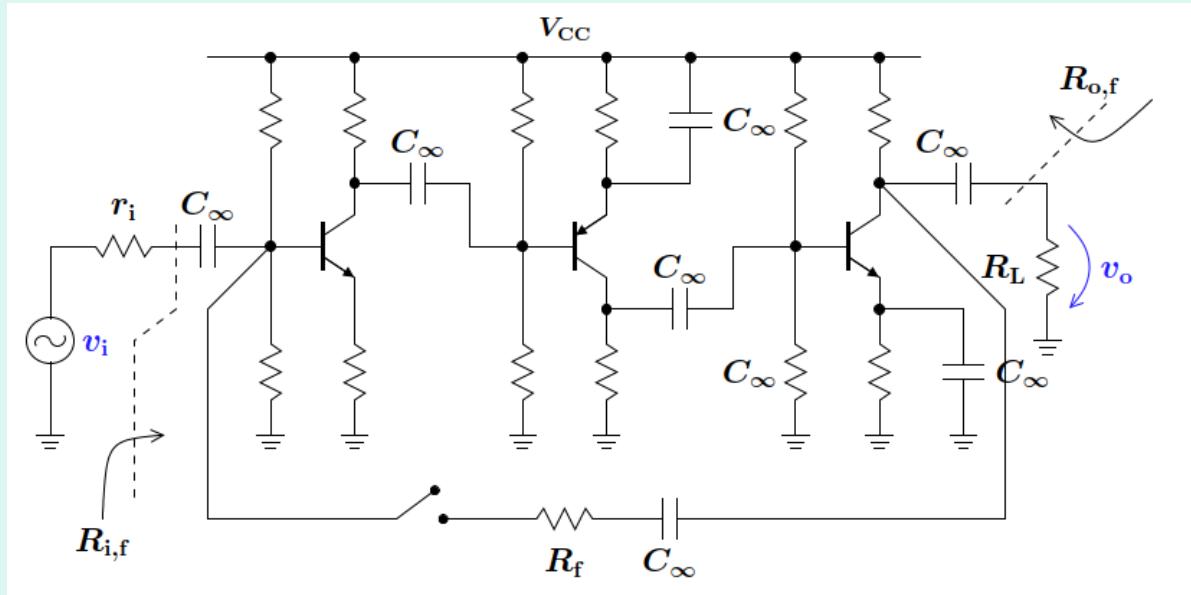
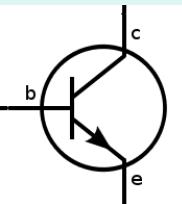


ELEC 301 - Frequency compensation

L28 - Nov 18

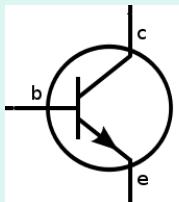
Instructor: Edmond Cretu





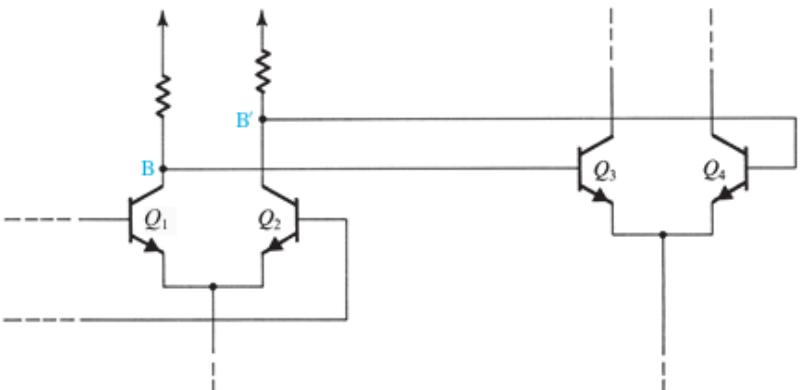
Last time

- Frequency compensation on Bode plots - addition of LF pole (**dominant pole compensation**), or shifting a pole
- The “**Closure rule of thumb**” - if at the intersection of $20\log|1/\beta(j\omega)|$ and $20\log|A(j\omega)|$, the difference of slopes (called the **rate of closure**) should not exceed 20db/dec, then the amplifier is stable
- PID (PD, PI) compensators - root locus design aspects

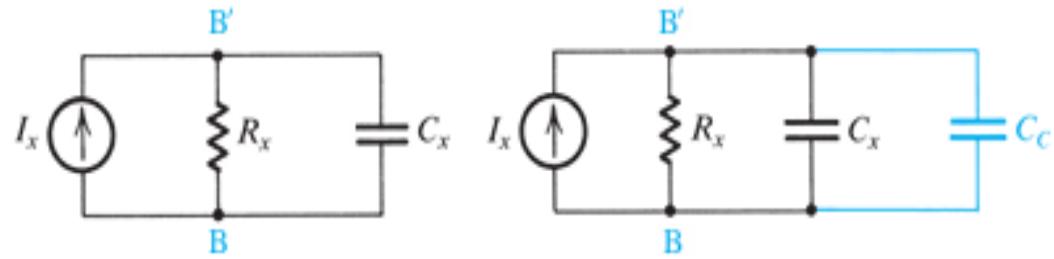


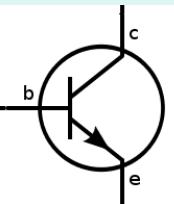
Circuit implementation

- Amplifier formed by cascaded gain blocks
- Assume f_{p1} given by the interface between the two differential stages
- Add compensating capacitor C_c
- Adding C_c might change the position of other poles \Rightarrow iterative approach
- C_c may be large ($>100\text{pF}$) \Rightarrow impractical in IC - Miller compensation as alternative (C_c in the feedback path)



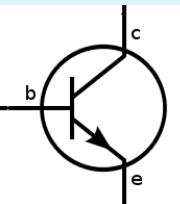
$$\omega_{p1} = \frac{1}{R_x C_x} \xrightarrow{+C_c} \omega_{p1}' = \frac{1}{R_x (C_x + C_c)}$$





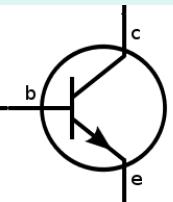
Frequency compensation techniques

- Some common methods:
 - Phase-lag and phase-lead compensation - introduce additional phase lag or lead at low frequencies to stabilize the circuit
 - **Miller compensation** - add a feedback capacitor to reduce the closed-loop gain
 - Isolation resistor placement - resistors to dampen the output before reaching a capacitive load or set a zero in TF



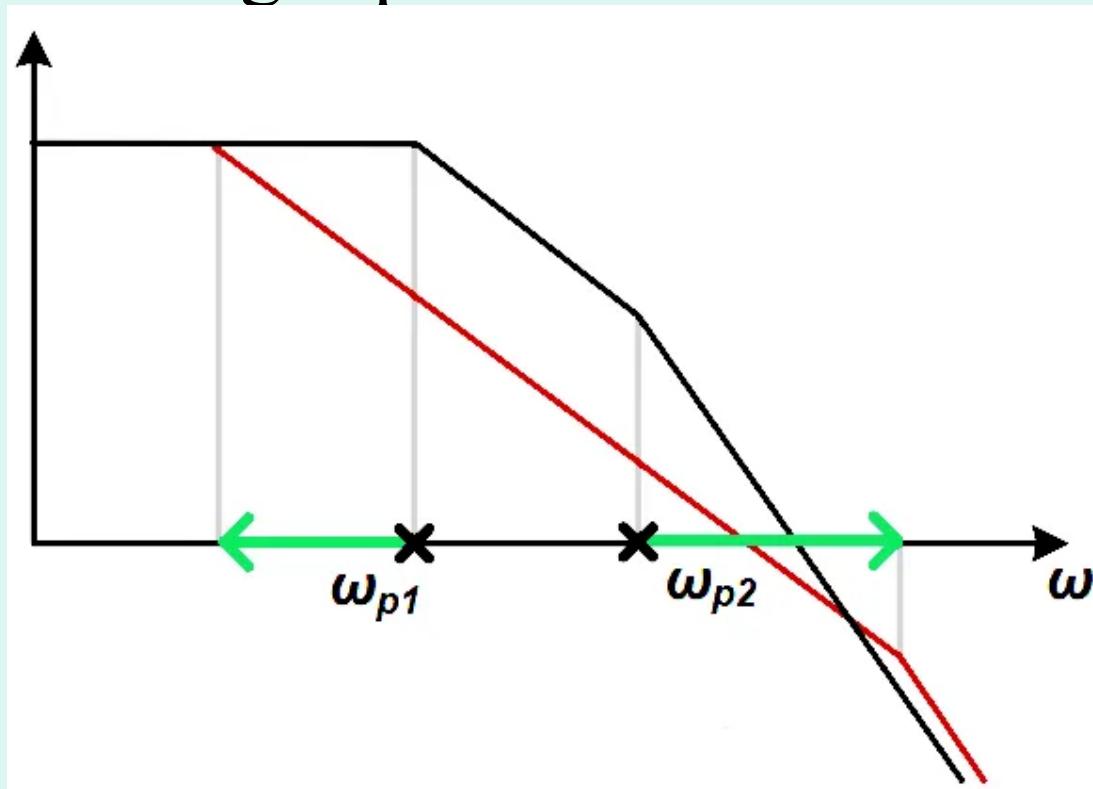
Miller compensation

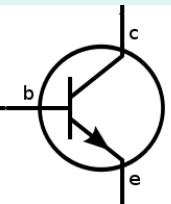
- Technique: a capacitor introduced between the input and output of an amplifier
- Goal: moving the pole lowest in frequency (usually an input pole) to lower frequency => increased stability
- Use the gain of the amplifier to amplify the effect of the introduced capacitance through negative feedback
- Usually accompanied by **pole splitting** phenomenon - the subdominant pole (usually an output pole) moves to a higher frequency



Pole splitting

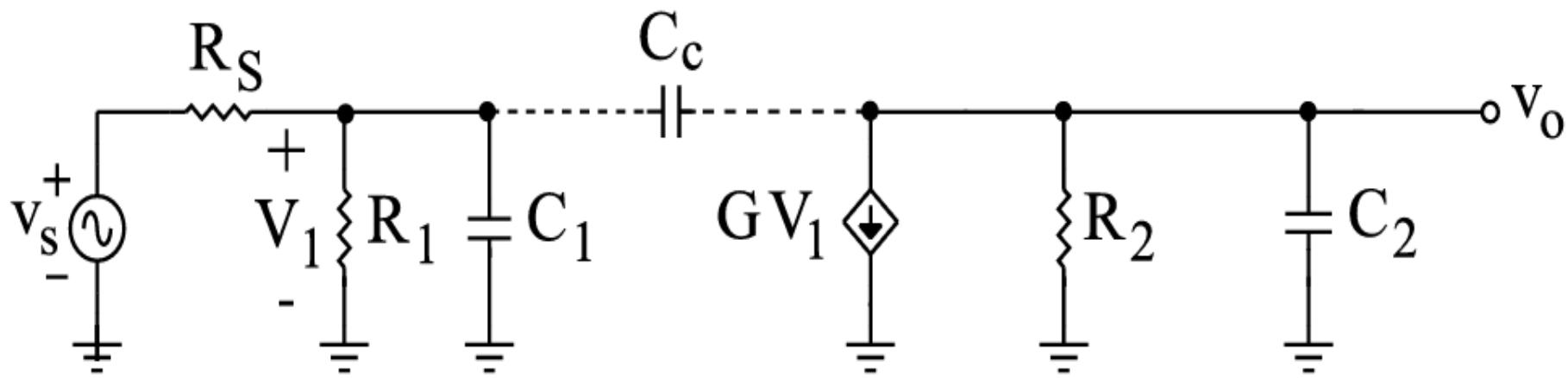
- The dominant pole moves to a lower frequency, while the higher pole is shifted to a higher frequency => improves phase margin, the system behaves as a single-pole circuit



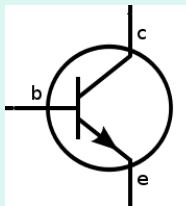


Miller compensation

- The inclusion of a small feedback capacitor (single transistor CE amplifier case) has reduced the frequency of the dominant HF pole by a relatively large amount via the Miller effect
- Small signal model of a **transconductance amplifier**:



- To further lower the location of the dominant HF pole - introduce a large **compensating capacitor** C_c , that will be magnified by the Miller effect

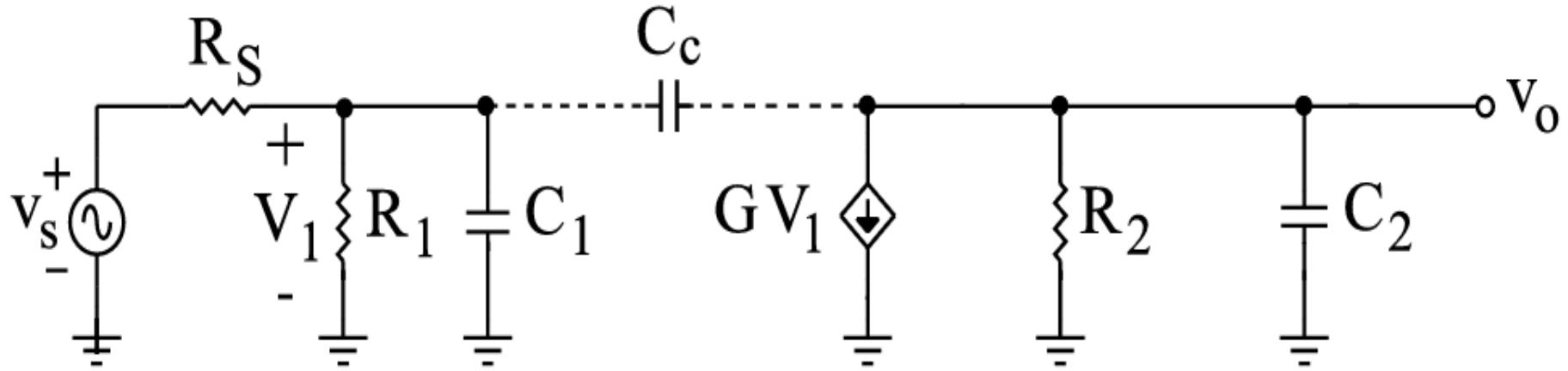


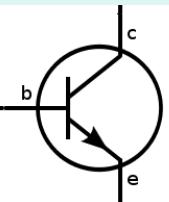
Miller compensation (2)

- Assume the dominant pole, prior to the application of the compensating capacitor, is:
- The location of the subdominant pole:

$$\omega_{p1} = \frac{1}{R_s \parallel R_1 C_1}$$

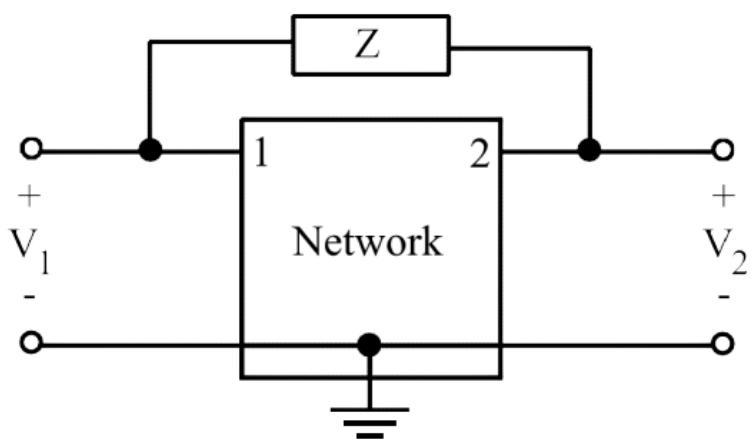
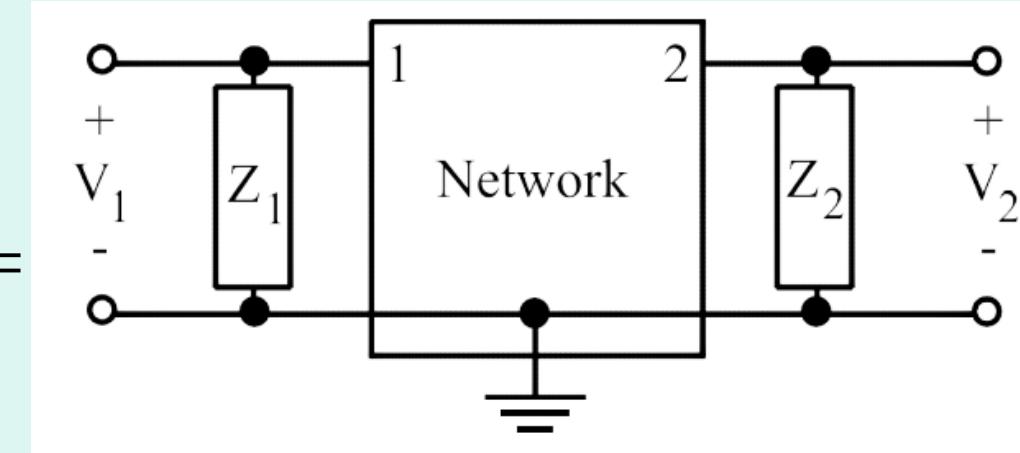
$$\omega_{p2} = \frac{1}{R_2 C_2}$$





Miller's theorem - decoupling feedback

- Replace the Z feedback with two impedances Z_1 and Z_2

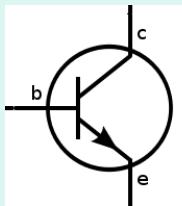


$$V_2 = kV_1$$

$$V_2 = kV_1$$

$$Z_1 = Z \frac{1}{1-k}$$

$$Z_2 = Z \frac{k}{k-1}$$



Miller compensation (3)

- When C_c is introduced into the circuits, the poles change

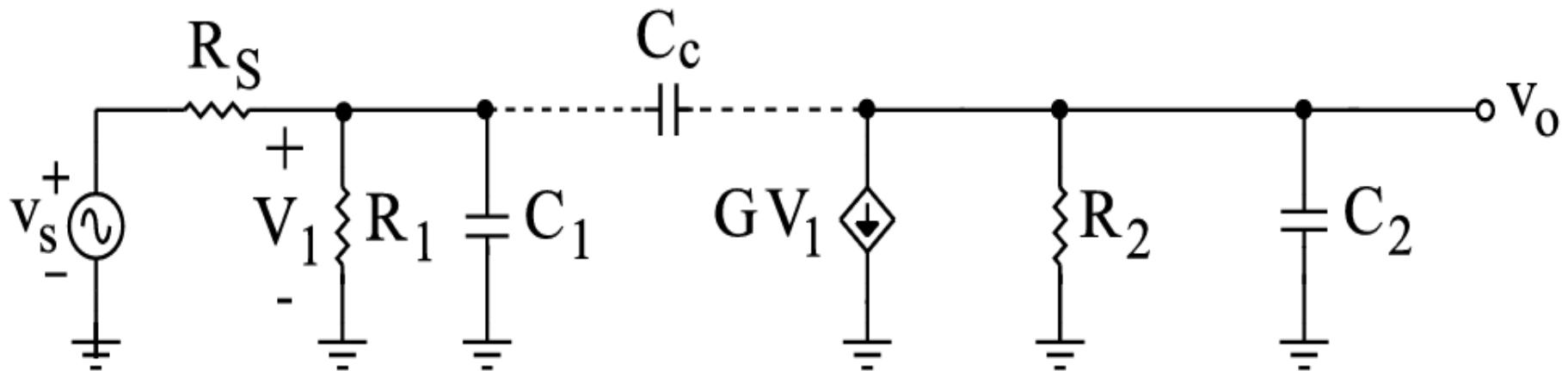
- The dominant HF pole:

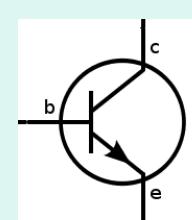
$$\omega_{p1} \approx \frac{1}{R_s \parallel R_1 (C_1 + C_c (1 + GR_2))}$$

- The subdominant HF pole: (C_c as SC far beyond ω_{p1})

$$\omega_{p2} \approx \frac{1}{(C_1 + C_2) \left(\frac{1}{G} + R_2 \parallel R_s \parallel R_1 \right)} \approx \frac{G}{C_1 + C_2}$$

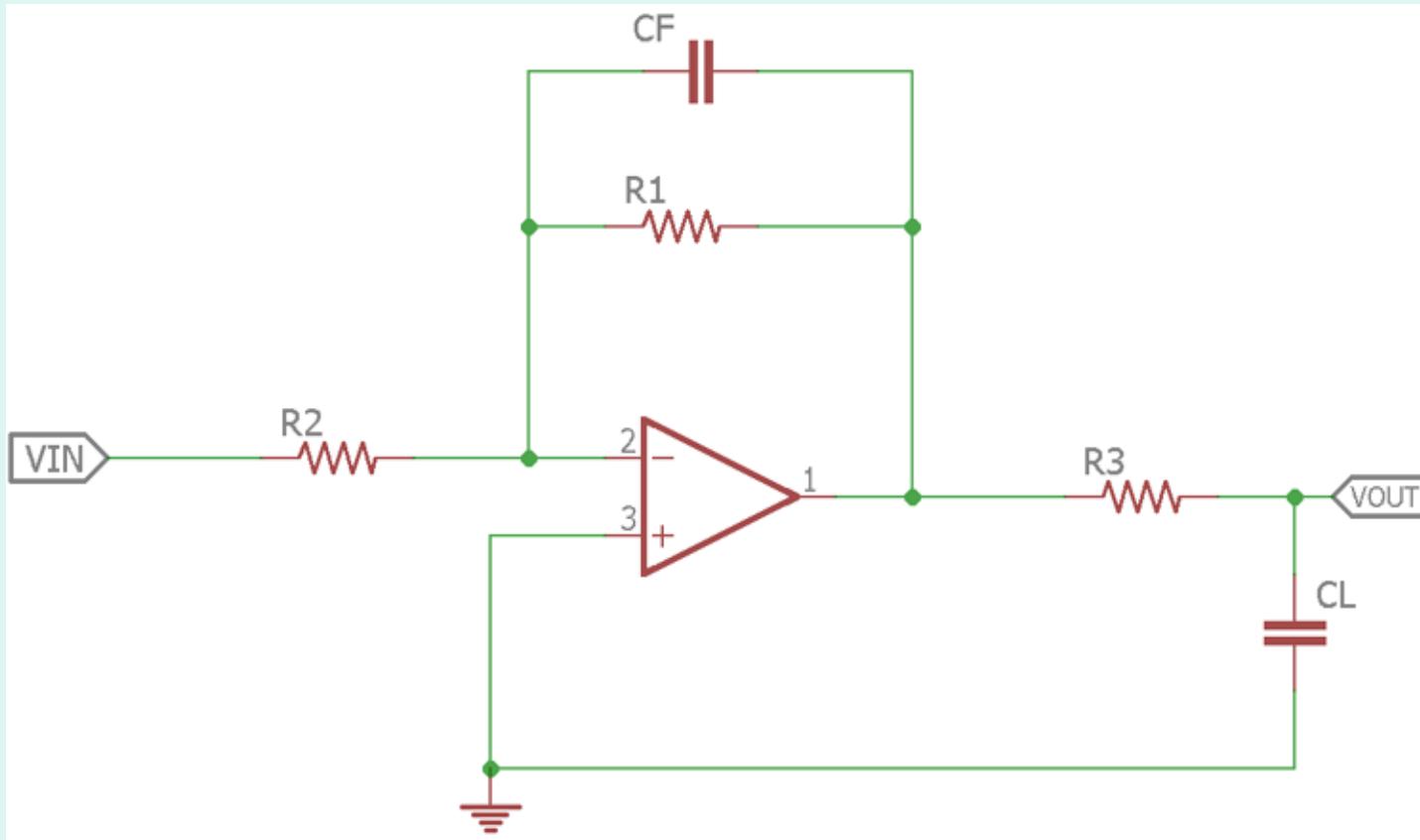
- pole-splitting effect: dominant pole shifted far to the left, subdominant pole shifted to the right

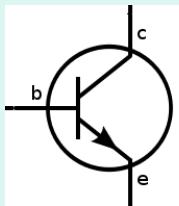




Miller compensation circuit in op-amps

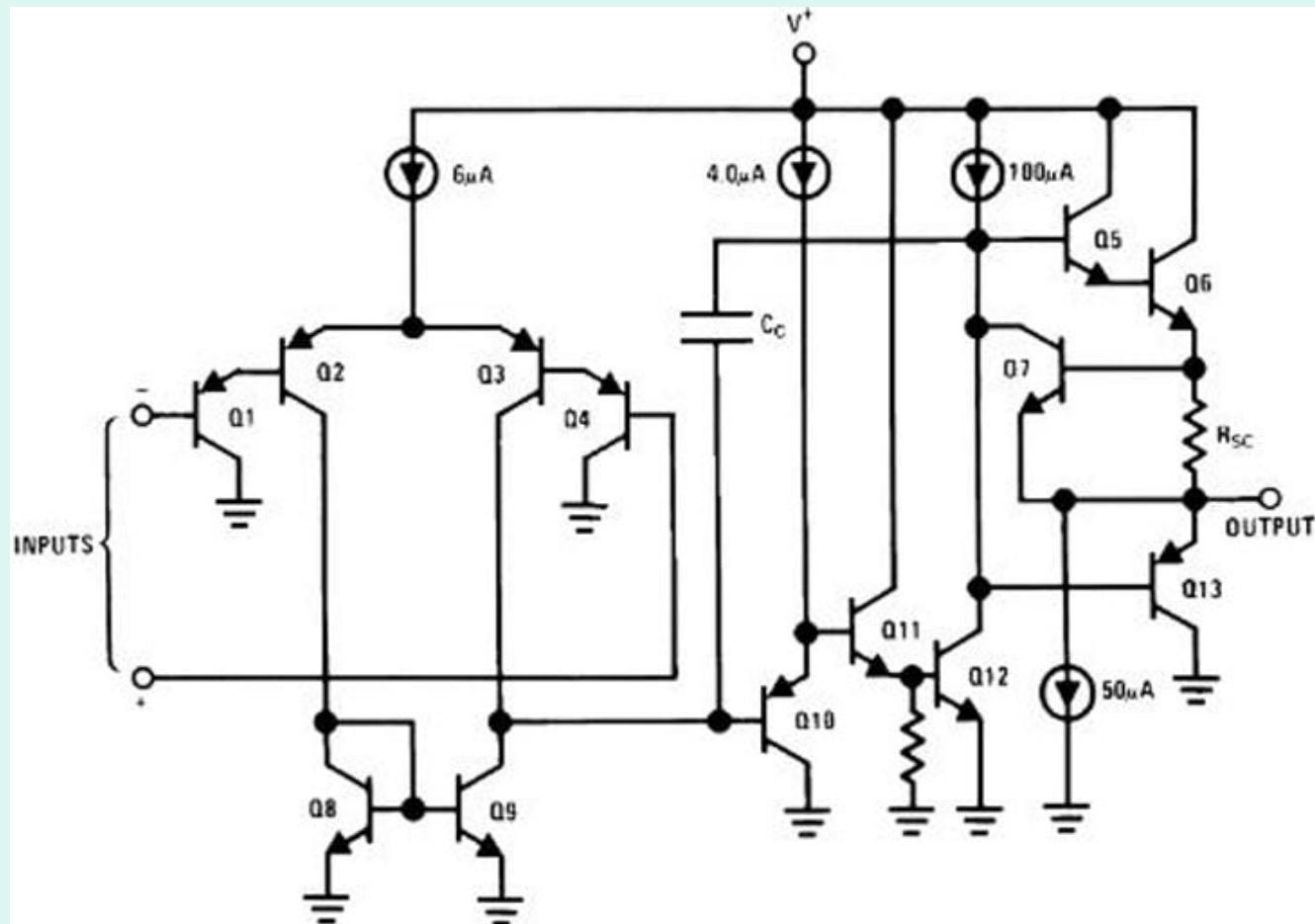
- C_F plays the role of the Miller capacitor

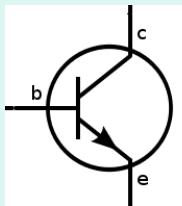




Internal compensation in op-amps

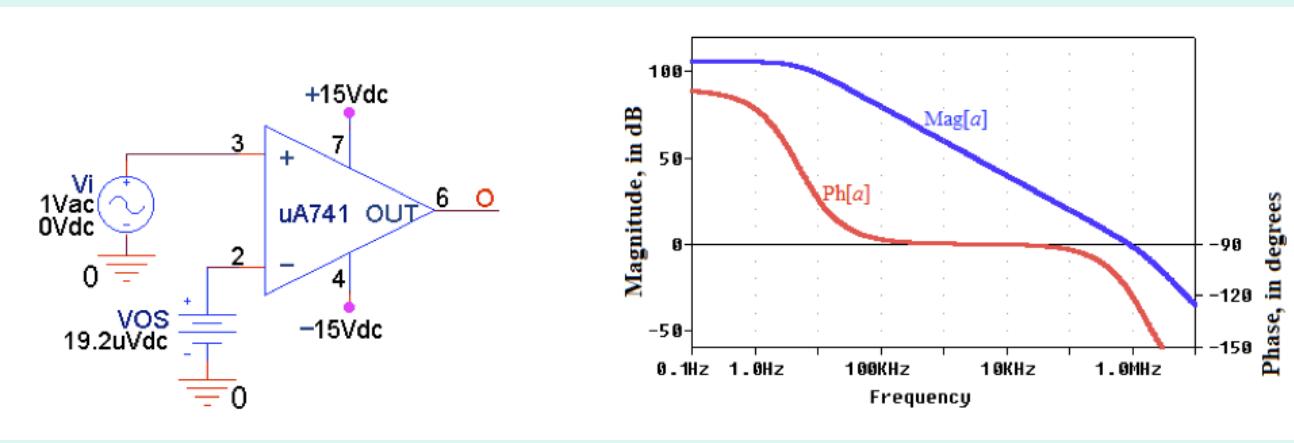
- A small feedback capacitor connected inside the op-amp IC
- Exm: LM358 opamp:

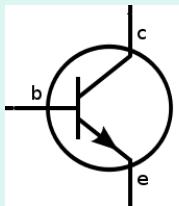




Bits of history

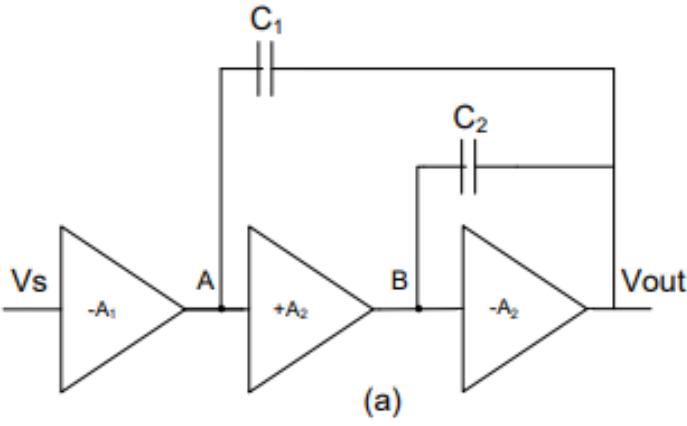
- First IC op-amp that incorporated full compensation: μ A741 (Fairchild Semiconductor, 1968) - used a 30pF on-chip capacitor for Miller compensation
- Before μ A741, all IC op-amps had to be compensated externally by the user (e.g. LM301, National Semiconductor, offered single-pole compensation, double-pole compensation, and feedforward compensation)



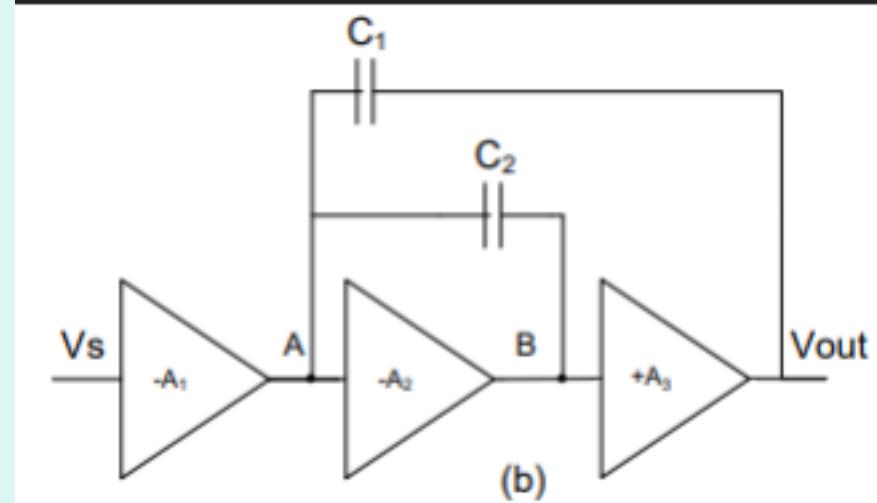


More advanced Miller compensation techniques

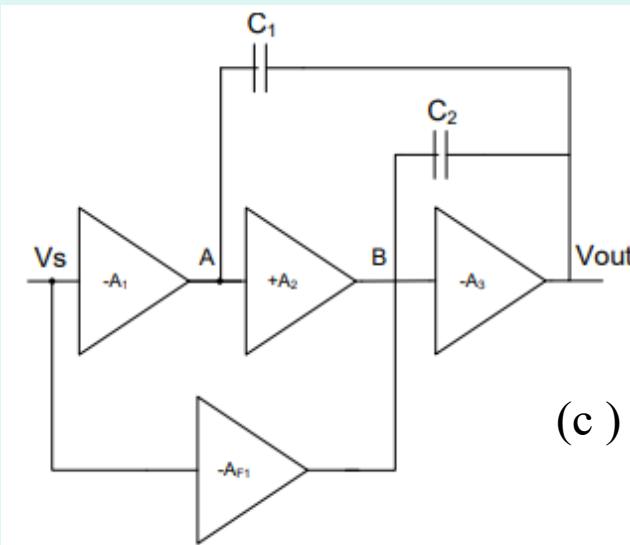
- More involved alternatives:



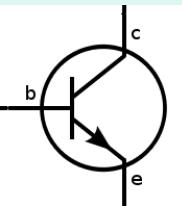
(a) Nested Miller compensation



(b) Reversed nested Miller compensation

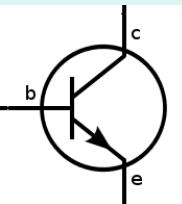


(c) Multipath nested Miller compensation



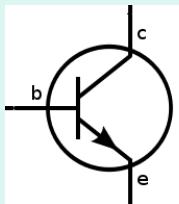
Passive filters

- **Passive filters** - we analyzed RC filters (LP, HP and BP filters) - how multiple single-pole filters could be combined to form higher order filters
- Most commonly used: low-pass (LP), high-pass (HP), band-pass (BP) filters
- Other types:
 - Notch (band-reject) filters: filter out localized frequency ranges
 - all-pass filters (allow all frequencies to pass but shape the phase)
- Theory of (ideal) LC passive filter synthesis: Cauer, Foster



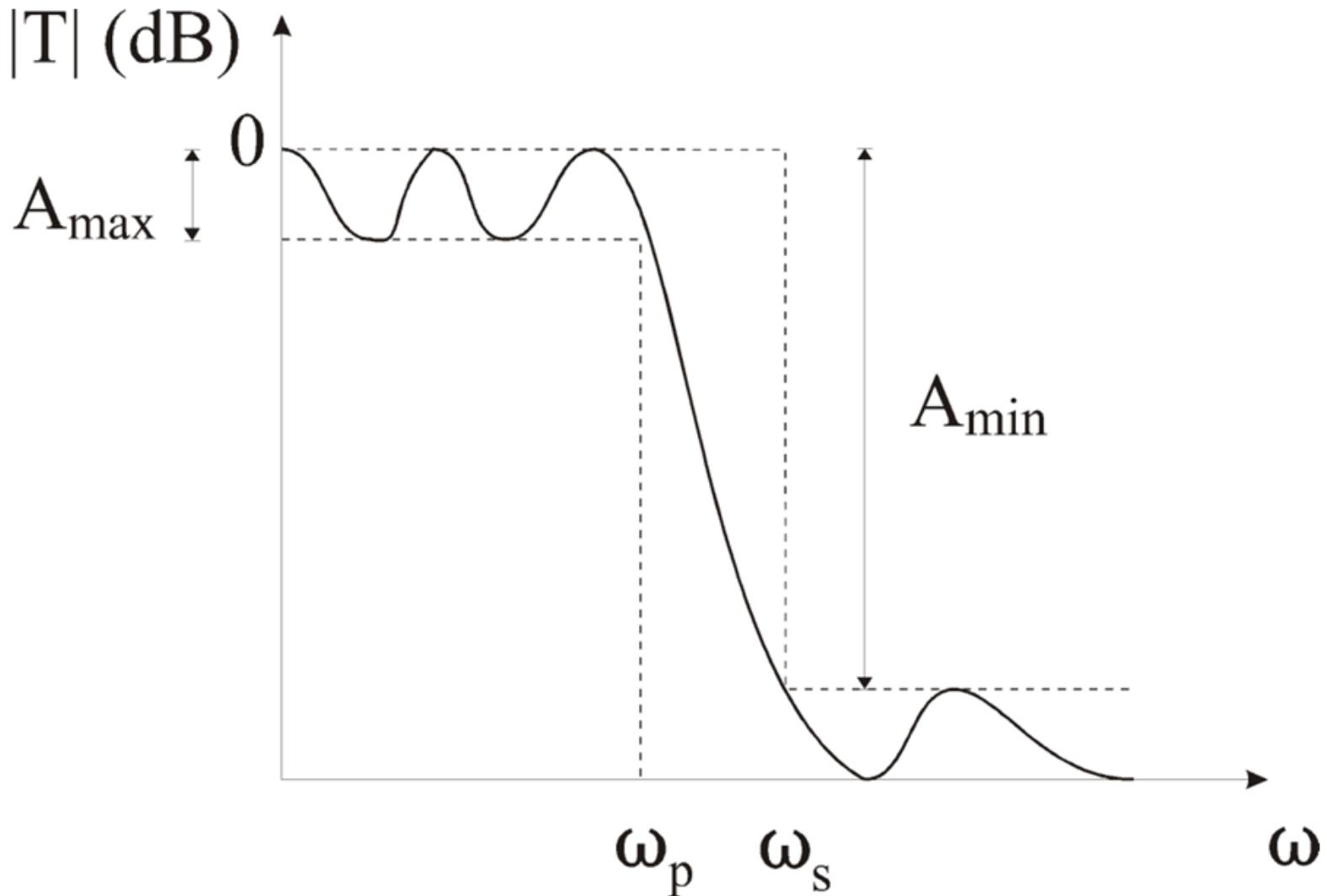
Active vs passive filters

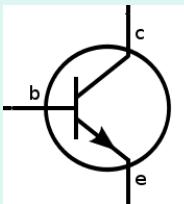
- Passive filters may be impractical:
 - Large/bulky components for LF applications
 - Large inductors cannot be fabricated monolithically
- **Active filters** - we will study Butterworth and Chebyshev filters (no Ls, only op-amps +Rs+Cs)



Filters terminology

- A generic LP filter





Filter specification and terminology

- Standard properties of a filter - the example of LP filter
- Pass-band = range of frequencies allowed to pass ($<\omega_p$)
- Stop-band = frequency range that is attenuated ($>\omega_s$)
- Transition-band ($\omega_p < \omega < \omega_s$)
- Selectivity factor = ω_p/ω_s
- Maximum ripple level tolerated in the pass-band ($A_{\max}[\text{dB}]$)
- $A_{\min}[\text{dB}]$ =min amount of attenuation between the stop-band and the transmission peak in the pass-band

