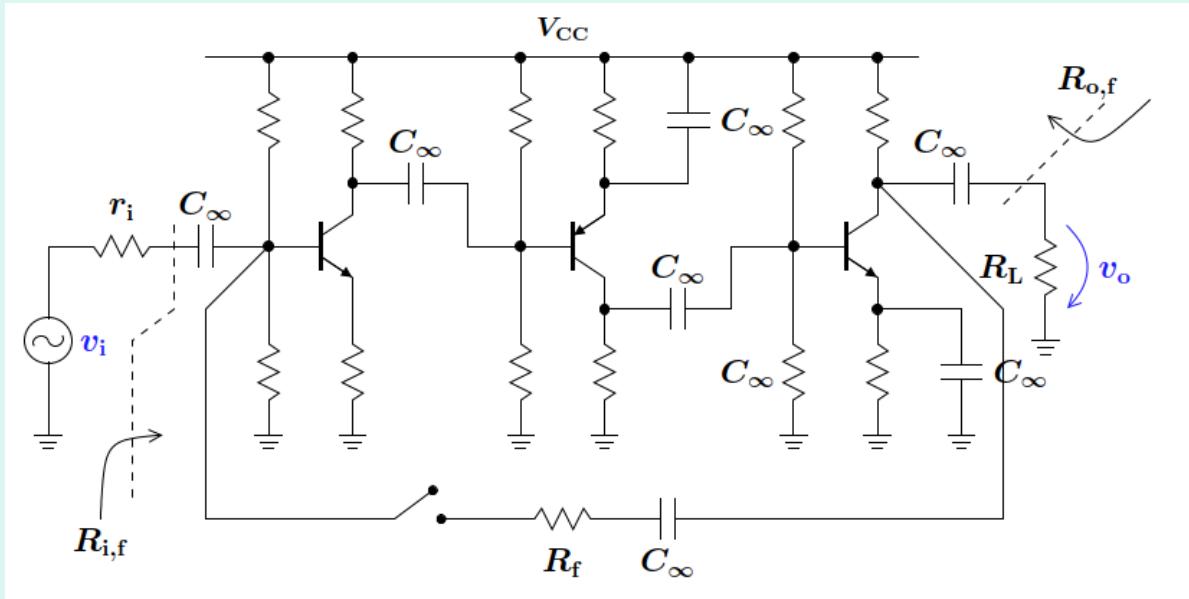
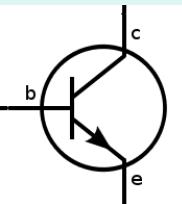


ELEC 301 - Stability and feedback

L25 - Nov 06

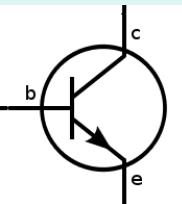
Instructor: Edmond Cretu





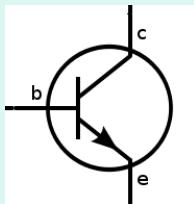
Last time

- Two methods to approach feedback circuits analysis:
 1. Transform the feedback network into an ideal one, and load the open-loop amplifier (feedback diport equivalent model)
 2. Loop-gain method



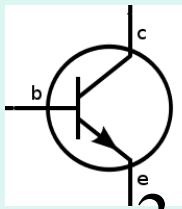
Stability of systems and circuits

- Feedback modifies the position of poles => potential risk to transform a stable system into an unstable one
- Stability aspects:
 - **BIBO stability** - every bounded input leads to a bounded output (\Leftrightarrow absolutely integrable unit impulse response $h(t)$ for LTI)
 - In Laplace domain: no poles on the $j\omega$ axis or in the rhp (strictly negative real-part)



L25 Q01 BIBO stability

- If a system has a pole on the imaginary axis, is it BIBO stable?
 - A. Yes
 - B. No
 - C. It depends on the input excitation



Stability in state-space models

3 requirements for the design of feedback system:
stability, steady-state errors, transient response

Alternative approaches to stability:

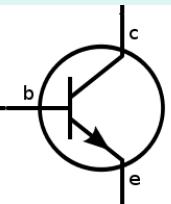
State-space model: $y(t) = y_{natural}(t) + y_{forced}(t)$

Stable LTI system: $y_{natural}(t) \xrightarrow{t \rightarrow \infty} 0$

Unstable LTI system: $|y_{natural}(t)| \xrightarrow{t \rightarrow \infty} \infty$

Marginally stable LTI: the natural response neither decays nor grows but remains constant or oscillates as $t \rightarrow \infty$

BIBO stability: every bounded input yields a bounded output (a system is unstable if there is a bounded input leading to an unbounded output)

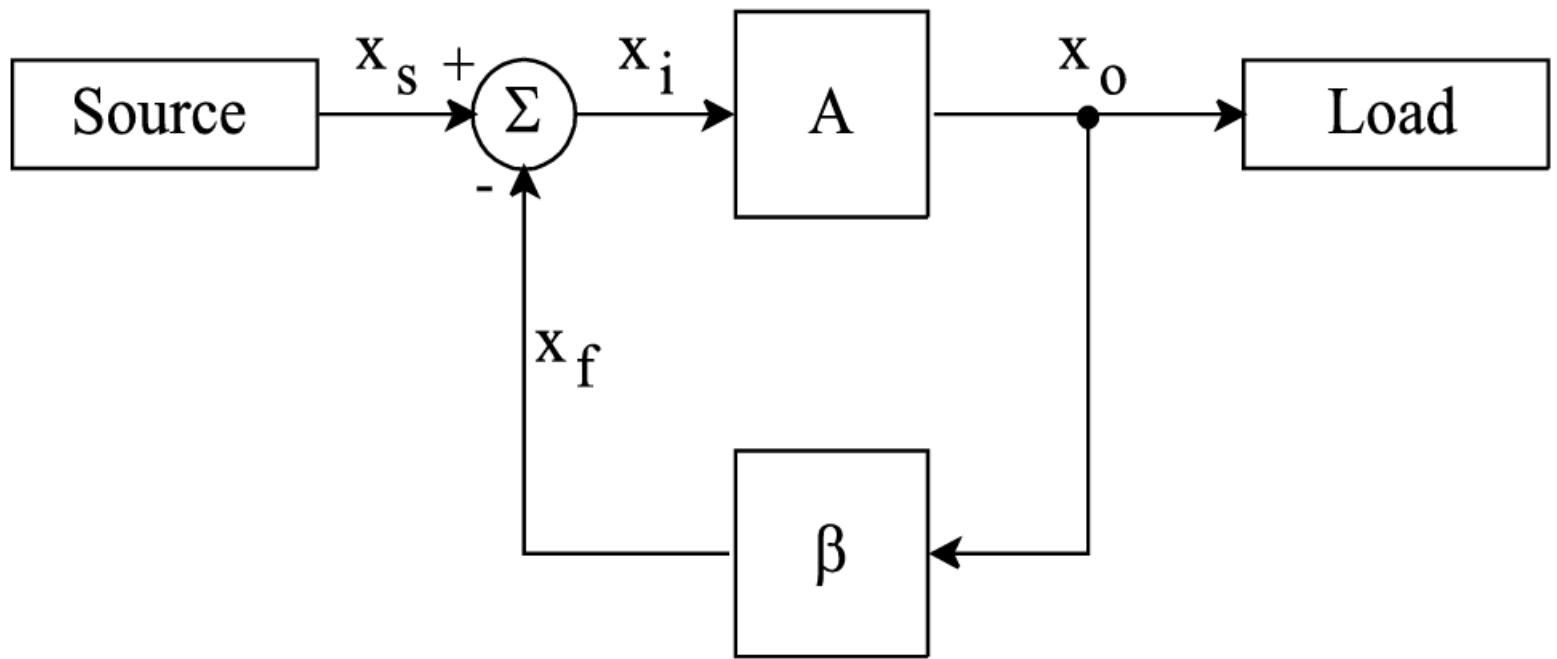


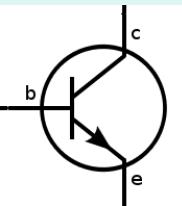
Stability - frequency response perspective

- Both the open-loop gain $A(s)$ and the feedback factor $\beta(s)$, can be functions of frequency

$$A_f(s) = \frac{A(s)}{1 + A(s)\beta(s)} \xrightarrow{s=j\omega} A_f(j\omega) = \frac{A(j\omega)}{1 + A(j\omega)\beta(j\omega)}$$

Critical point: $1 + A(j\omega)\beta(j\omega) = 0$

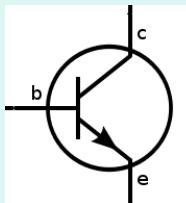




Stability - on Bode plots

Critical point: $A(j\omega)\beta(j\omega) = -1$

- The loop-gain:
- Cases when $\varphi(\omega) = 180^\circ$:
 - 1 $|A(j\omega)\beta(j\omega)| < 1 \Rightarrow$ increased gain $A_f(j\omega) > A(j\omega)$, but the amplifier remains stable
 - 2 $|A(j\omega)\beta(j\omega)| = 1 \Rightarrow A_f(j\omega) = \infty \Rightarrow$ the circuit will oscillate
 - 3 $|A(j\omega)\beta(j\omega)| > 1 \Rightarrow$ the input signal will grow steadily until some non-linearity in the circuit will limit the loop-gain, reducing to 1 and the circuit will oscillate



Poles of the feedback amplifier

$$A_f(s) = \frac{A(s)}{1 + A(s)\beta(s)} \Rightarrow \text{Poles}[A_f(s)] = \text{Zeros}[1 + A(s)\beta(s)]$$

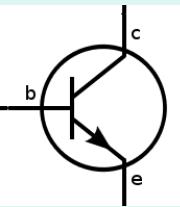
- The “characteristic equation” of the feedback loop:

$$1 + A(s)\beta(s) = 0$$

$$A(s) = \frac{N_A(s)}{D_A(s)}, \beta(s) = \frac{N_\beta(s)}{D_\beta(s)} \Rightarrow A_f(s) = \frac{\frac{N_A(s)}{D_A(s)}}{1 + \frac{N_A(s)}{D_A(s)} \frac{N_\beta(s)}{D_\beta(s)}} = \frac{N_A(s)D_\beta(s)}{D_A(s)D_\beta(s) + N_A(s)N_\beta(s)}$$

The zeros of $A_f(s)$ are the zeros of $A(s)$ and the poles of $\beta(s)$

- It is more complicated for the poles of $A_f(s)$



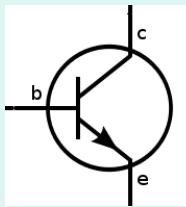
Single pole amplifier

- An usual op-amp transfer function approximation
- Assume β is independent of frequency

$$A(s) = \frac{A_0}{1 + \frac{s}{\omega_p}} \Rightarrow A_f(s) = \frac{\frac{A_0}{1 + A_0\beta}}{1 + \frac{s}{\omega_p(1 + A_0\beta)}}$$

- The initial pole ω_p is moved to $\omega_{pf} = \omega_p(1 + A_0\beta)$
- For frequencies $\omega \gg \omega_{pf}$, the frequency response $A_f(j\omega)$ is asymptotically equal to $A(j\omega)$

$$A_f(s) \stackrel{\omega \gg \omega_{pf}}{\approx} \frac{\frac{A_0}{1 + A_0\beta}}{\frac{s}{\omega_p(1 + A_0\beta)}} = \frac{A_0}{\left(\frac{s}{\omega_p}\right)} = A(s)$$



Amplifier with a two-pole response

- A more complex situation:

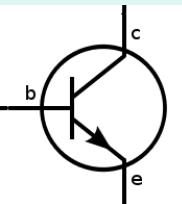
$$A(s) = \frac{A_0}{\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)}$$

- The closed-loop transfer function:

$$A_f(s) = \frac{A_0}{\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right) + A_0\beta}$$

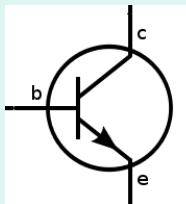
- The closed-loop poles: $\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right) + A_0\beta = 0 \Leftrightarrow s^2 + s(\omega_{p1} + \omega_{p2}) + (1 + A_0\beta)\omega_{p1}\omega_{p2} = 0$

$$s_{1,2} = -\frac{1}{2}(\omega_{p1} + \omega_{p2}) \pm \frac{1}{2}\sqrt{(\omega_{p1} + \omega_{p2})^2 - 4(1 + A_0\beta)\omega_{p1}\omega_{p2}}$$



L25 Q02 2-poles amplifier

- Can a feedback amplifier with a stable 2-pole amplifier in the open-loop become unstable when we provide a resistive feedback network?
 - A. Yes
 - B. No
 - C. It depends on the resistive feedback configuration

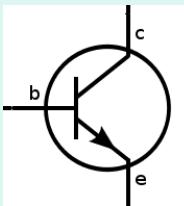


Increasing the loop-gain $L_0 = A_0\beta$

- For $L_0=0$, poles are located at open-loop poles $-\omega_{p1}$, $-\omega_{p2}$
- When $L_0=A_0\beta$ increases, the poles move together until they become co-incident at $-(\omega_{p1}+\omega_{p2})/2$

$$\frac{1}{2} \sqrt{(\omega_{p1} + \omega_{p2})^2 - 4(1 + A_0\beta)\omega_{p1}\omega_{p2}} = 0 \Rightarrow p_{pf1} = p_{pf2} = -\frac{1}{2}(\omega_{p1} + \omega_{p2})$$

- For further increase in the loop gain $L_0 = A_0\beta$ causes the poles to become complex conjugate, with the real part equal to $-(\omega_{p1}+\omega_{p2})/2$



L25 Q03 feedback TF

- The closed-loop gain: assume $A(s) = A_0 N_A(s) / D_A(s)$

$$A(s) = A_0 \frac{N_A(s)}{D_A(s)}, \beta(s) = \frac{N_\beta(s)}{D_\beta(s)} \Rightarrow A_f(s) = \frac{A_0 \frac{N_A(s)}{D_A(s)}}{1 + A_0 \frac{N_A(s)}{D_A(s)} \frac{N_\beta(s)}{D_\beta(s)}} = \frac{A_0 N_A(s) D_\beta(s)}{D_A(s) D_\beta(s) + A_0 N_A(s) N_\beta(s)}$$

What are the poles of A_f when A_0 is (close to) zero?

- A. They are identical with the poles of $A(s)$
- B. They are identical with the zeros of $A(s)$
- C. They are identical with the poles of $\beta(s)$
- D. They are identical with the poles of $\beta(s)$

