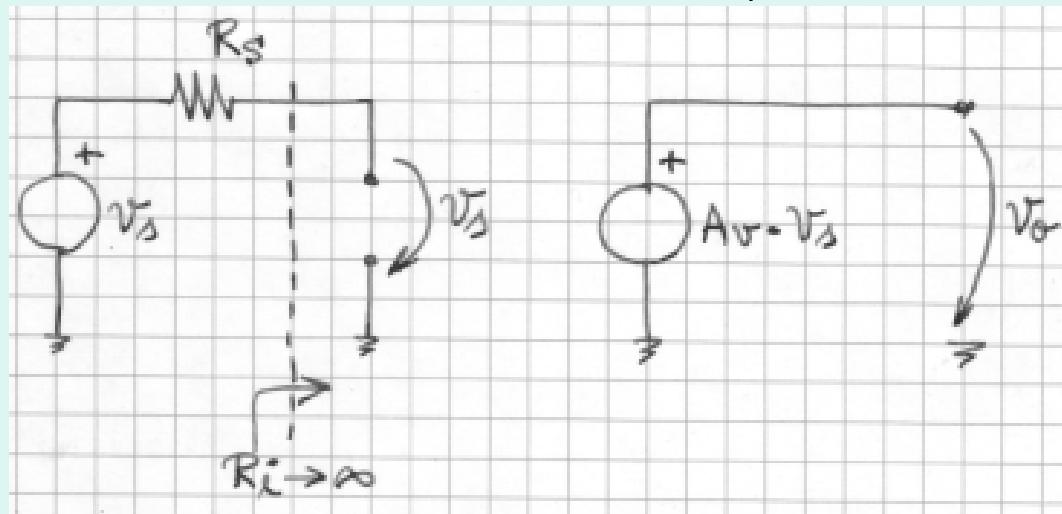


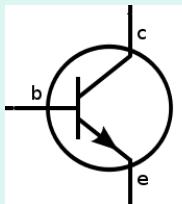
- Microphone equivalent circuit

$$R_i \rightarrow \infty \Rightarrow v_o = A_v v_i$$



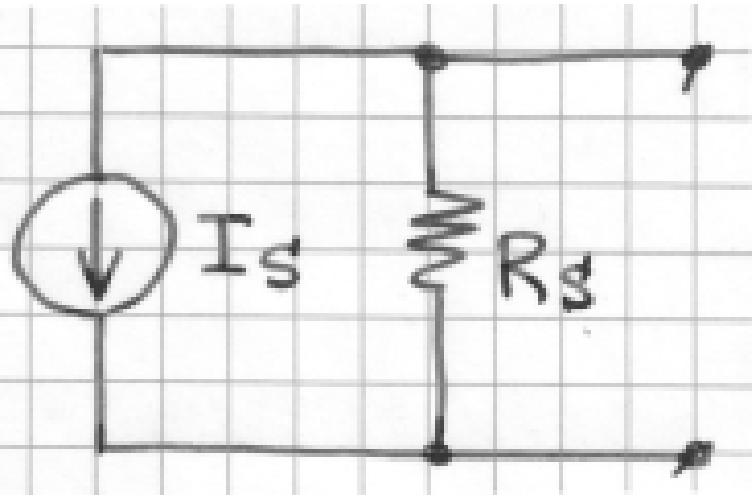
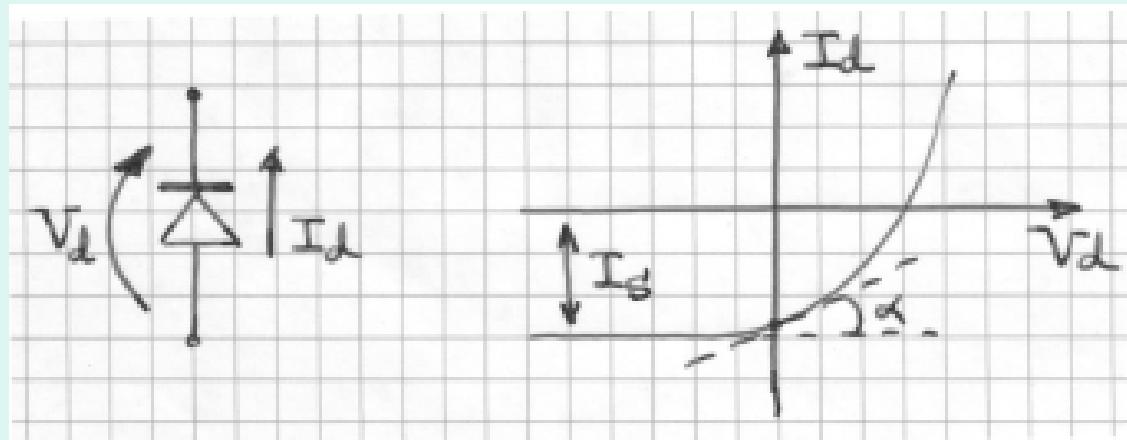
$$v_o = A_v \frac{R_i}{R_s + R_i} v_i = \frac{A_v}{1 + \frac{R_s}{R_i}} v_i$$



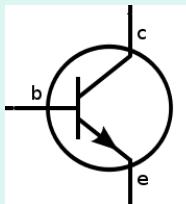


Exm2: photodiode amplifier

- very small current
- relatively small-moderate internal resistance
- Diode in reverse bias → the incident light on the pn junction increases the current I_s

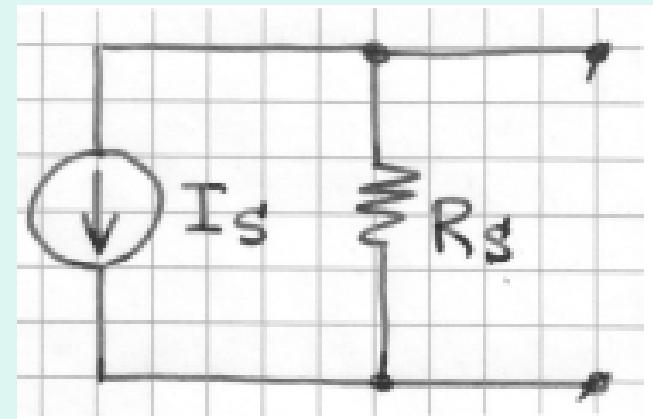


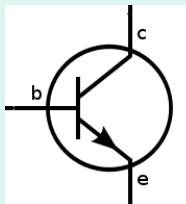
$$R_s = \frac{1}{\tan \alpha} = \cot \alpha$$



L15 Q02 photodiode amplifier

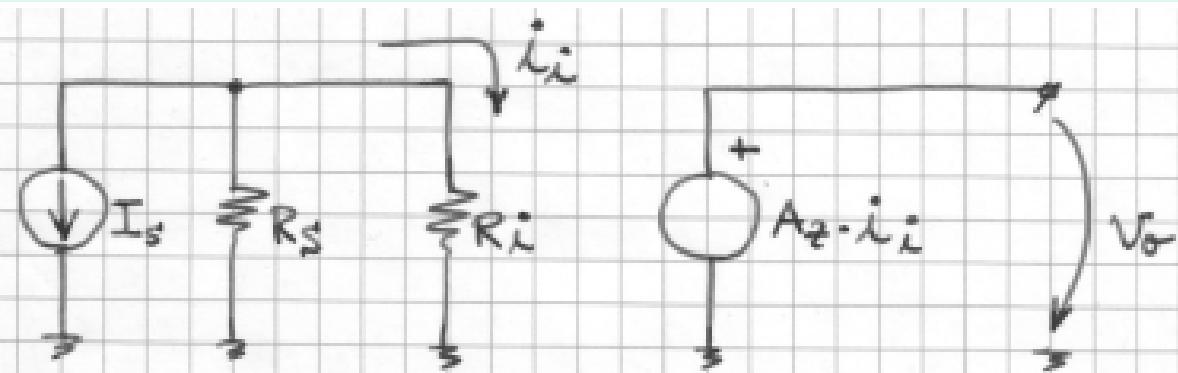
- What amplifier type is better suited as a photodiode amplifier, if the desired output signal is voltage?
 - A. voltage amplifier
 - B. current amplifier
 - C. transimpedance amplifier
 - D. transadmittance amplifier



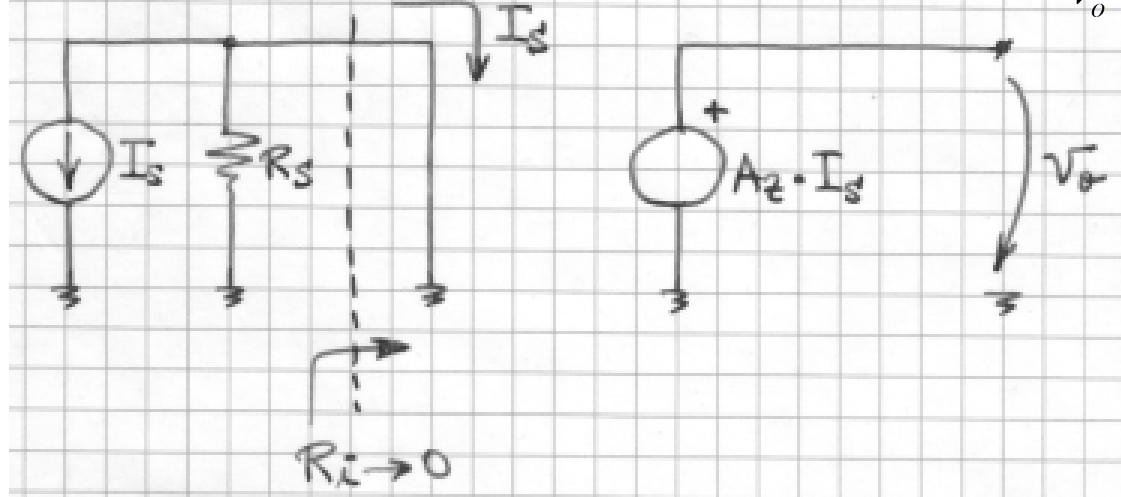


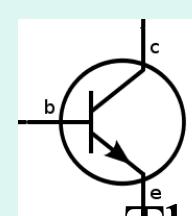
Photodiode amplifier

- Input = current, output = voltage => transimpedance amplifier



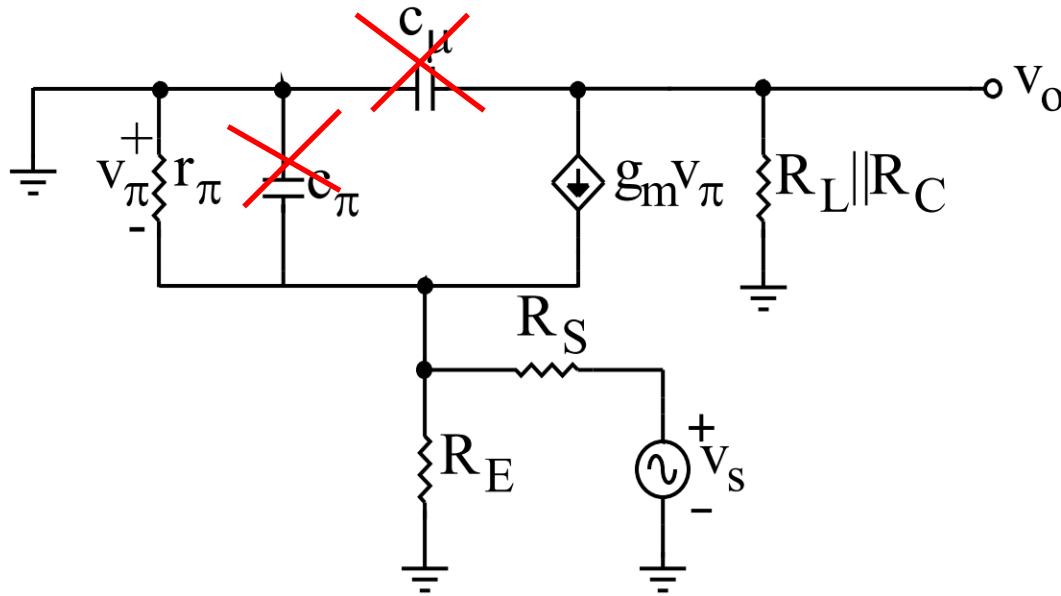
$$v_o = A_z \frac{R_s}{R_s + R_i} I_s = \frac{A_z}{1 + \frac{R_i}{R_s}} I_s \xrightarrow{R_i \rightarrow 0} A_z I_s$$





Mid-band gain

- The junction capacitances C_μ, C_π treated as OC
- REM: r_π is reduced by $(\beta+1)$ times when looking from E



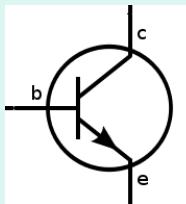
$$v_\pi = -\frac{\frac{r_\pi}{1+\beta} \| R_E}{R_S + \frac{r_\pi}{1+\beta} \| R_E} v_s \approx -\frac{\frac{r_\pi}{1+\beta}}{R_S + \frac{r_\pi}{1+\beta}} v_s$$

$$R_{E,eq} \Big|_{CB} = R_E \parallel \frac{r_\pi}{\beta + 1}$$

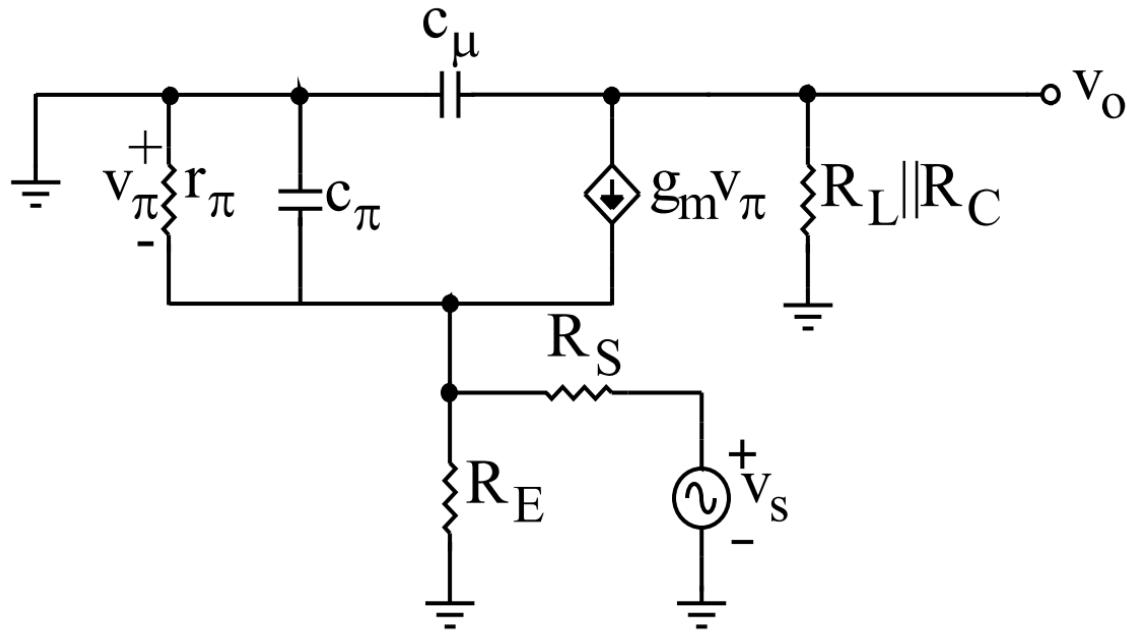
$$A_M \Big|_{CE} = -g_m R_C \parallel R_L \frac{R_{BB} \parallel r_\pi}{R_{BB} \parallel r_\pi + R_S}$$

$$R_{B,eq} \Big|_{CE} = R_{BB} \parallel (r_\pi + (\beta + 1) R_E)$$

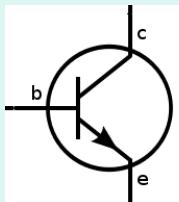
$$A_M \Big|_{CB} = g_m R_C \parallel R_L \frac{\frac{r_\pi}{\beta + 1} \parallel R_E}{R_S + \frac{r_\pi}{\beta + 1} \parallel R_E}$$



$F_H(s)$ - HF behavior

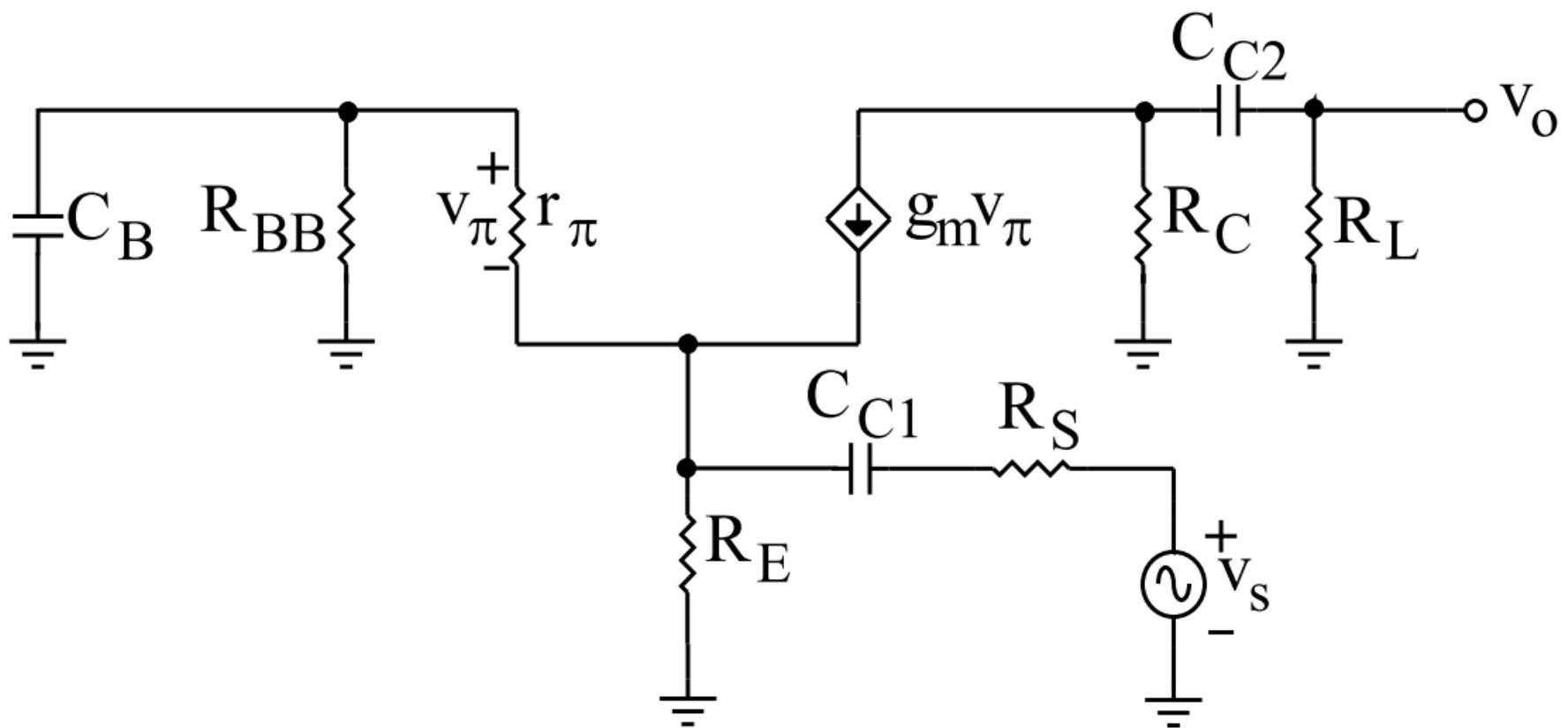


$$F_H(s) = \frac{1}{\left(1 + s(R_L \| R_C)C_\mu\right)\left(1 + s\left(R_S \| R_E \| \frac{r_\pi}{\beta + 1}\right)C_\pi\right)}$$

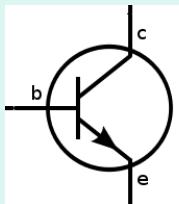


CB - LF behavior $F_L(s)$

- LF circuit - 3poles + 3 zeros

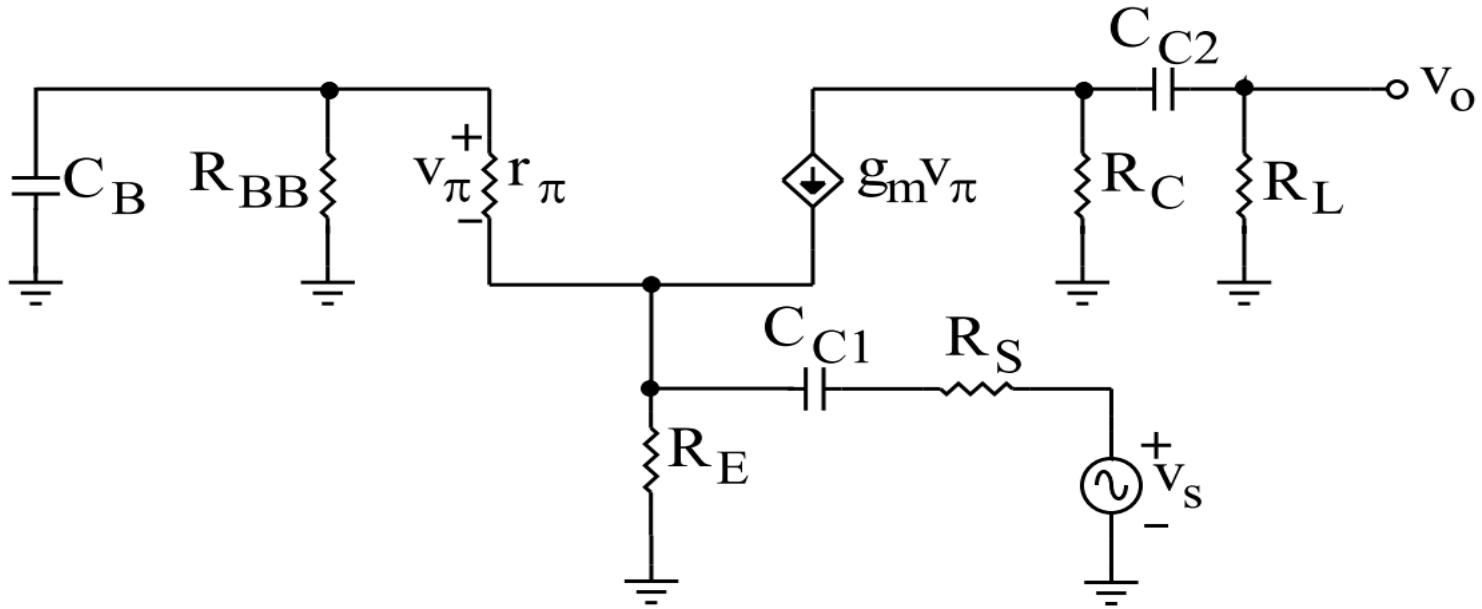


$$F_L(s) = \frac{(s + \omega_{Lz1})(s + \omega_{Lz2})(s + \omega_{Lz3})}{(s + \omega_{Lp1})(s + \omega_{Lp2})(s + \omega_{Lp3})}$$

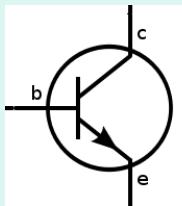


FL(s) - zeros

- Zeros: C_{C1}, C_{C2} introduce zeros at $\omega=0$
- For CB - zero located when $v_\pi=0$ (or $i_b=0$)

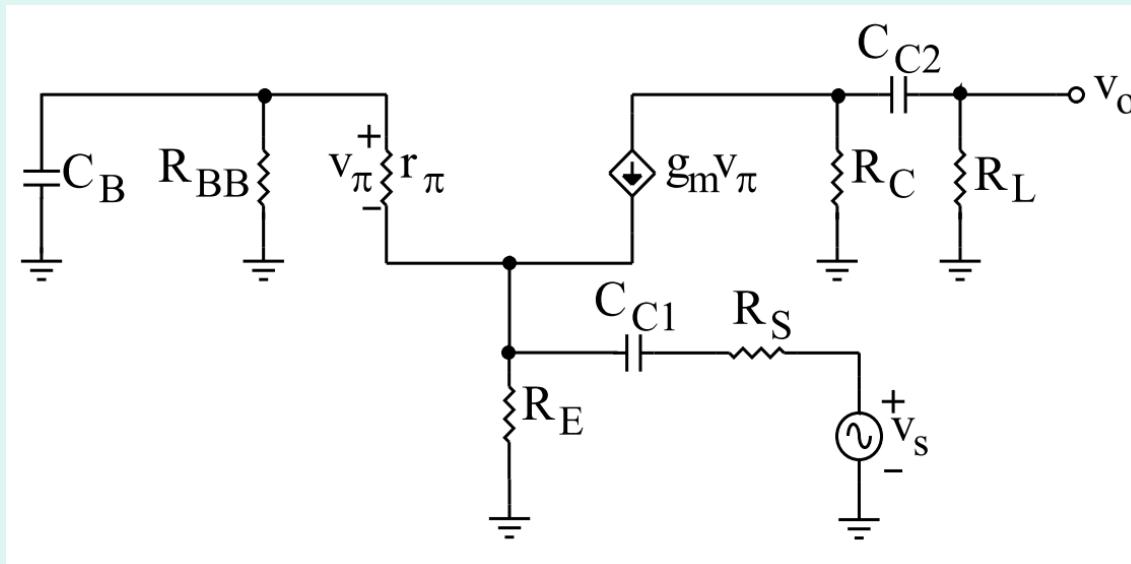


$$Y_B = s_z C_B + \frac{1}{R_{BB}} = 0 \Rightarrow s_z = -\frac{1}{R_{BB} C_B} \Rightarrow \omega_{Lz3} = \frac{1}{R_{BB} C_B}$$



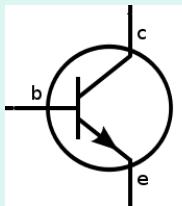
$F_L(s)$ - poles

- The pole associated with the output stage (decoupled from input) is straight forward



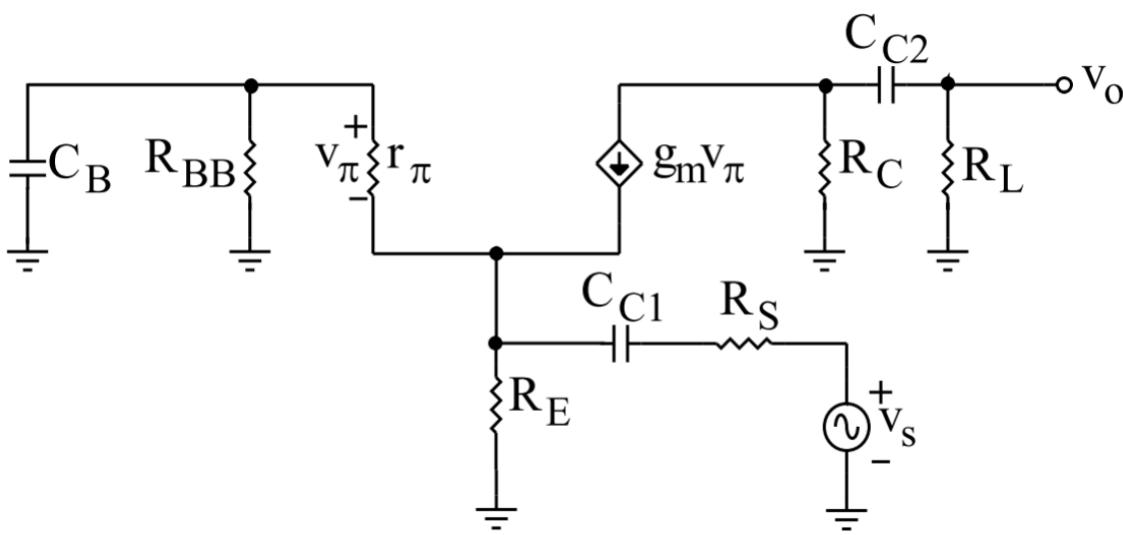
$$R_{C_{C2}} = R_C + R_L \Rightarrow \tau_{C_{C2}} = (R_C + R_L) C_{C2}$$

$$\omega_{Lp1} = \frac{1}{(R_C + R_L) C_{C2}}$$



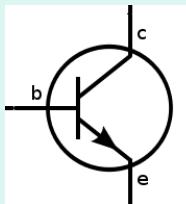
$F_L(s)$ - remaining 2 poles

- We use the SC time constant method (assuming the poles are well distanced)



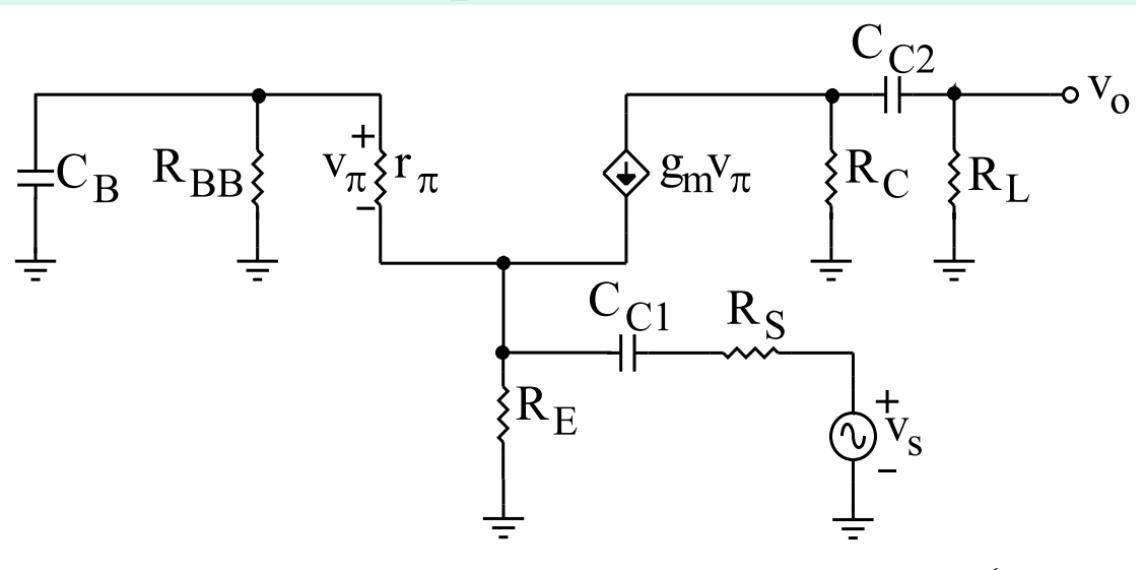
When C_{C1} is SC $\Rightarrow R_E \parallel R_S$ reflected into the B

$$R_{C_B}^{SC} = R_{BB} \parallel (r_\pi + (\beta + 1)R_E \parallel R_S) \Rightarrow \tau_{C_B}^{SC} = (R_{BB} \parallel (r_\pi + (\beta + 1)R_E \parallel R_S)) C_B$$



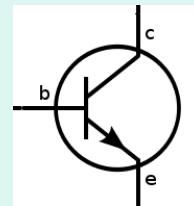
$F_L(s)$ - poles

- With C_B short-circuited



$$R_{C_{C1}}^{sc} = R_S + R_E \parallel \frac{r_\pi}{\beta + 1} \Rightarrow \tau_{C_{C1}}^{sc} = \left(R_S + R_E \parallel \frac{r_\pi}{\beta + 1} \right) C_{C1}$$

$$\omega_{L3dB} = \omega_{C_B} + \omega_{C_{C1}} = \frac{1}{\left(R_{BB} \parallel \left(r_\pi + (\beta + 1) R_E \parallel R_S \right) \right) C_B} + \frac{1}{\left(R_S + R_E \parallel \frac{r_\pi}{\beta + 1} \right) C_{C1}}$$



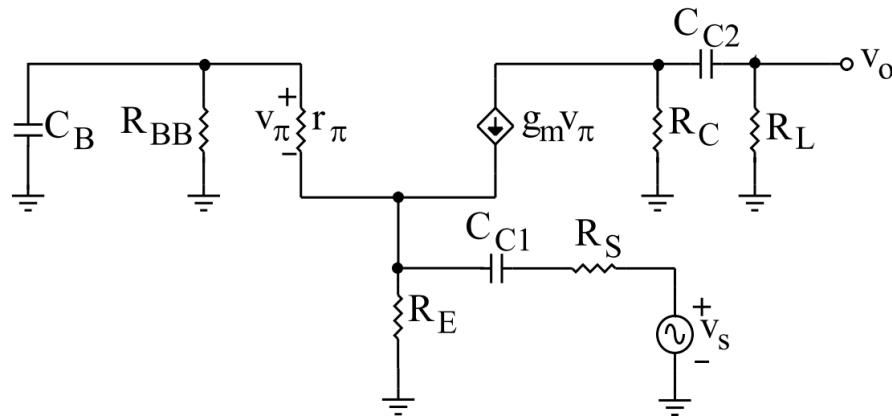
$F_L(s)$ - poles (2)

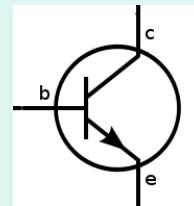
- C_{C2} pole is not affected by C_{C1} nor C_B
- If C_{C1} gives the higher frequency pole between C_{C1} and C_B :

$$\omega_{Dom, B-C1} = \omega_{C_B} + \omega_{C_{C1}} \approx \omega_{C_{C1}} = \frac{1}{\left(R_S + R_E \parallel \frac{r_\pi}{\beta + 1} \right) C_{C1}}$$

We compute the sub-dominant pole with C_{C1} open-circuited

$$\tau_{C_B}^{oc} = (R_{BB} \parallel [r_\pi + (1 + \beta)R_E]) C_B$$





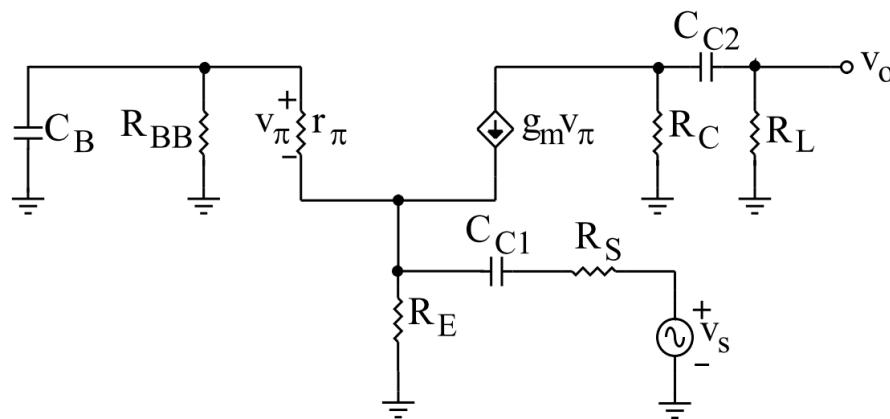
$F_L(s)$ - poles (3)

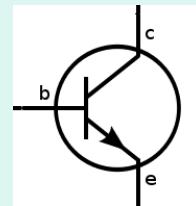
- If C_B gives the higher pole than C_{C1} :

$$\omega_{L,B-C1} = \omega_{C_B} + \omega_{C_{C1}} \approx \omega_B = \frac{1}{\left(R_{BB} \parallel \left(r_\pi + (\beta + 1) R_E \parallel R_S \right) \right) C_B}$$

We compute the sub-dominant pole with C_B open-circuited

$$\tau_{C_{C1}}^{oc} = \left(\frac{r_\pi + R_{BB}}{1 + \beta} \parallel R_E + R_S \right) C_{C1}$$



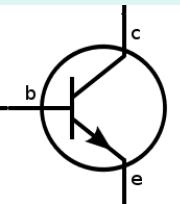


$F_L(s)$ - conclusions

- Depending on what capacitor (C_B or C_{C1}) sets the dominant pole in the input section, we have two versions:

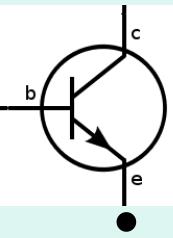
$$F_L(s) \Big|_{\omega_{C_{C1}}^{sc} \gg \omega_{C_B}^{sc}} = \frac{1}{1 + s(R_C + R_L)C_{C2}} \frac{1}{\left(1 + s\left(R_S + R_E \parallel \frac{r_\pi}{\beta+1}\right)C_{C1}\right)\left(1 + s\left(R_{BB} \parallel (r_\pi + (\beta+1)R_E)\right)C_B\right)}$$

$$F_L(s) \Big|_{\omega_{C_{C1}}^{sc} \ll \omega_{C_B}^{sc}} = \frac{1}{1 + s(R_C + R_L)C_{C2}} \frac{1}{\left(1 + s\left(R_{BB} \parallel (r_\pi + (\beta+1)R_E \parallel R_S)\right)C_B\right)\left(1 + s\left(R_S + R_E \parallel \frac{r_\pi + R_{BB}}{\beta+1}\right)C_{C1}\right)}$$



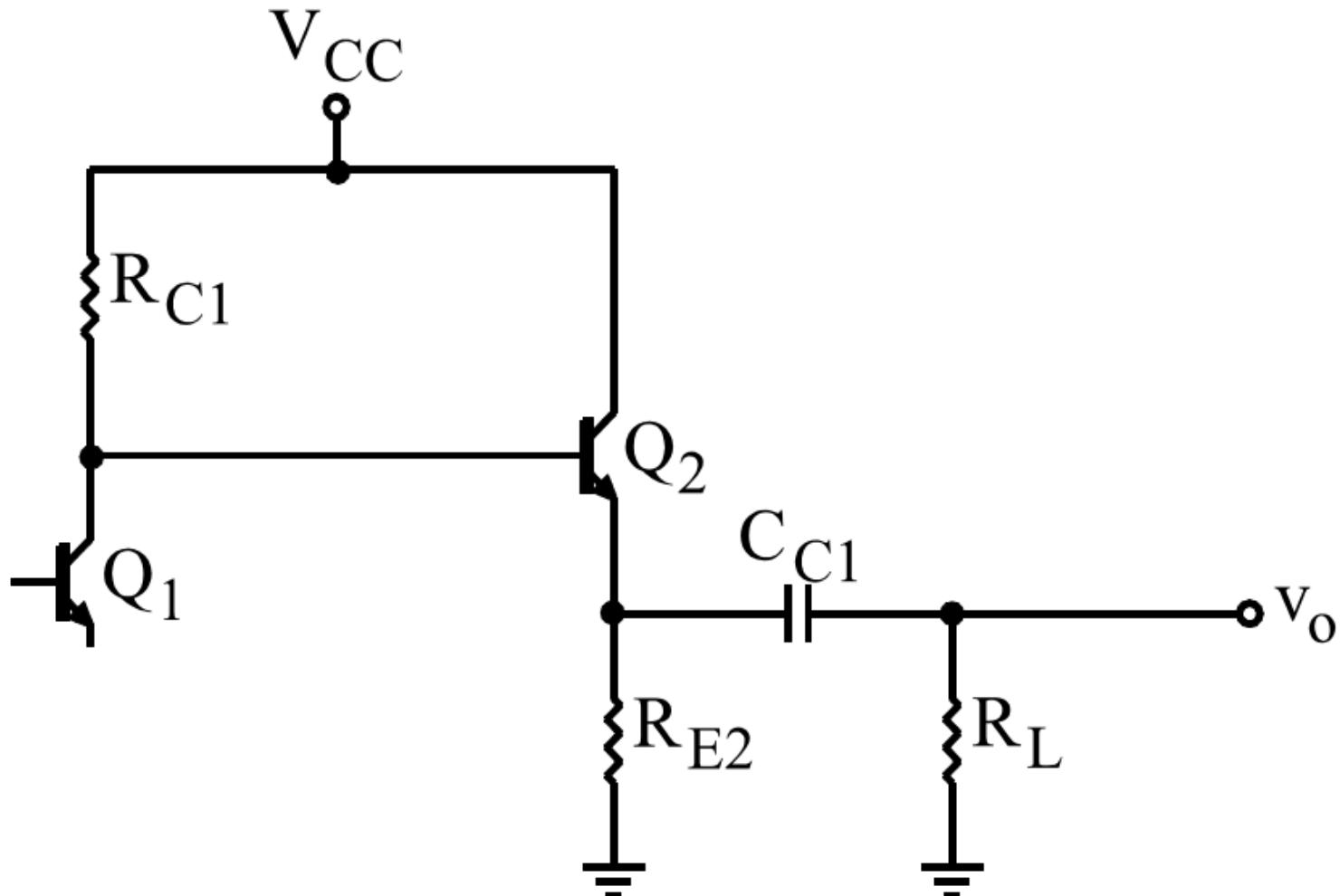
Common-Collector (CC) amplifier

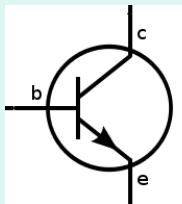
- Principal use: to increase the output power - usually used at the output of a multistage amplifier
- Features: high input impedance, low output impedance, power gain, DC coupled at input, wide BW



Typical CC configuration

- Connected at the output of a previous stage
- CBJ is always reversed biased for $R_{C1} > 0$

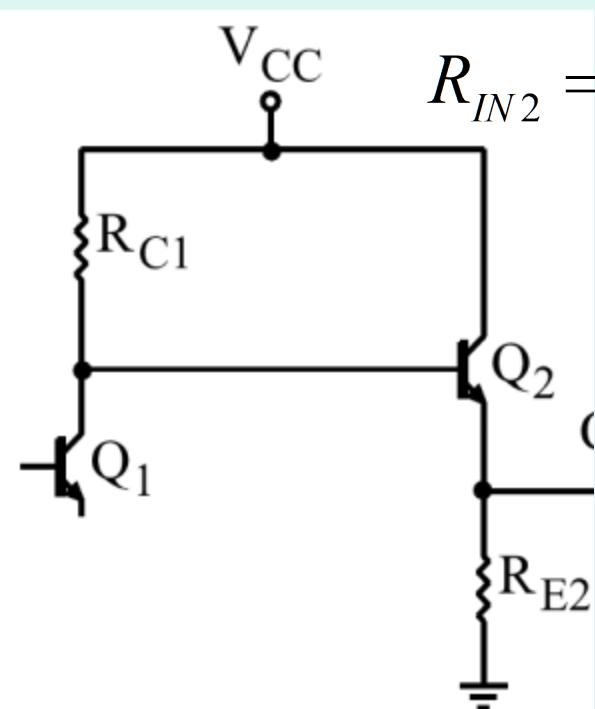




CC amplifier - DC behavior

- High input impedance at DC - does not significantly load the preceding stage at DC

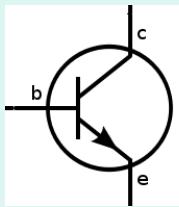
$$I_{B2} = \frac{V_{B2} - 0.7V}{(\beta_2 + 1)R_{E2}} \quad I_{C1} = \frac{V_{CC} - V_{C1}}{R_{C1}} - I_{B2} \approx \frac{V_{CC} - V_{C1}}{R_{C1}}$$



$$R_{IN2} = \frac{V_{B2}}{I_{B2}} = \frac{V_{B2}}{V_{B2} - 0.7V} (\beta_2 + 1) R_{E2} \approx (\beta_2 + 1) R_{E2}$$

$$R_{IN2} \sim (\beta_2 + 1) R_{E2}$$

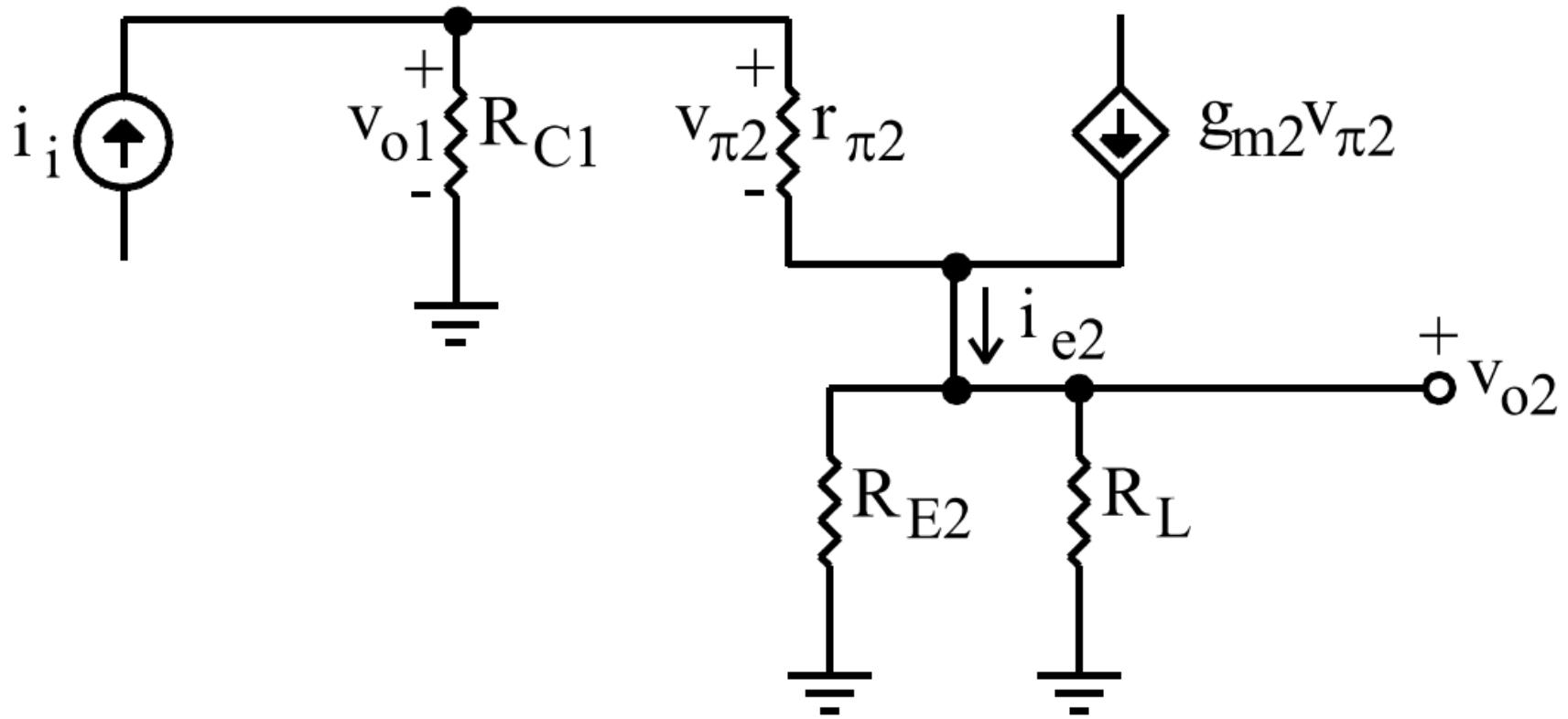
Typically $R_{IN2} \sim 10..200\text{k}\Omega$

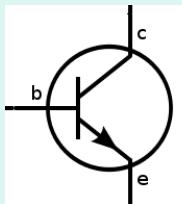


CC - small-signal model at midband

- We SC C_{C1}

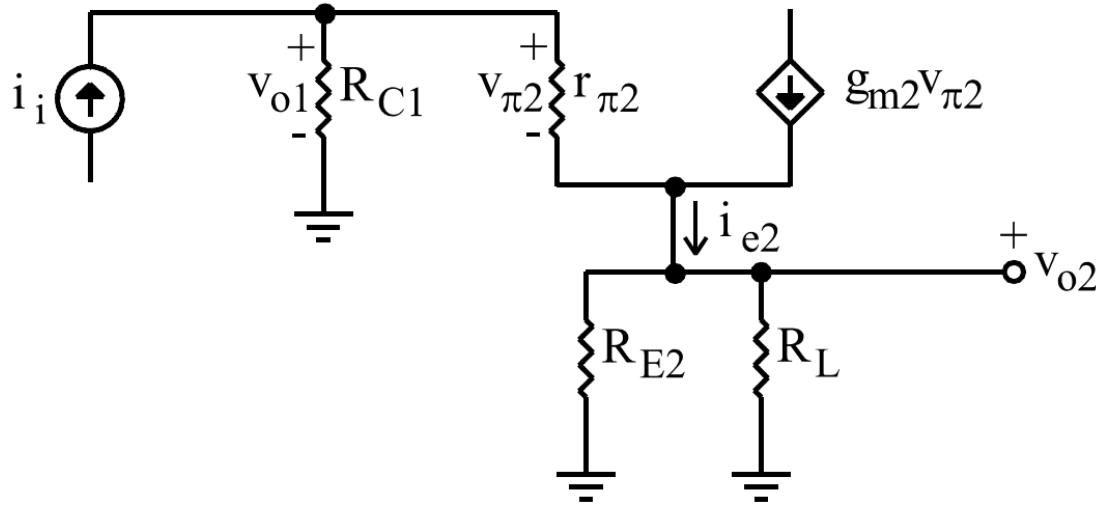
$$R_{in2} = r_{\pi2} + (\beta + 1) R_{E2} \parallel R_L$$





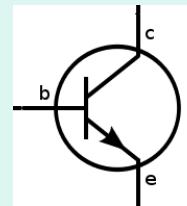
CC stage - current gain in midband

- Current gain i_{e2}/i_i



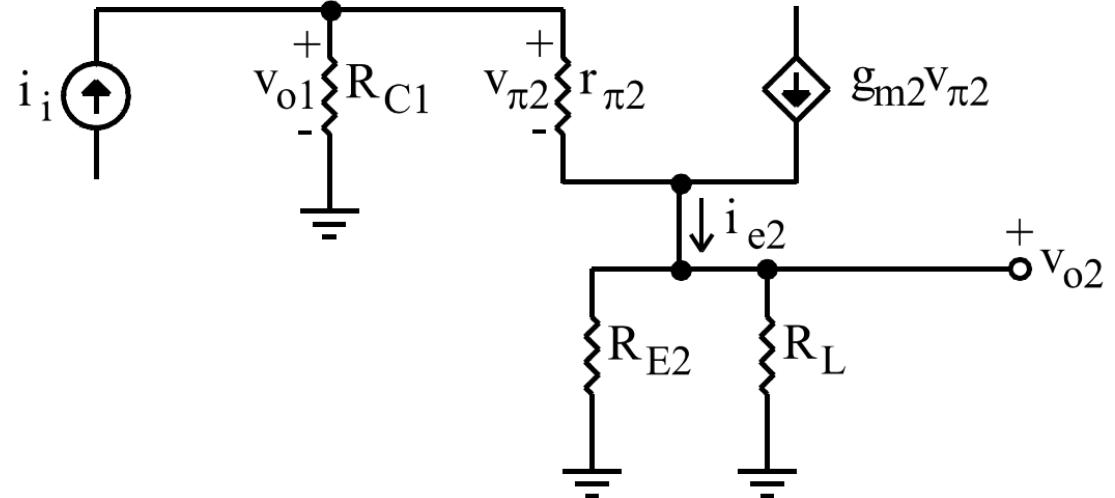
$$i_{e2} = (\beta + 1)i_{b2} = (\beta + 1)i_i \frac{\frac{1}{r_{\pi2} + (\beta + 1)R_{E2} \parallel R_L}}{\frac{1}{R_{C1}} + \frac{1}{r_{\pi2} + (\beta + 1)R_{E2} \parallel R_L}}$$

$$A_i = \frac{i_{e2}}{i_i} = \frac{\beta + 1}{1 + \frac{r_{\pi2} + (\beta + 1)R_{E2} \parallel R_L}{R_{C1}}} \approx \frac{R_{C1}}{R_{E2} \parallel R_L}$$



CC amplifier - voltage gain

- $A_{v2} = v_{o2}/v_{o1} \sim 1 \Rightarrow$ the power gain is given by the current gain



$$v_{o2} = (R_{E2} \parallel R_L) i_{e2} = (R_{E2} \parallel R_L) \frac{(\beta + 1) v_{o1}}{r_{\pi2} + (\beta + 1) R_{E2} \parallel R_L}$$

$$A_{v2} = \frac{v_{o2}}{v_{o1}} = \frac{(\beta + 1)(R_{E2} \parallel R_L)}{r_{\pi2} + (\beta + 1) R_{E2} \parallel R_L} \leq 1$$

