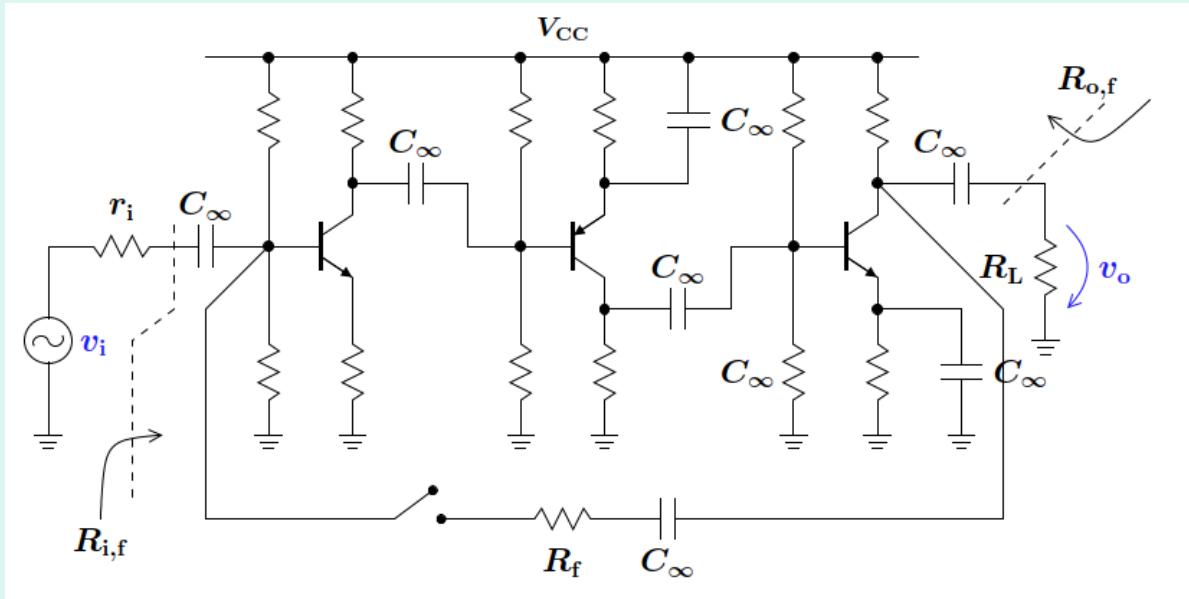
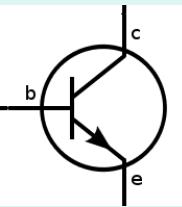


ELEC 301 - Filters - Butterworth filters

L29 - Nov 20

Instructor: Edmond Cretu





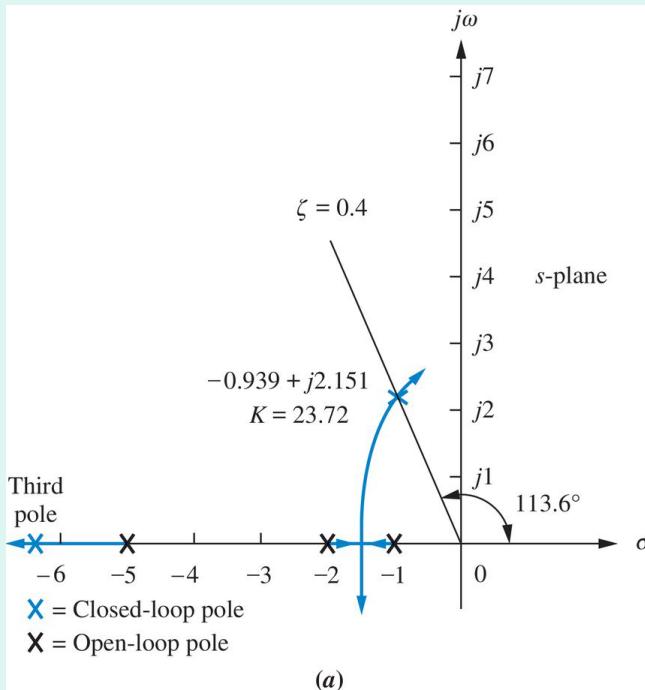
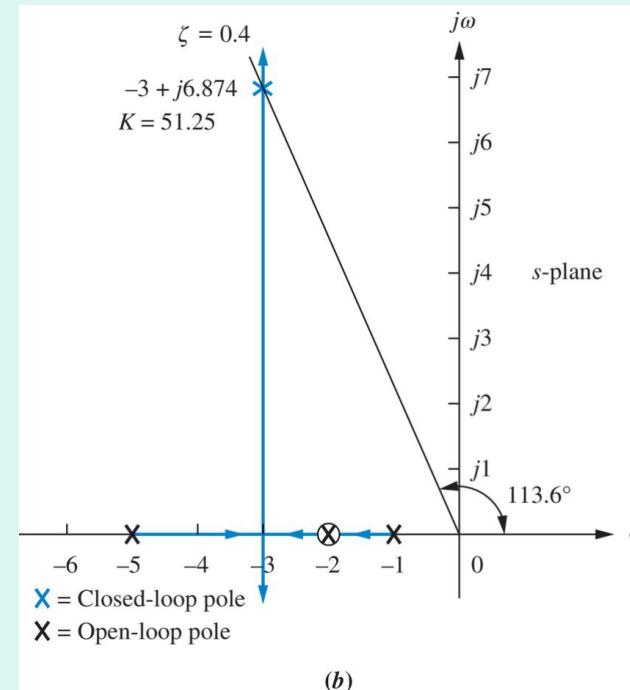
Last time

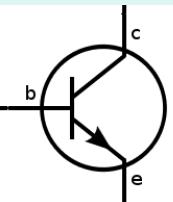
- Frequency compensation techniques
 - **dominant pole compensation** (a form of **lag compensation**) - a pole placed at an appropriate LF in the open-loop response, to reduce the gain of the closed-loop amplifier to 0dB for a frequency at or just below the location of the next pole.
 - **Miller compensation (feed-forward compensation)** and pole-splitting - capacitor action amplified by the feedback network
- Filters introduction



Other compensation methods

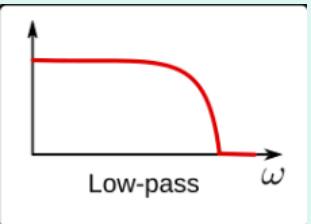
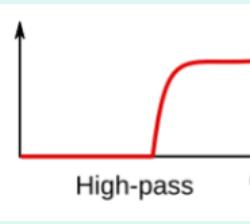
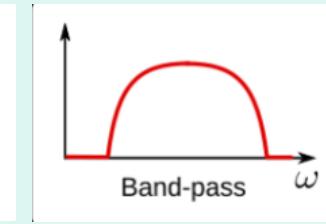
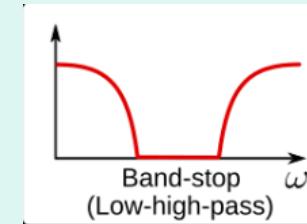
- **Lead compensation** - places a zero in the open-loop response to cancel one of the existing poles (**pole-zero cancellation**) (remember the PD controller)
- **Lead-lag compensation** - places both a zero and a pole in the open-loop response; usually the pole is at open-loop gain < 1

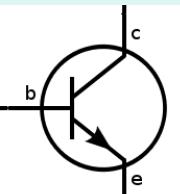




Back to signal filters

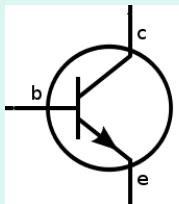
- Electronic filters
 - **low-pass filter** - allows frequencies below a certain point to pass while blocking higher frequencies
 - **high-pass filter** - allows frequencies above a certain point to pass and blocks lower frequencies
 - **band-pass filter** - allows only frequencies within a specific range to pass
 - **band-stop filter** - blocks frequencies within a specific frequency range
 - **notch filter** - a sub-type of band-stop filter, blocking only a narrow frequency band





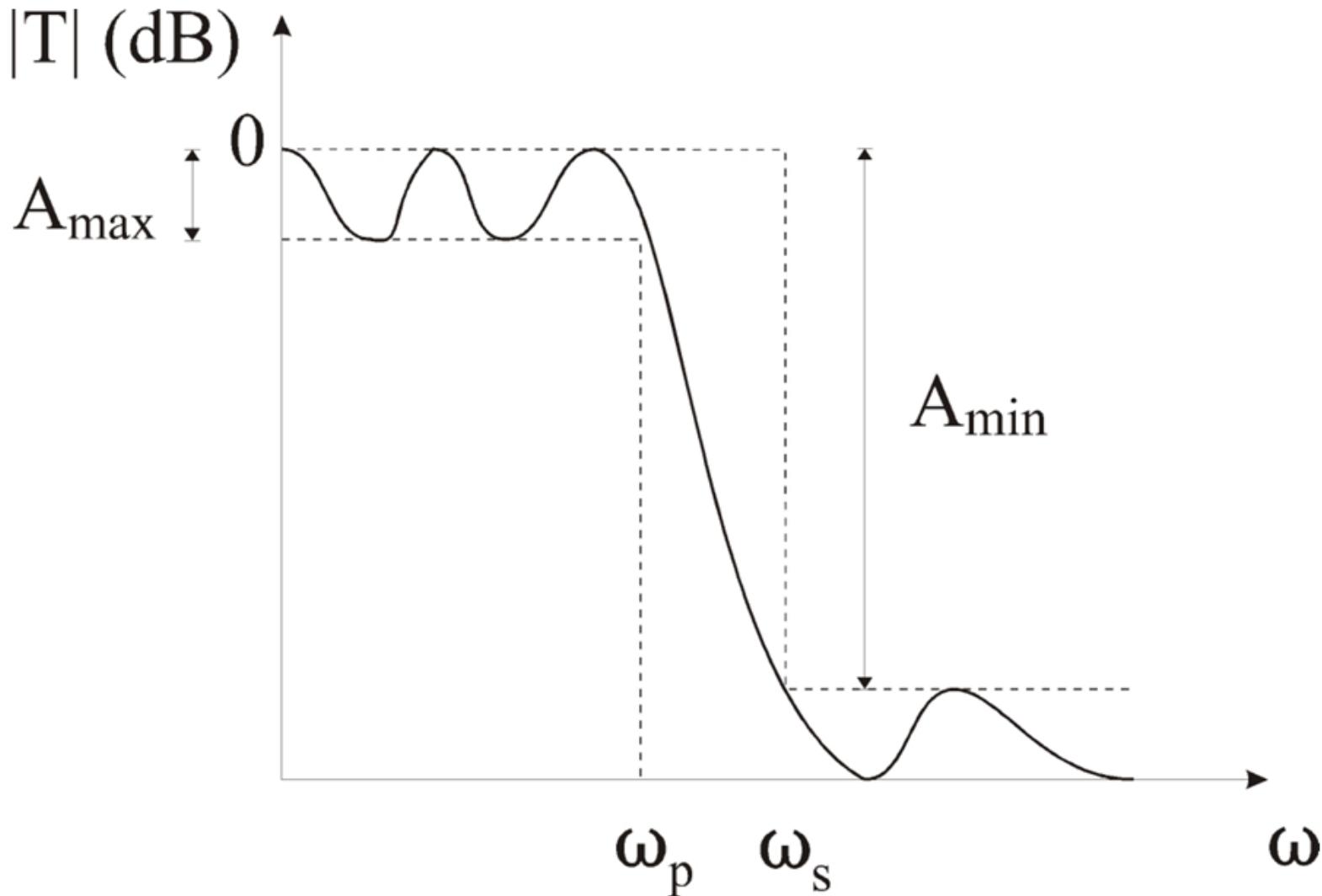
Network synthesis

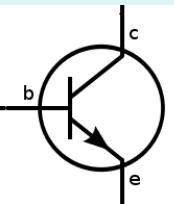
- **Network synthesis** - design methodology for linear CT filters
- Technique: take an ideal filter frequency response and approximate it by a polynomial function
- Filter groups:
 - **Butterworth** filters - maximally flat frequency response in the pass-band
 - **Chebyschev** filters - best approximation to the ideal response of any filter for a specified order and ripple
 - **Elliptic** filters - steepest cutoff of any filter for a specified order and ripple
 - **Bessel** filters - maximally flat phase delay



Back to filters - terminology

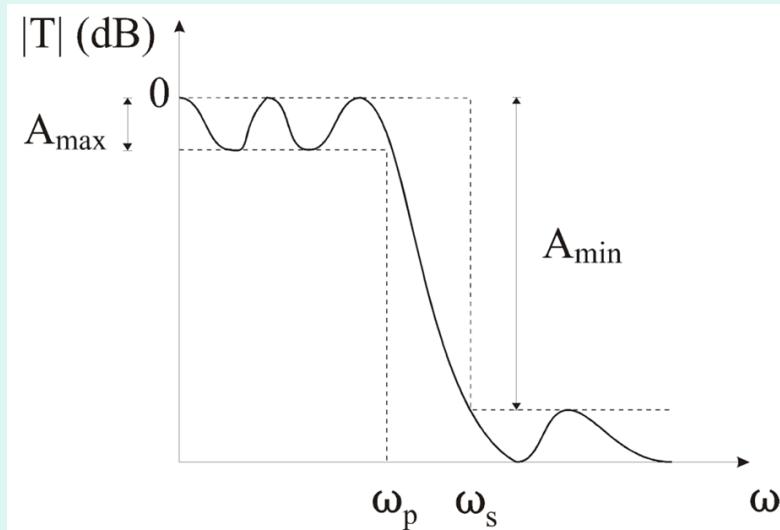
- A generic LP filter transfer function

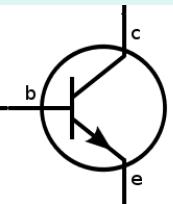




Filter specification and terminology

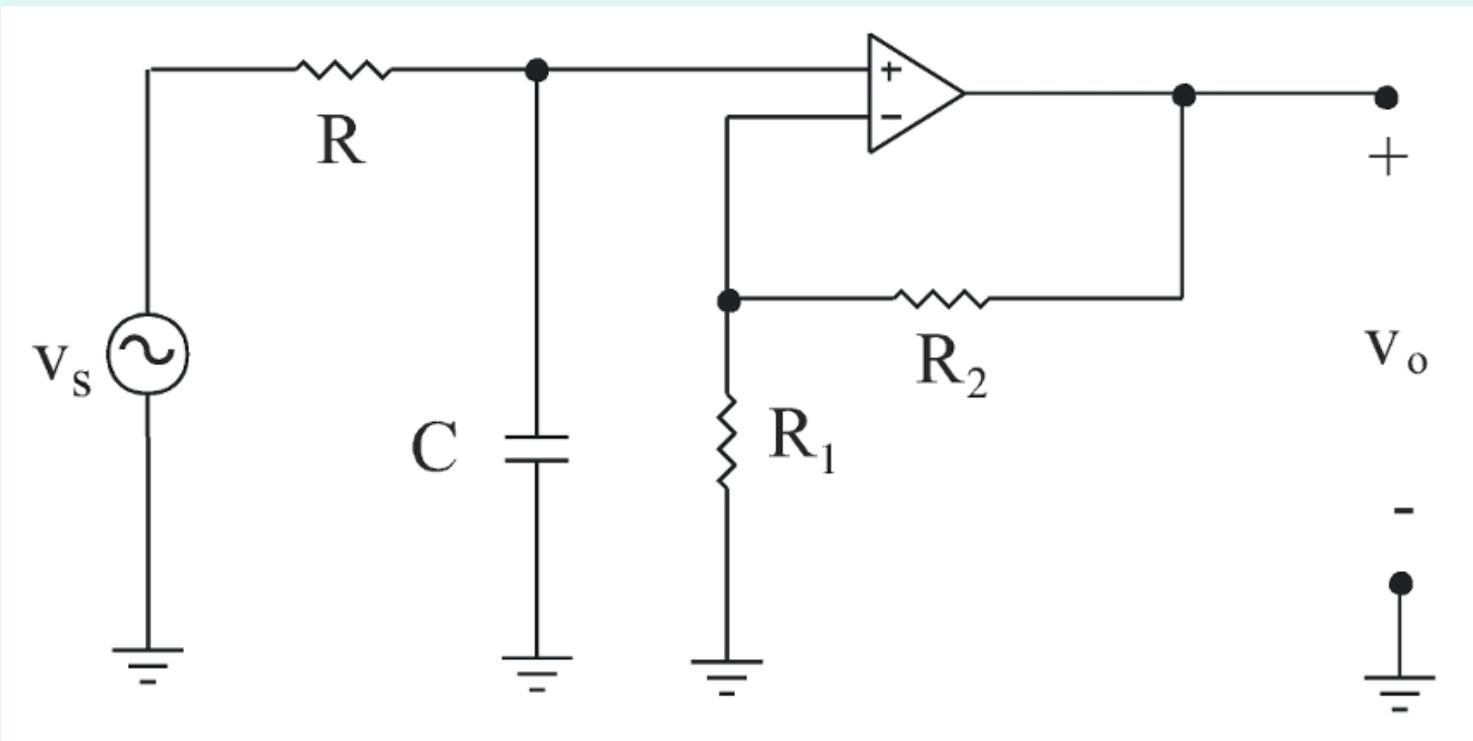
- Standard properties of a filter - the example of LP filter
- Pass-band = range of frequencies allowed to pass ($<\omega_p$)
- Stop-band = frequency range that is attenuated ($>\omega_s$)
- Transition-band ($\omega_p < \omega < \omega_s$)
- Selectivity factor = ω_p/ω_s
- Maximum ripple level tolerated in the pass-band ($A_{\max}[\text{dB}]$)
- $A_{\min}[\text{dB}]$ =min amount of attenuation between the stop-band and the transmission peak in the pass-band

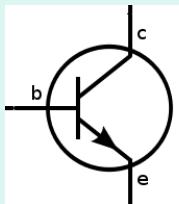




The Butterworth filter

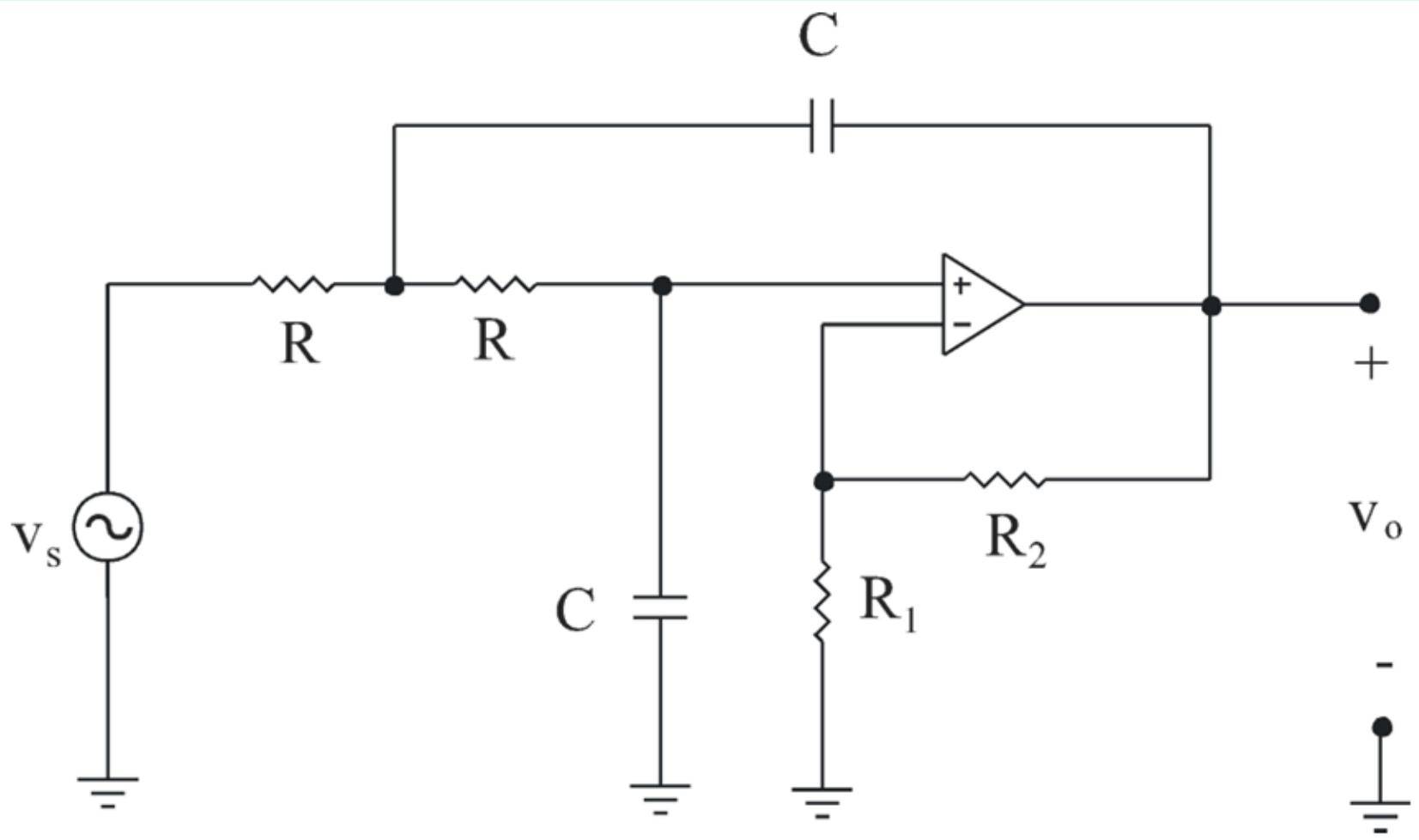
- LP Butterworth filter = all-pole filter (all its zeros are at $\omega=\infty$)
- 1st order LP active filter (**Sallen-Key** configuration)

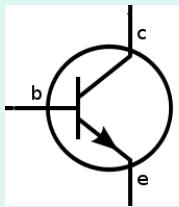




2nd order LP Butterworth filter

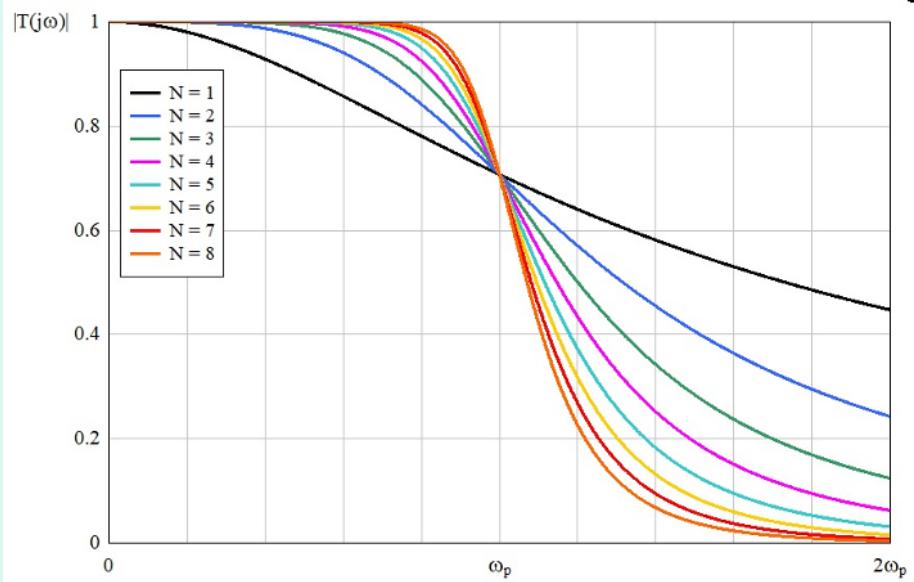
- Active filter, Sallen-Key configuration





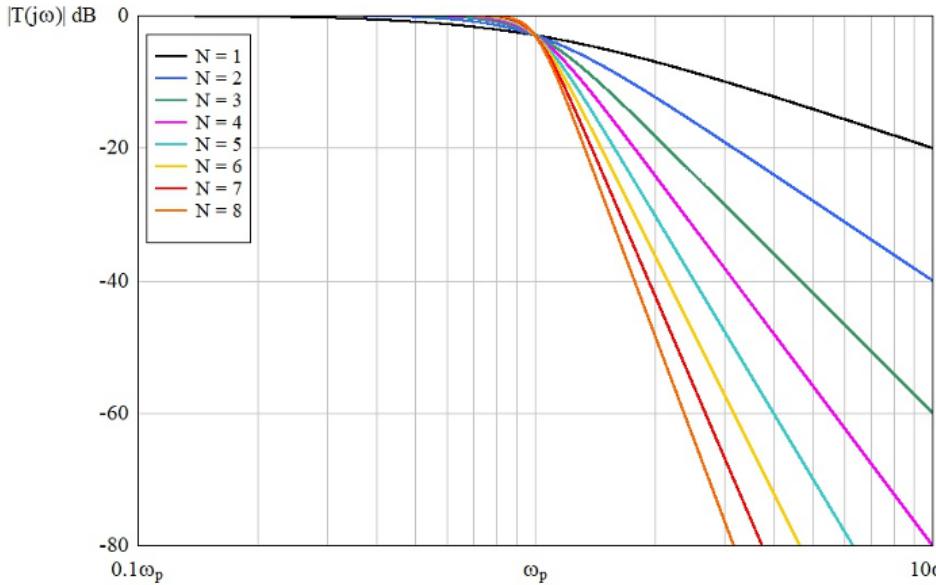
Magnitude response and filter order (N)

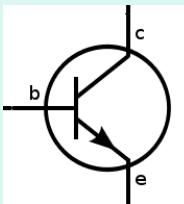
- Selectivity increases with N



Linear scales

Logarithmic scales





LP Butterworth - TF

- For an Nth order Butterworth filter, the magnitude response:

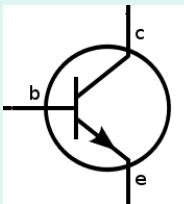
$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \left(\frac{\omega}{\omega_p}\right)^{2N}}} \Rightarrow |T(j\omega_p)| = \frac{1}{\sqrt{1 + \varepsilon^2}}$$

ε = pass-band deviation parameter - determines A_{\max}

$$A_{\max} = 20 \log \sqrt{1 + \varepsilon^2} = 10 \log (1 + \varepsilon^2) \Leftrightarrow \varepsilon = \sqrt{10^{A_{\max}/10} - 1}$$

For a Butterworth filter, the response is very flat near $\omega=0$, and A_{\max} is maximum when $\omega=\omega_p$ - this is known as **maximally flat response** (one of the features of Butterworth filters)

$$\text{For } A_{\max} = 3\text{dB} = 10 \log_{10} 2 \Rightarrow \varepsilon = \sqrt{10^{10 \log_{10} 2/10} - 1} = 1$$

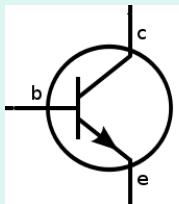


Filter order influence

- As N increases, the pass-band region approaches a maximally flat response throughout the pass-band, the transition region decreases, and the filter response approaches the ideal case
- Attenuation at ω_s = edge of the stop-band

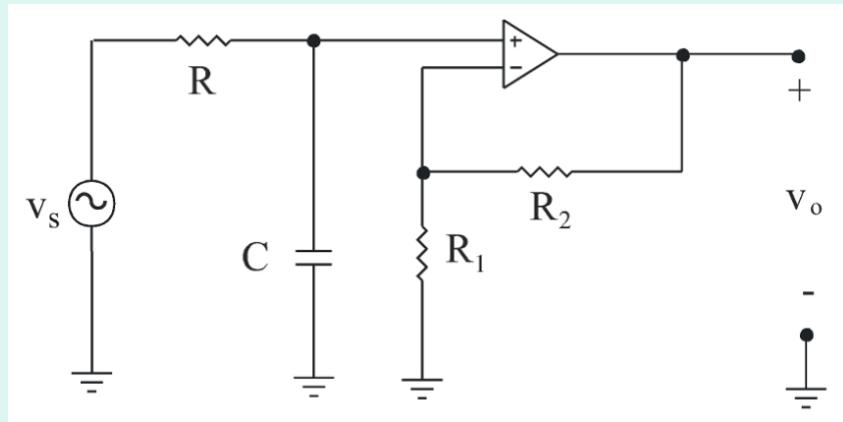
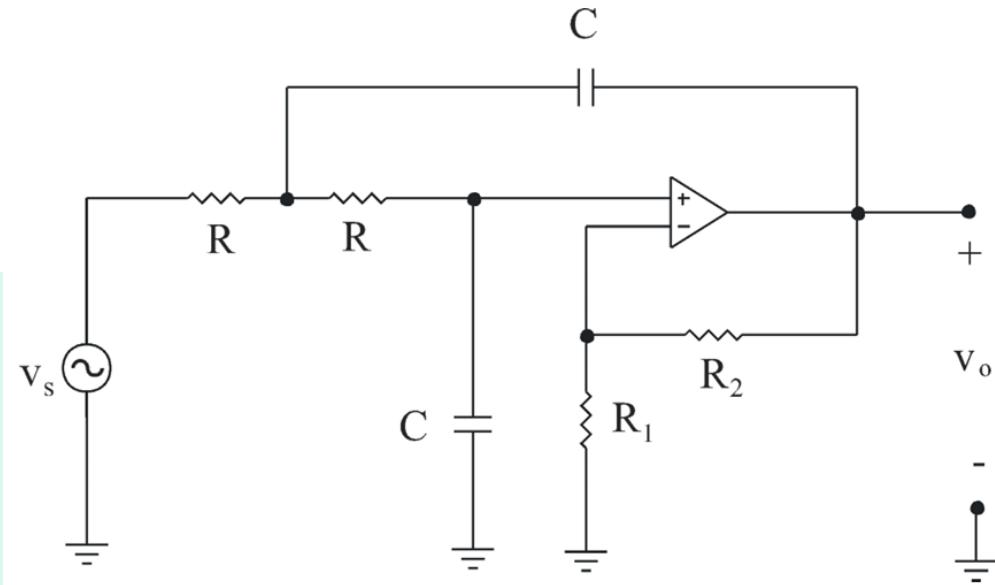
$$A(\omega_s) = -20 \log \frac{1}{\sqrt{1 + \varepsilon^2 \left(\frac{\omega_s}{\omega_p} \right)^{2N}}} = 10 \log \left(1 + \varepsilon^2 \left(\frac{\omega_s}{\omega_p} \right)^{2N} \right)$$

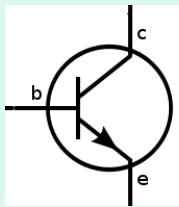
Design perspective: find the lowest integer value of N that satisfies $A(\omega_s) > A_{\min}$



Building higher order filters

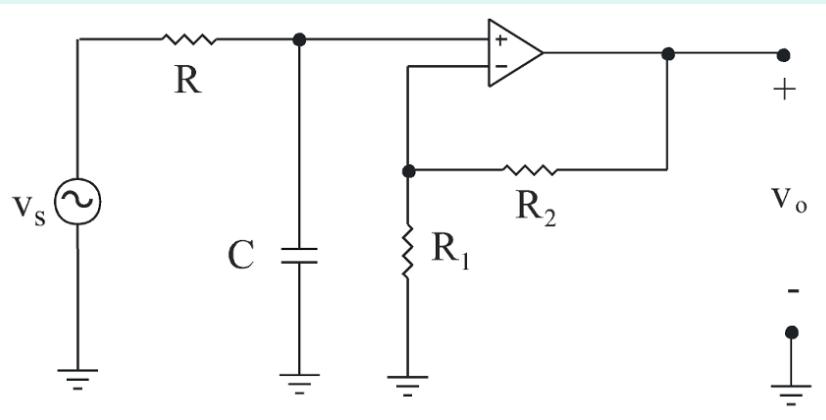
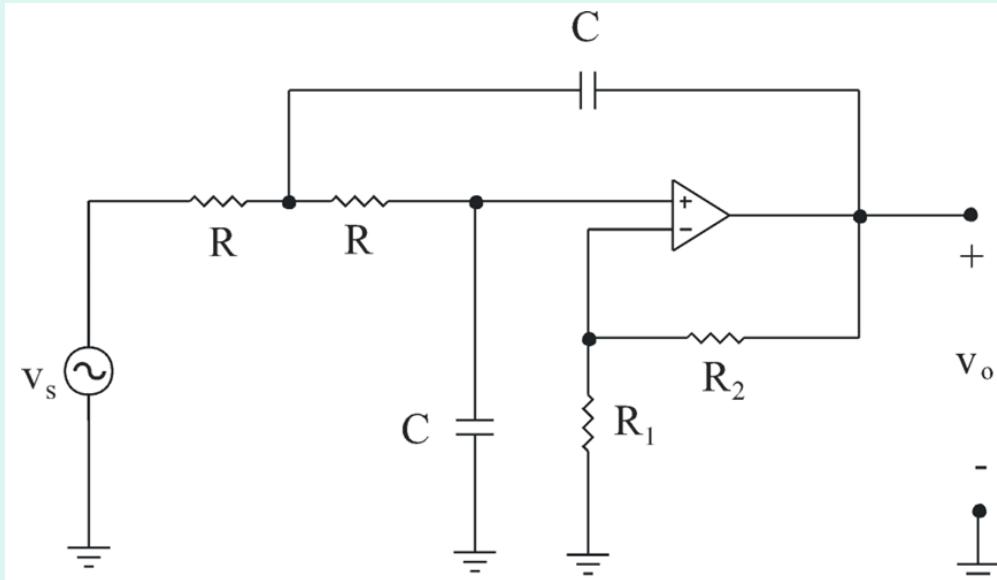
- Analog filter of order N - can be achieved by cascading 1st and 2nd order filters until the desired order is attained
- Exm: 5th order filter = 2x (2nd order filter)+ 1x (1st order filter)

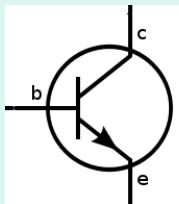




Filter transformation

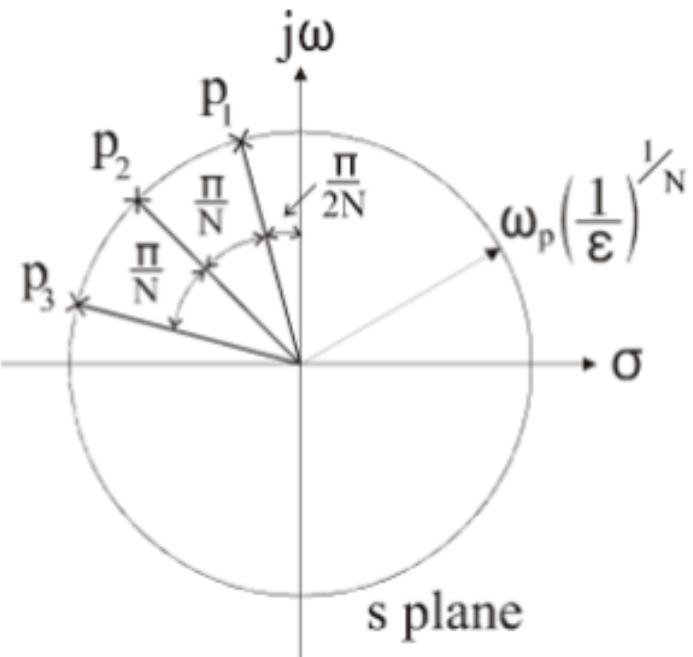
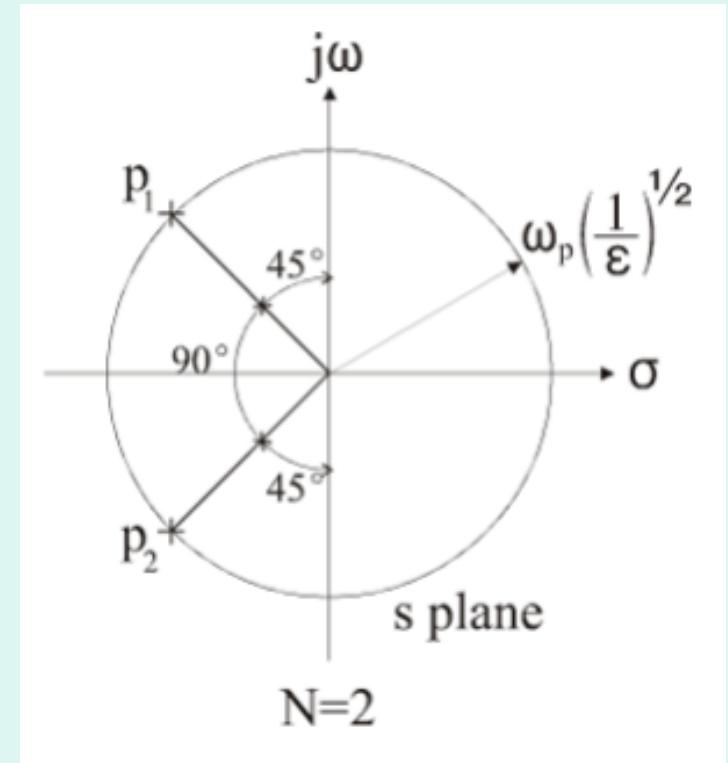
- HP Butterworth filter - exchange R_s and C_s (leaving R_1 and R_2 unchanged)
- for band-pass or band-stop filters - combine LP and HP filter stages

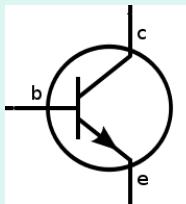




Nth order Butterworth filter

- Pole location - through a graphical approach
- All poles are in the LHP, and lie on a circle of radius $\omega_p(1/\varepsilon)^{1/N}$, equally spaced π/N apart.
- First pole located at an angle of $\pi/2N$ from the $+j\omega$ axis





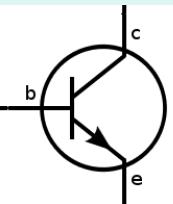
Nth order Butterworth filter

- Once the pole locations are determined, the filter transfer function $T(s)$:

$$T(s) = K \frac{\omega_p^N}{(s - p_1)(s - p_2) \dots (s - p_N)} = K \frac{\omega_0^N}{(s - p_1)(s - p_2) \dots (s - p_N)},$$

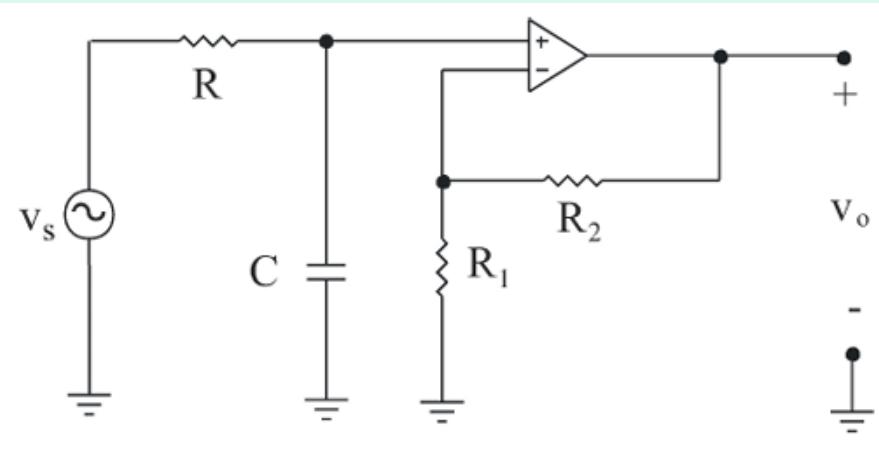
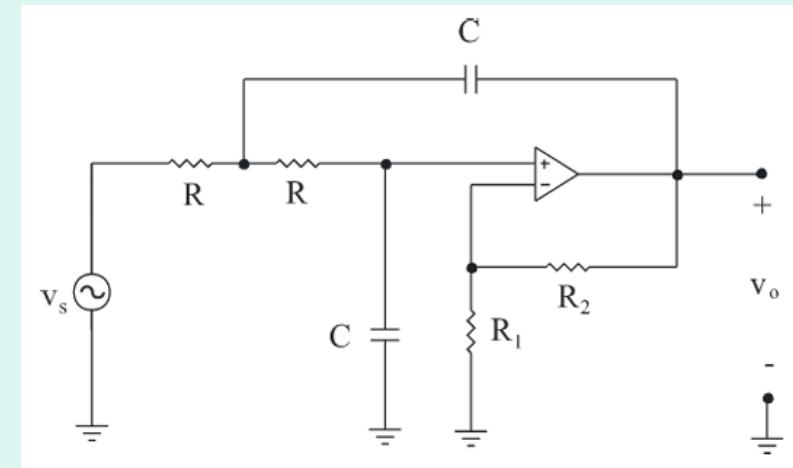
$$\omega_0 = \omega_p \left(\frac{1}{\varepsilon} \right)^{1/N}$$

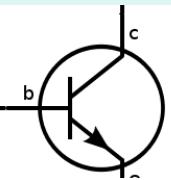
For a Butterworth filter we use $\varepsilon=1 \Rightarrow$ for 1st order filter $|\omega_{p1}|=\omega_0$,
for a 2nd order filter $|\omega_{p1}|=|\omega_{p2}|=\omega_0$



Normalized look-up tables

- The design can be accomplished using normalized look-up tables
- Simplified circuits with equal values components(R , C)
→ simplify the process selecting component values
- Normalized Butterworth polynomials - to determine the denominator of $T(s)$ for a given filter order



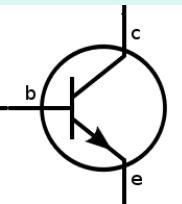


Normalized Butterworth polynomials

Normalized Butterworth Polynomials

Order	Factors of Polynomial
1	$(s + 1)$
2	$(s^2 + 1.414s + 1)$
3	$(s + 1)(s^2 + s + 1)$
4	$(s^2 + 0.765s + 1)(s^2 + 1.848s + 1)$
5	$(s + 1)(s^2 + 0.618s + 1)(s^2 + 1.618s + 1)$
6	$(s^2 + 0.518s + 1)(s^2 + 1.414s + 1)(s^2 + 1.932s + 1)$
7	$(s + 1)(s^2 + 0.445s + 1)(s^2 + 1.247s + 1)(s^2 + 1.802s + 1)$
8	$(s^2 + 0.390s + 1)(s^2 + 1.111s + 1)(s^2 + 1.663s + 1)(s^2 + 1.932s + 1)$

- The table is used to determine $T(s)$ for a given order

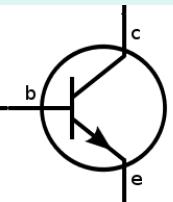


Butterworth polynomials

- Factorization into 1st and 2nd order terms <=> cascading 1st and 2nd order filter stages
- Second order polynomials have the form:

$$B_2(s) = s^2 + 2\zeta s + 1, \quad \zeta = \text{damping factor}$$

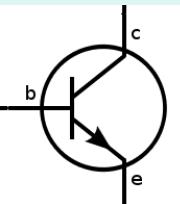
- The gain for each stage/section is given by:
 $K = 3 - 2\zeta = 1 + R_2/R_1$
- The cut-off frequency is $\omega_c = 1/(RC)$



Design example

- Problem: Use the normalized tables to design a 4th order LP Butterworth filter with a cut-off frequency $f_c = 10\text{kHz}$
- Solution: $N=4 \rightarrow$ look into the table

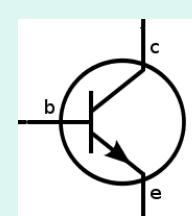
Normalized Butterworth Polynomials	
Order	Factors of Polynomial
1	$(s + 1)$
2	$(s^2 + 1.414s + 1)$
3	$(s + 1)(s^2 + s + 1)$
4	$(s^2 + 0.765s + 1)(s^2 + 1.848s + 1)$
5	$(s + 1)(s^2 + 0.618s + 1)(s^2 + 1.618s + 1)$
6	$(s^2 + 0.518s + 1)(s^2 + 1.414s + 1)(s^2 + 1.932s + 1)$
7	$(s + 1)(s^2 + 0.445s + 1)(s^2 + 1.247s + 1)(s^2 + 1.802s + 1)$
8	$(s^2 + 0.390s + 1)(s^2 + 1.111s + 1)(s^2 + 1.663s + 1)(s^2 + 1.932s + 1)$



Design example (2)

$$D(s) = (s^2 + 0.765s + 1)(s^2 + 1.848s + 1)$$

- For stage 1: 2nd order filter, gain $K_1 = 3 - 0.765 = 2.235$
- For stage 2: 2nd order filter, with gain $K_2 = 3 - 1.848 = 1.152$
- use $K = 1 + R_2/R_1$, arbitrarily choose a common value (choose standard resistor values) $R_1 = 10k\Omega \Rightarrow R_2 = 12.35k\Omega$ for stage 1
- Stage 2 - choose $R_1 = 10k\Omega \Rightarrow R_2 = 1.52k\Omega$
- For R, C - we wish small values for C, so that the physical component is not bulky \Rightarrow for $R = 10k\Omega$, we get $C = 1.6nF$



Design example (3)

- Resulting circuit - gain ~ 2.5

