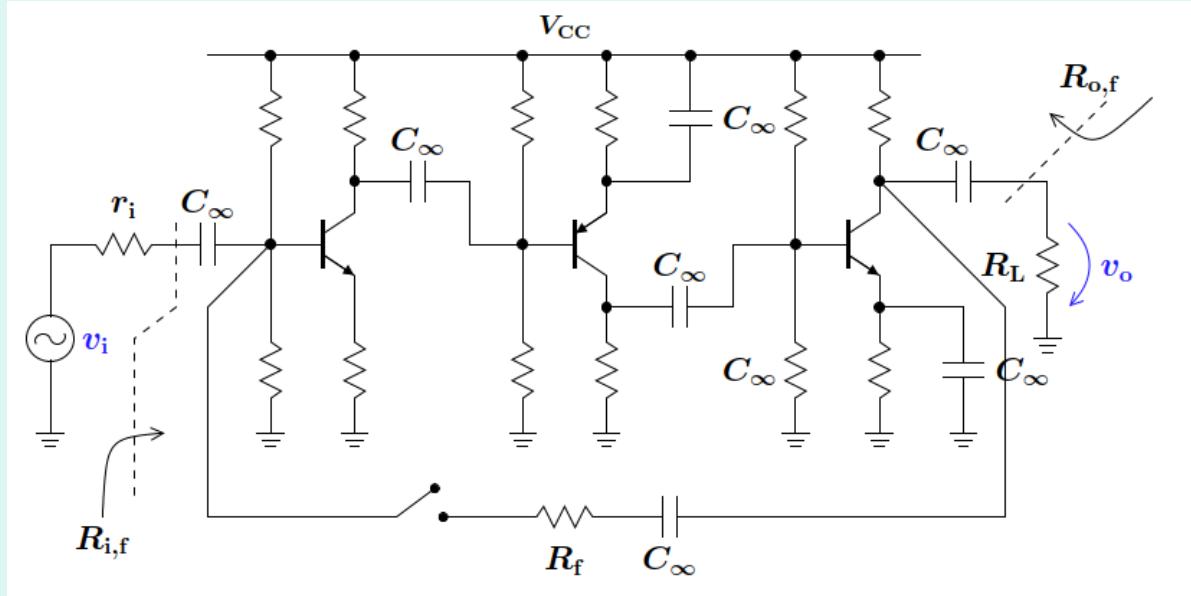
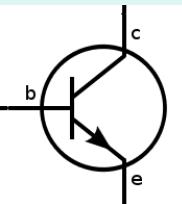


ELEC 301 - Stability - Bode plots

L26 - Nov 13

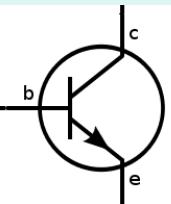
Instructor: Edmond Cretu





Last time

- Perspectives on stability:
 - Time-domain analysis: BIBO stability, absolutely integrable unit impulse response $h(t)$ for LTI
 - s-domain analysis: no poles on the $j\omega$ axis or in the rhp (strictly negative real-part)
 - State-space modeling perspective: the evolution of the natural response in time
 - Frequency-domain analysis (Bode plots) - exm for single-pole and two poles amplifiers with passive feedback

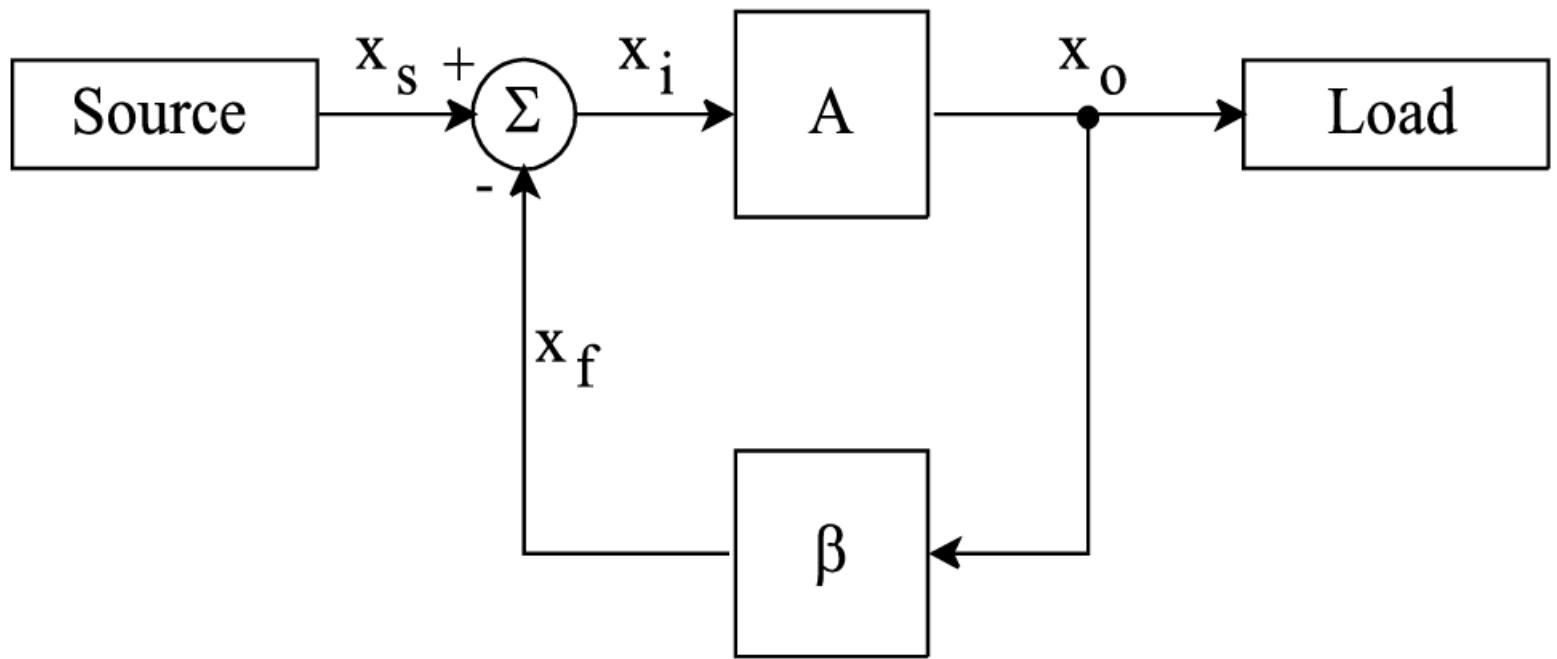


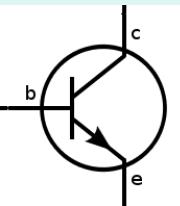
Stability - frequency response perspective

- Both the open-loop gain $A(s)$ and the feedback factor $\beta(s)$, can be functions of frequency

$$A_f(s) = \frac{A(s)}{1 + A(s)\beta(s)} \xrightarrow{s=j\omega} A_f(j\omega) = \frac{A(j\omega)}{1 + A(j\omega)\beta(j\omega)}$$

Critical point: $1 + A(j\omega)\beta(j\omega) = 0$

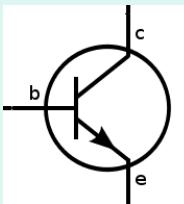




Stability - on Bode plots

Critical point: $A(j\omega)\beta(j\omega) = -1$

- The loop-gain:
- Cases when $\varphi(\omega) = 180^\circ$:
 1. $|A(j\omega)\beta(j\omega)| < 1 \Rightarrow$ increased gain $A_f(j\omega) > A(j\omega)$, but the amplifier remains stable
 2. $|A(j\omega)\beta(j\omega)| = 1 \Rightarrow A_f(j\omega) = \infty \Rightarrow$ the circuit will oscillate
 3. $|A(j\omega)\beta(j\omega)| > 1 \Rightarrow$ the input signal will grow steadily until some non-linearity in the circuit will limit the loop-gain, reducing to 1 and the circuit will oscillate



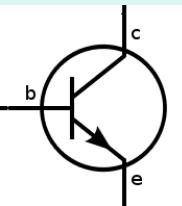
Past quiz - L25 Q03 feedback TF

- The closed-loop gain: assume $A(s) = A_0 N_A(s) / D_A(s)$

$$A(s) = A_0 \frac{N_A(s)}{D_A(s)}, \beta(s) = \frac{N_\beta(s)}{D_\beta(s)} \Rightarrow A_f(s) = \frac{A_0 \frac{N_A(s)}{D_A(s)}}{1 + A_0 \frac{N_A(s)}{D_A(s)} \frac{N_\beta(s)}{D_\beta(s)}} = \frac{A_0 N_A(s) D_\beta(s)}{D_A(s) D_\beta(s) + A_0 N_A(s) N_\beta(s)}$$

What are the poles of A_f when A_0 is (close to) zero?

- A. They are identical with the poles of $A(s)$
- B. They are identical with the zeros of $A(s)$
- C. They are identical with the poles of $\beta(s)$
- D. They are identical with the zeros of $\beta(s)$



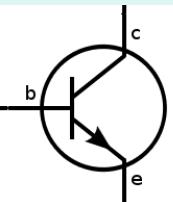
L26 Q01 feedback TF

- The closed-loop gain: assume $A(s) = A_0 N_A(s) / D_A(s)$

$$A(s) = A_0 \frac{N_A(s)}{D_A(s)}, \beta(s) = \frac{N_\beta(s)}{D_\beta(s)} \Rightarrow A_f(s) = \frac{A_0 \frac{N_A(s)}{D_A(s)}}{1 + A_0 \frac{N_A(s)}{D_A(s)} \frac{N_\beta(s)}{D_\beta(s)}} = \frac{A_0 N_A(s) D_\beta(s)}{D_A(s) D_\beta(s) + A_0 N_A(s) N_\beta(s)}$$

What are the poles of A_f when A_0 is increasing to infinity?

- A. They are identical with the poles of $A(s)$
- B. They are identical with the zeros of $A(s)$
- C. They are identical with the poles of $\beta(s)$
- D. They are identical with the zeros of $\beta(s)$



General case - Root locus method (Evans)

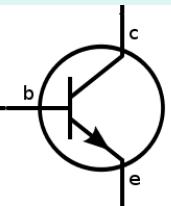
- The closed-loop gain: assume $A(s) = A_0 N_A(s) / D_A(s)$

$$A(s) = A_0 \frac{N_A(s)}{D_A(s)}, \beta(s) = \frac{N_\beta(s)}{D_\beta(s)} \Rightarrow A_f(s) = \frac{A_0 \frac{N_A(s)}{D_A(s)}}{1 + A_0 \frac{N_A(s) N_\beta(s)}{D_A(s) D_\beta(s)}} = \frac{A_0 N_A(s) D_\beta(s)}{D_A(s) D_\beta(s) + A_0 N_A(s) N_\beta(s)}$$

- For $A_0 = 0 \Rightarrow$ the poles of $A_f(s)$ are identical with the poles of $A(s)$
- For $A_0 \rightarrow \infty$, then the poles of $A_f(s)$ are identical with the zeros of $\beta(s)$, including zeros at infinity (similar with the **root locus method**)

$$A_f(s) \xrightarrow{A_0 \rightarrow 0} A_0 \frac{N_A(s)}{D_A(s)} = A(s)$$

$$A_f(s) \xrightarrow{A_0 \rightarrow \infty} \frac{A_0 \frac{N_A(s)}{D_A(s)}}{A_0 \frac{N_A(s) N_\beta(s)}{D_A(s) D_\beta(s)}} = \frac{D_\beta(s)}{N_\beta(s)}$$

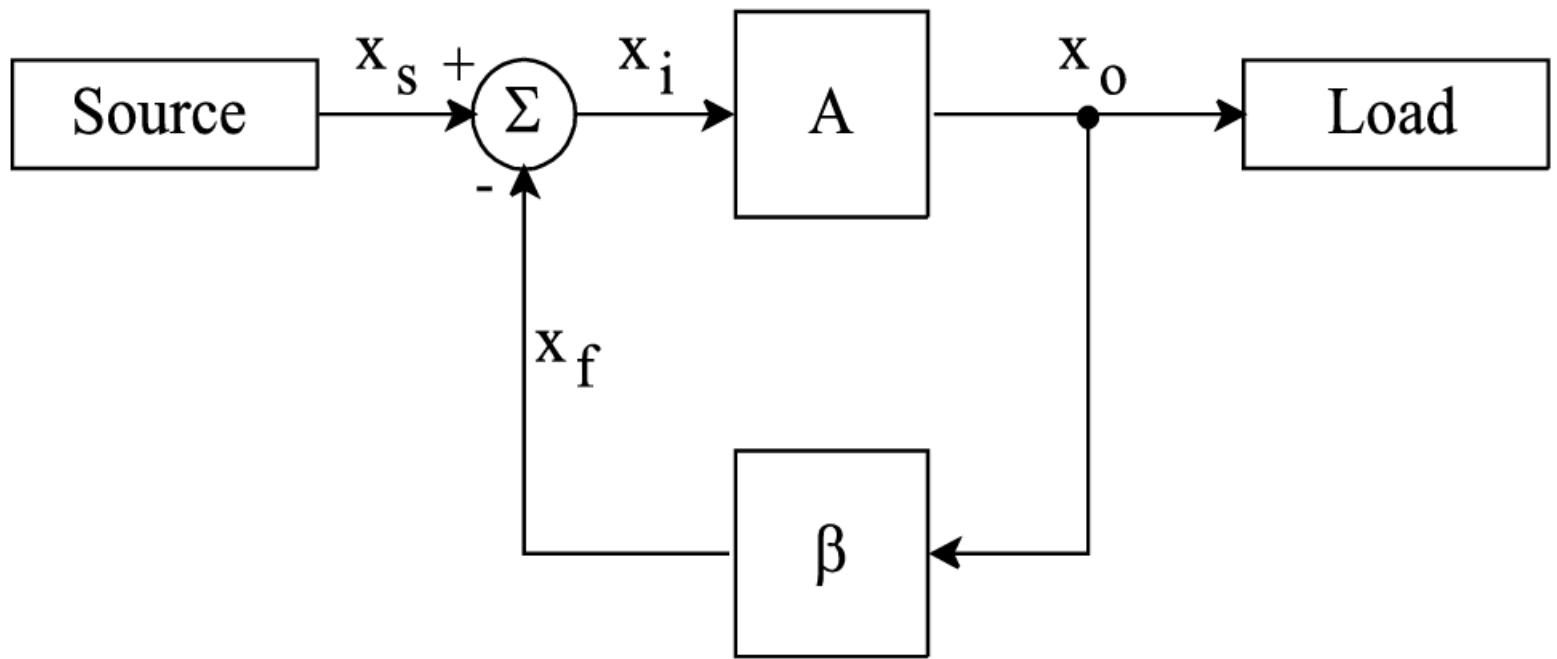


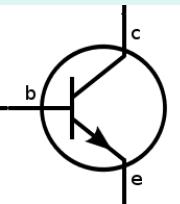
Recall - frequency response perspective

- Both the open-loop gain $A(s)$ and the feedback factor $\beta(s)$, can be functions of frequency

$$A_f(s) = \frac{A(s)}{1 + A(s)\beta(s)} \xrightarrow{s=j\omega} A_f(j\omega) = \frac{A(j\omega)}{1 + A(j\omega)\beta(j\omega)}$$

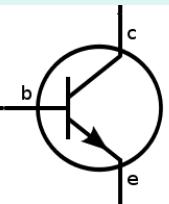
Critical point: $1 + A(j\omega)\beta(j\omega) = 0$





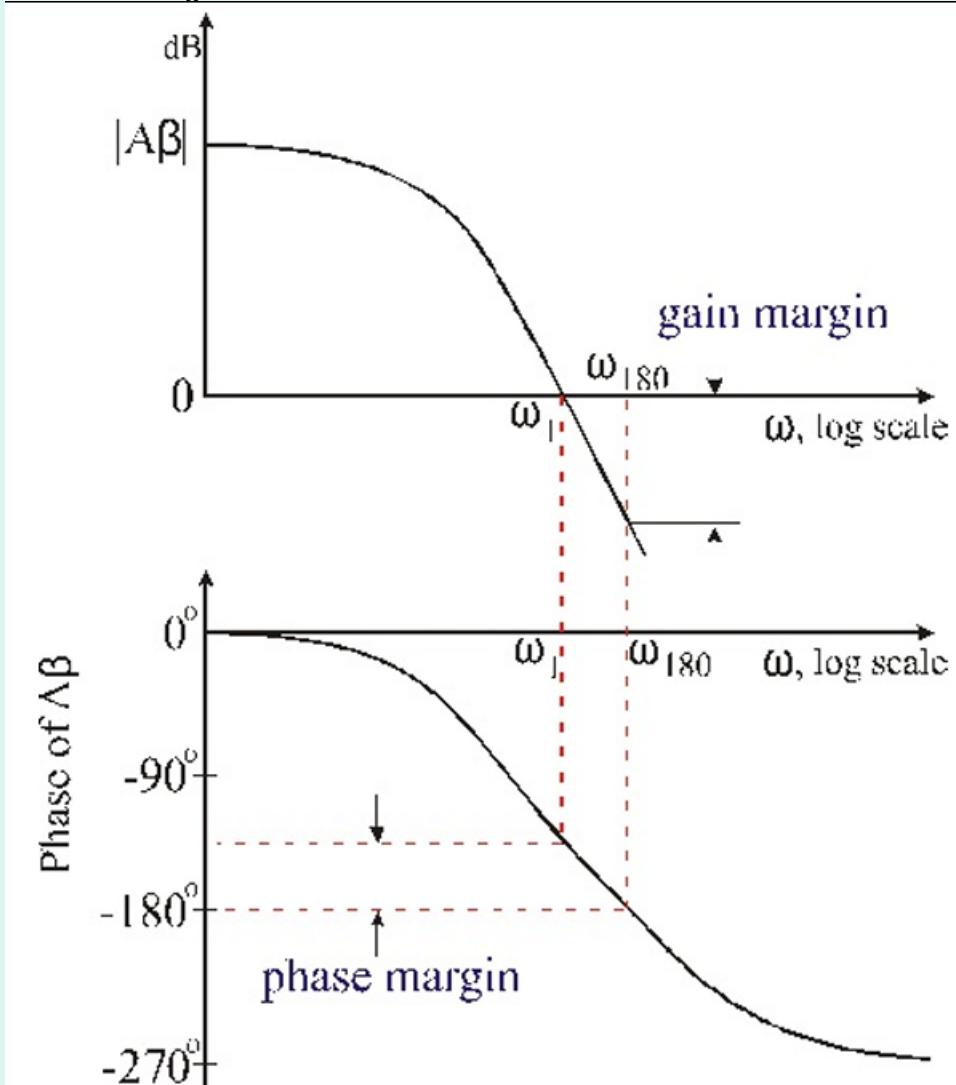
Stability analysis using Bode plots

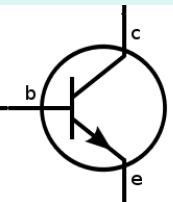
- We use the loop-gain $A\beta$ on a Bode plot, to determine whether an amplifier with feedback is stable
- Main criteria: we check whether the magnitude of the loop gain $|A\beta|$ is greater than, equal to, or less than 1 at the frequency at which $\varphi=180^\circ$ (ω_{180})
- Alternatively: check the phase shift when the loop gain $|A\beta|=1$



Exm: 3-poles LP filter with feedback

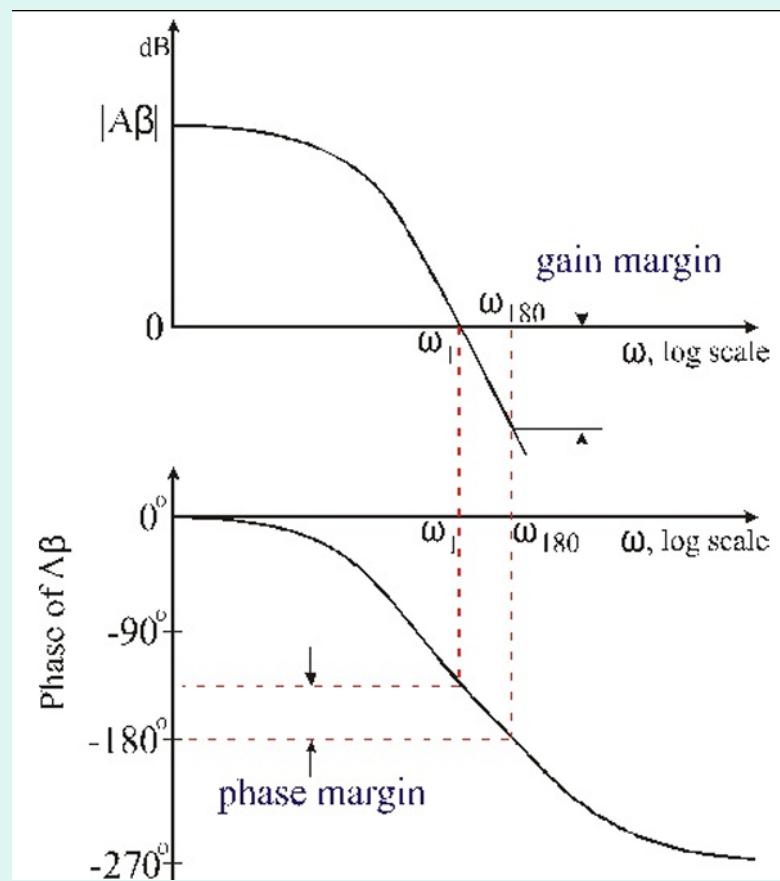
- We assume $\beta = \beta_0 = \text{ct}$ (passive feedback network)

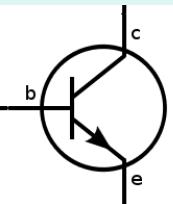




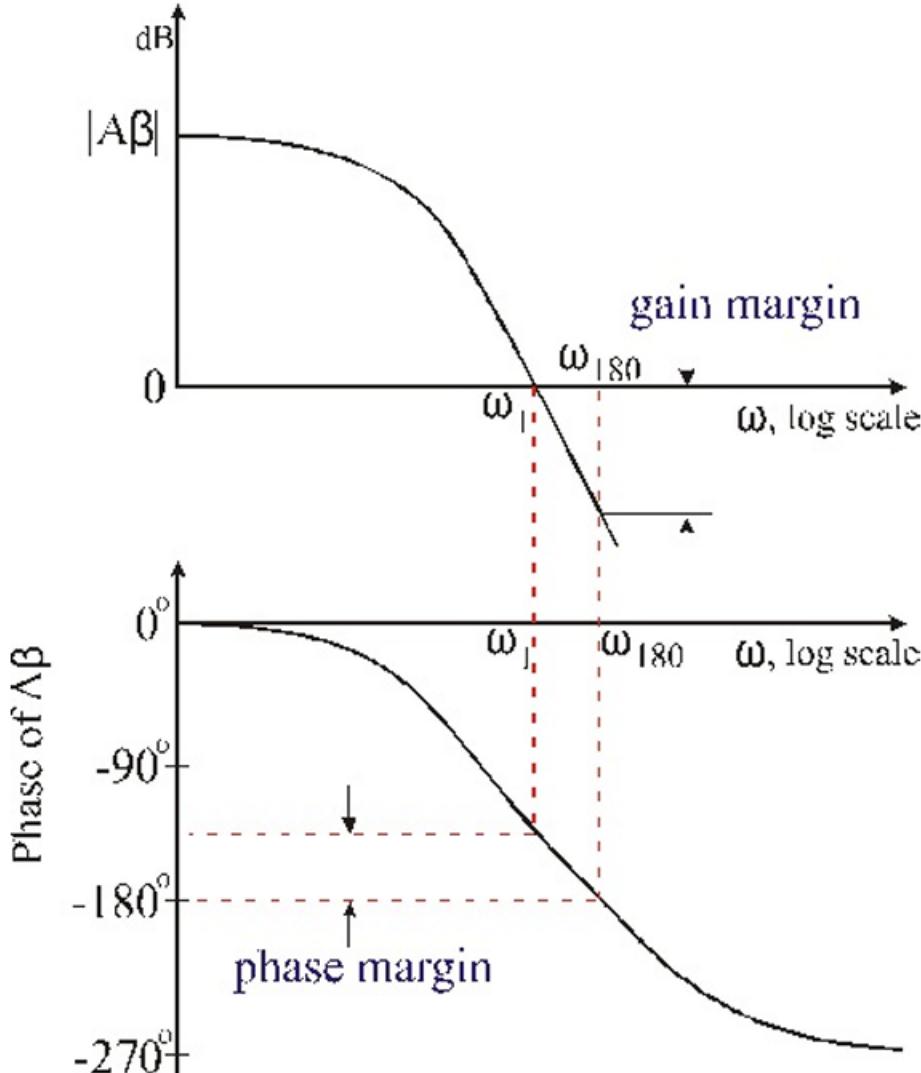
L26 Q02 LP filter

- Based on the Bode plot representation, is the system stable or not?
 - It is stable only for some specific input signals
 - Yes, it is stable
 - No, it is not stable

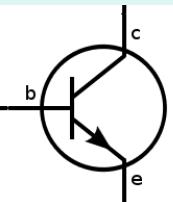




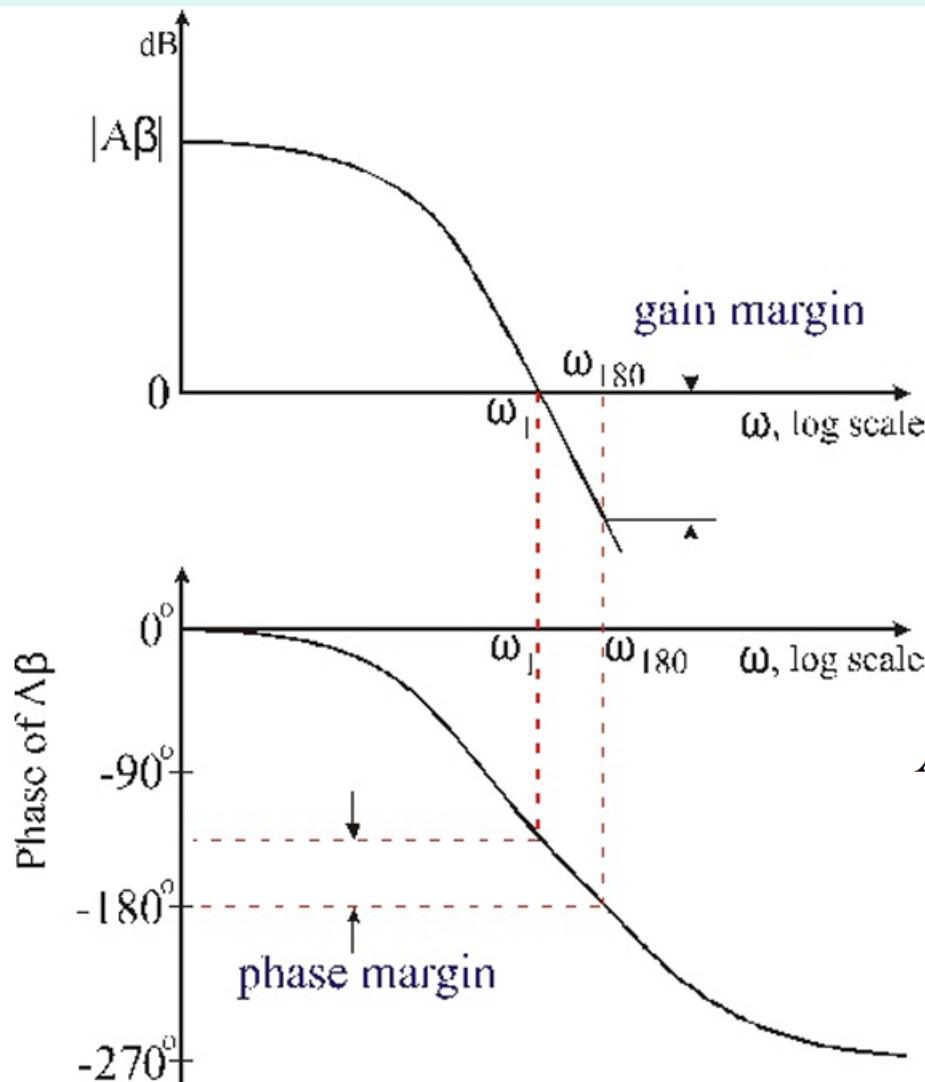
Exm: LP filter (2) - gain margin



- $\varphi=145^\circ$ when $20\log|A\beta|=0$ ($|A\beta|=1$) \Rightarrow the amplifier is stable
- **Gain margin** = the difference between the value of $|A\beta|$ at ω_{180} and 1 (0dB) - how much can we still increase the gain without becoming unstable
- 3-poles $\Rightarrow 270^\circ$ total phase change
- If $\omega_1=\omega_{180}/2$ (one octave difference) \Rightarrow gain margin = -18dB (-6dB/octave*3)



Exm: LP filter - phase margin



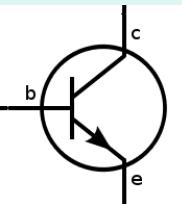
- Equivalently, we can examine the phase plot
- **Phase margin** = the difference between the phase value at ω_1 (where $|A\beta|=1$) and 180°
- Typical designs: ensure phase margins $>45^\circ$

$$\text{If } A_0\beta \gg 1 \Rightarrow A_{fLF} = \frac{A_0}{1 + A_0\beta} \approx \frac{1}{\beta}$$

$$A(j\omega_1)\beta = 1e^{-j\theta}, \theta = 180^\circ - \text{phase_margin}$$

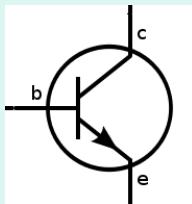
$$A_f(j\omega_1) = \frac{A(j\omega_1)}{1 + A(j\omega_1)\beta} = \frac{\frac{1}{\beta}e^{-j\theta}}{1 + e^{-j\theta}}$$

$$|A_f(j\omega_1)| = \frac{1}{\beta} \frac{1}{\sqrt{1 + e^{-j\theta}}}$$



Phase margin aspects

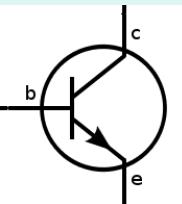
- As phase margin approaches 0^0 , the closed-loop gain approaches infinity \Rightarrow the amplifier oscillates
- Typical amplifiers have margins of 45^0 or higher



Alternative Bode plot approach

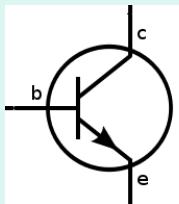
- Draw the Bode plots (magnitude and phase) for the open-loop gain $A(j\omega)$
- Impose upon it the Bode plot of $1/\beta(j\omega)$
- The $\log()$ difference (in the magnitude plot):

$$20 \log |A(j\omega)| - 20 \log \left| \frac{1}{\beta(j\omega)} \right| = 20 \log |A(j\omega)\beta(j\omega)|$$



Exm: 3-poles amplifier + feedback

- Assume an amplifier with $A_0=80\text{dB}$, and poles at 10^4 , 10^5 , and 10^6rad/s . Let β be a real constant, $20\log|1/\beta|=70\text{dB}$
- Remark: if β is a real constant (horizontal line in the magnitude plot and zero phase shift in the phase plot), then the phase plot of the loop gain $A(j\omega)\beta$ is the same as that for $A(j\omega)$



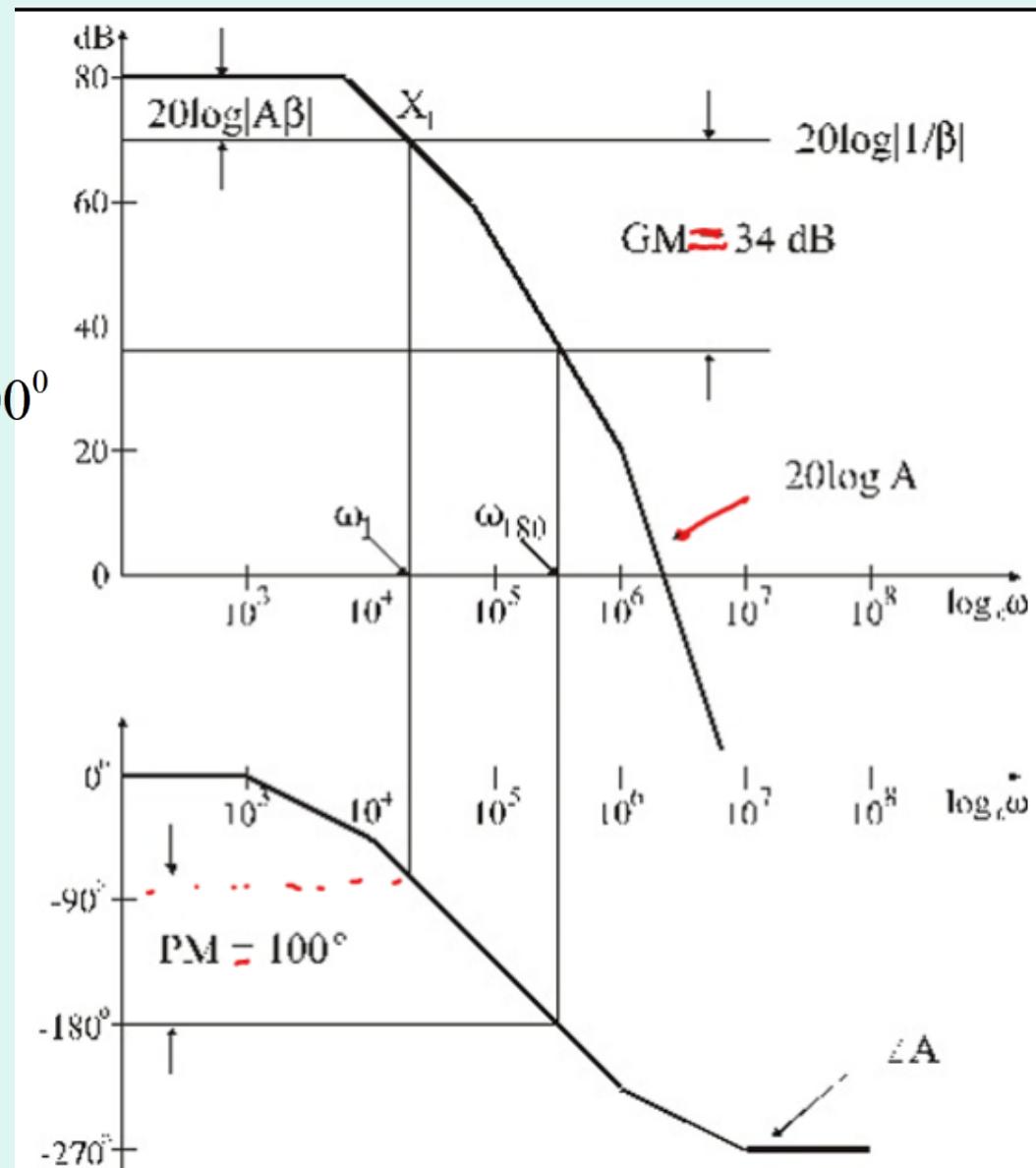
Exm - Bode plots

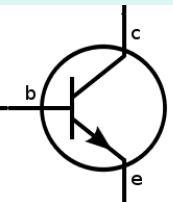
- Graphical solution:

$$\text{Point } x_1 : 20 \log |A\beta| = 0 \Leftrightarrow |A\beta| = 1$$

$$\theta(\omega_1) \approx -80^\circ \Rightarrow \text{phase margin} \approx 100^\circ$$

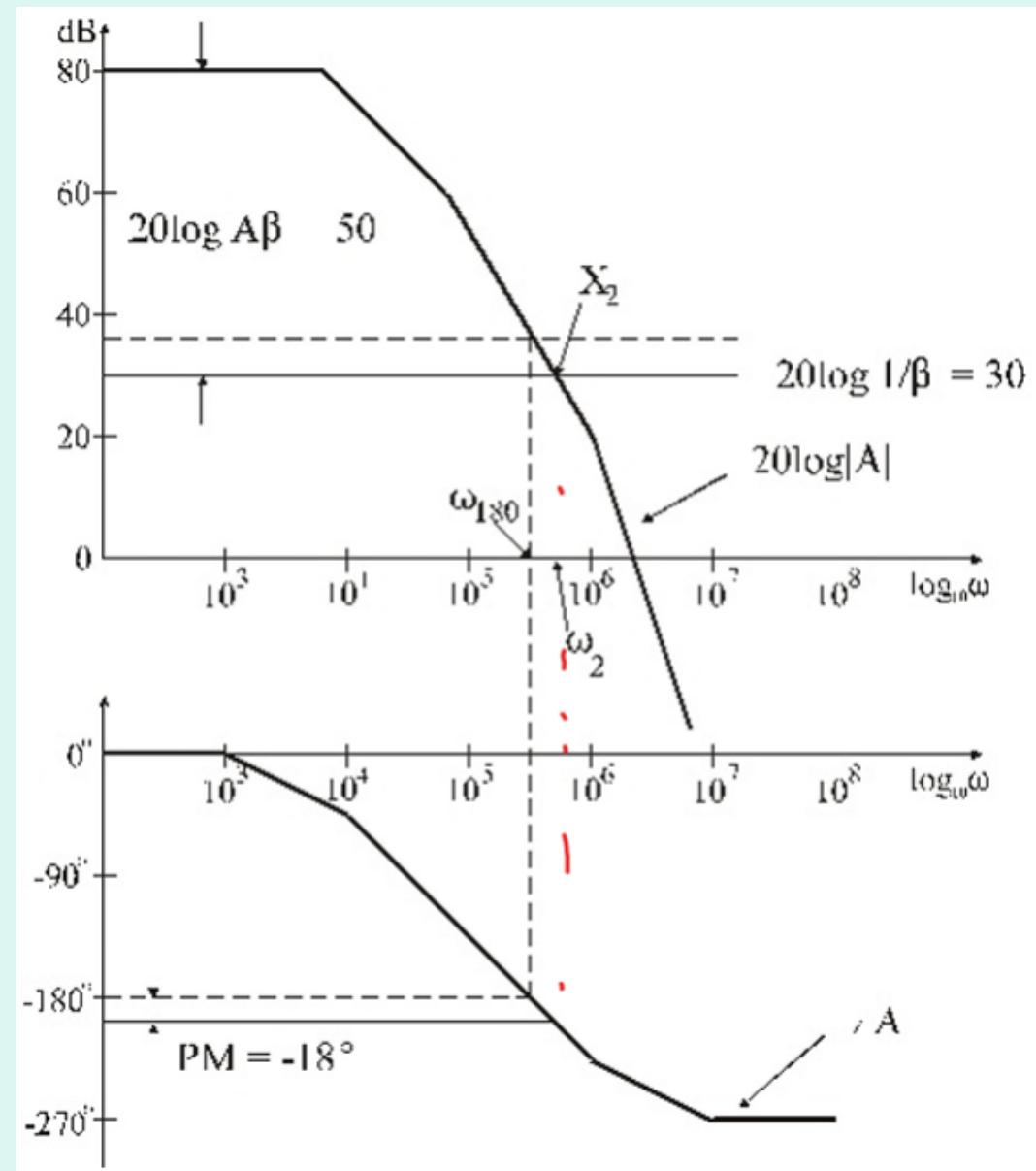
$$\text{Gain margin} \approx 34 \text{ dB}$$

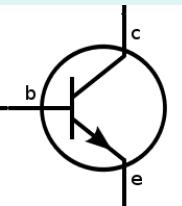




Trade-offs gain vs bandwidth

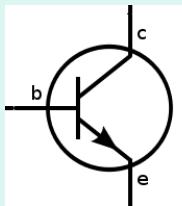
- LF closed-loop gain $A_f \approx 1/\beta = 70\text{dB}$
- Suppose we wanted to trade-off gain for BW - reduce the closed-loop gain to 30dB
- When $|A\beta|=1$ (point X_2), the phase is less than $180^\circ \Rightarrow$ the amplifier is unstable
- By inspection: the minimum closed-loop gain (marginal stability) is -36dB





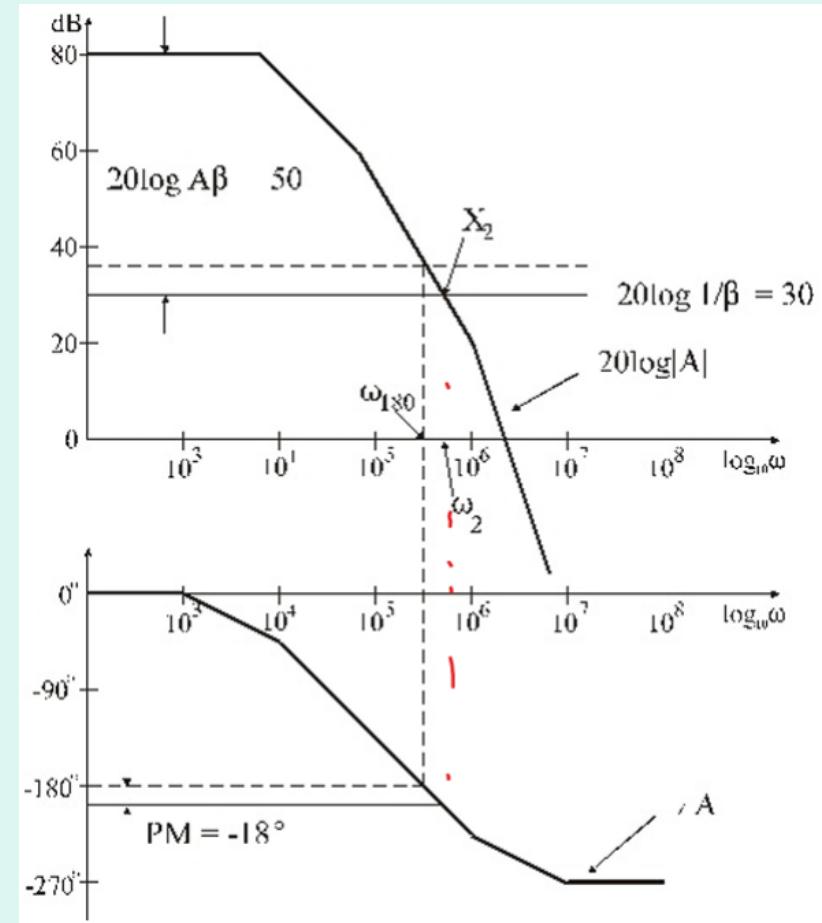
“Closure Rule of Thumb”

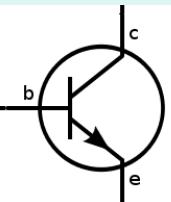
- The point at which ω_{180} occurs is always on the section of the Bode diagram on which the slope is -40dB/dec or greater (WHY?)
- If ω_{180} intercept is on the section with a slope of -20dB/dec the amplifier will not be unstable
- The “**Closure rule of thumb**” - if $20\log|1/\beta(j\omega)|$ closes on $20\log|A(j\omega)|$ with a difference of less than 20db/dec, the amplifier will not be unstable



Frequency compensation

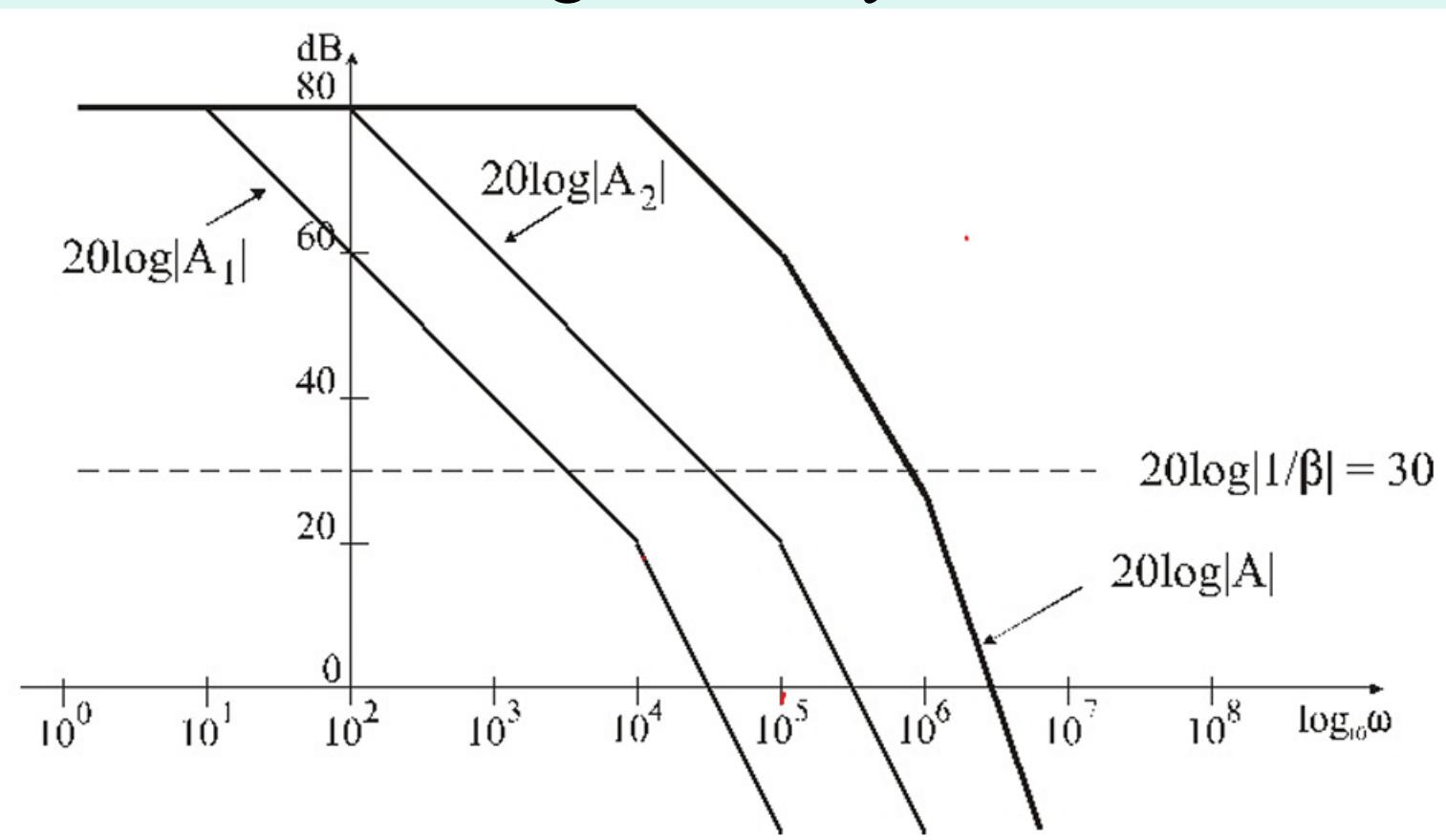
- It means adjusting the poles position to ensure stability
- Assume we want a circuit which will be stable for any amount of feedback \Rightarrow we must design our circuit so that the line $20\log|1/\beta|$ intersects the plot $20\log|A(j\omega)|$ with a closure of 20db/dec
- For $20\log|1/\beta|=30\text{dB}$, the amplifier will be unstable

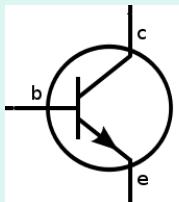




Frequency compensation - pole addition and shifting

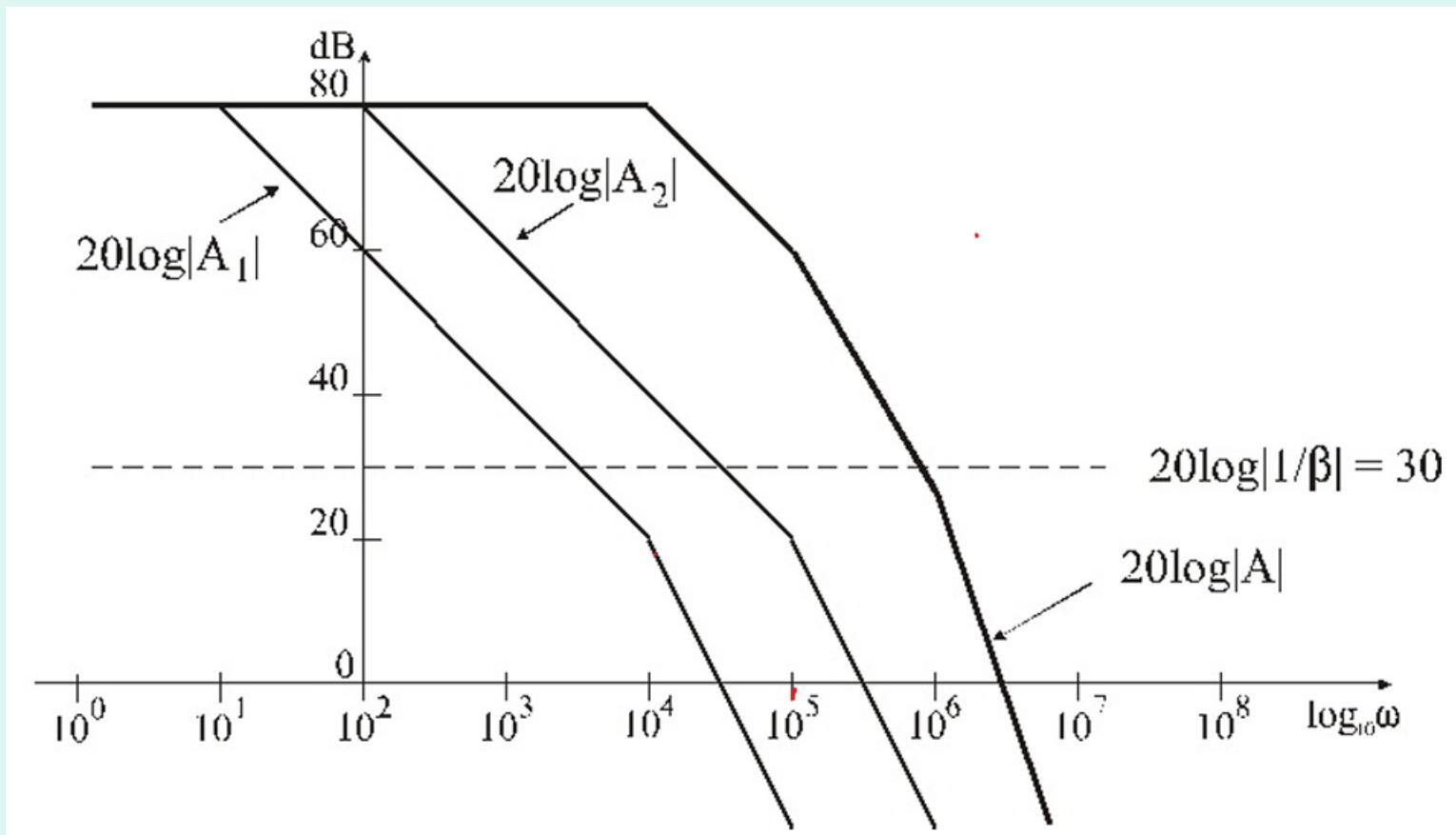
- Bring the intersection earlier - compensate by introducing a pole at 10rad/s => new gain $A_1(j\omega)$, stable, but with a significantly reduced BW

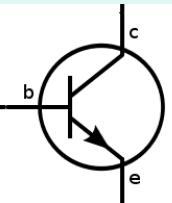




Frequency compensation (3)

- Better method: shift the pole originally at 10^4 rad/s to a lower frequency - move the dominant LF pole to 10^2 rad/s results in $A_2(j\omega)$, improving the BW with one decade





Frequency compensation techniques

- Some common methods:
 - Phase-lag and phase-lead compensation - introduce additional phase lag or lead at low frequencies to stabilize the circuit
 - Miller effect compensation - add a feedback capacitor to reduce the closed-loop gain
 - Isolation resistor placement - resistors to dampen the output before reaching a capacitive load or set a zero in TF
 - Root-locus techniques - add poles and zeros so that the root locus is shaped to remain in the LHP

