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@ [ ast time

* Frequency compensation techniques

— dominant pole compensation (a form of lag
compensation) - a pole placed at an appropriate LF
in the open-loop response, to reduce the gain of the
closed-loop amplifier to 0dB for a frequency at or just
below the location of the next pole.

— Miller compensation (feed-forward compensation)
and pole-splitting - capacitor action amplified by the
feedback network

e Filters introduction




Other compensation methods

e

 Lead compensation - places a zero 1n the open-loop response
to cancel one of the existing poles (pole-zero cancellation)
(remember the PD controller)

 Lead-lag compensation - places both a zero and a pole 1n the
open-loop response; usually the pole 1s at open-loop gain<l
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Back to signal filters

e Electronic filters

— low-pass filter - allows frequencies below a certain point to pass while
blocking higher frequencies

— high-pass filter - allows frequencies above a certain point to pass and
blocks lower frequencies

— band-pass filter - allows only frequencies within a specific range to
pass

— band-stop filter - blocks frequencies within a specific frequency range

— notch filter - a sub-type of band-stop filter, blocking only a narrow
frequency band
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Network synthesis
e Network synthesis - design methodology for linear CT filters

* Technique: take an ideal filter frequency response and
approximate 1t by a polynomial function

* Filter groups:
— Butterworth filters - maximally flat frequency response in the pass-
band

— Chebyschev filters - best approximation to the ideal response of any
filter for a specified order and ripple

— Elliptic filters - steepest cutoff of any filter for a specified order and
ripple
— Bessel filters - maximally flat phase delay




@ Back to filters - terminology

A generic LP filter transfer function

T| (dB) *




@ Filter specification and terminology

Standard properties of a filter - the example of LP filter
Pass-band = range of frequencies allowed to pass (<o)
Stop-band = frequency range that is attenuated (>,)
Transition-band (® ,<0<0,)

Selectivity factor = oop/mS

Maximum ripple level tolerated in the pass-band (A__ [dB])

A . [dB]=min amount of attenuation between the stop-band and the
transmission peak in the pass-band T| (dB) *




*’@ The Butterworth filter

» LP Butterworth filter = all-pole filter (all its zeros are
at ®=00)

* 15t order LP active filter (Sallen-Key configuration)
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@ 20d grder LP Butterworth filter

» Active filter, Sallen-Key configuration
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@ Magnitude response and filter order (N)

* Selectivity increases with N
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@ LP Butterworth - TF

* For an Nth order Butterworth filter, the magnitude response:

7(jo)| = ——— :

p

¢ = pass-band deviation parameter - determines A

A =20log1+é&* = 1010g(1+32) & £ =~10"="0_1

2N = ‘T(ja)p)

For a Butterworth filter, the response is very flat near ®=0, and A__1s

max

maximum when o= _ - this is known as maximally flat response (one of the
features of Butterworth filters)

Ford =3dB=10log, 2 => &=~10"20>" _1 =1




@ Filter order influence

* As N increases, the pass-band region approaches a maximally
flat response throughout the pass-band, the transition region
decreases, and the filter response approaches the ideal case

* Attenuation at o =edge of the stop-band
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Design perspective: find the lowest integer value of N that
satisfies A(w )>Amin




*’@ Building higher order filters

* Analog filter of order N - can be achieved by cascading
18t and 2™ order filters until the desired order is attained

« Exm: 5™ order filter = 2x (2" order filter)+ 1x (15t order
filter)

e
V4




@ Filter transformation

« HP Butterworth filter - exchange Rs and Cs (leaving
R, and R, unchanged)

 for band-pass or band-stop filters - combine LP and

HP filter stages




@ Nth order Butterworth filter

* Pole location - through a graphical approach

« All poles are in the LHP, and lie on a circle of radius
o (1/¢)'™, equally spaced /N apart.

 First pole located at an angle of /2N from the +jm axis
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@ Nth order Butterworth filter

* Once the pole locations are determined, the filter
transfer function T(s):

For a Butterworth filter we use e=1=> for 1 order filter |03p1|=0)0,
for a 2" order filter |o ,|[=|o ,|[=0,




*’@ Normalized look-up tables

* The design can be accomplished using normalized look-
up tables

« Simplified circuits with equal values components(R, C)
— simplify the process selecting component values

e Normalized Butterworth polynomials - to determine the
denominator of T(s) for a given filter order
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@ Normalized Butterworth polynomials

Normalized Butterworth Polynomials

Order Factors of Polynomial

1 |(s+1)

(s2+ 14145+ 1)

(s+ 1)(s"+s+1)

(s2+ 0.765s + 1)(s* + 1.848s + 1)

(s24+0.518s + 1)(s? + 1.414s + 1)(s* + 1.932s + 1)

(s + 1)(s? + 0.445s + 1)(s + 1.247s + 1)(s* + 1.802s + 1)

2
3
4
5 |(s+1)(s2+0.618s+ 1)(s*+ 1.618s + 1)
6
7
8

(s2+0.390s + 1)(s> + L.111s + 1)(s* + 1.663s + 1)(s> + 1.932s + 1)

* The table 1s used to determine T(s) for a given
7) order




@ Butterworth polynomials

 Factorization into 1%t and 2"¢ order terms <=> cascading
1st and 2"¢ order filter stages

* Second order polynomials have the form:

B,(s)=s*+2{s+1, ¢ =damping factor

® The gain for each stage/section 1s given by:
K=3-2=1+R,/R,
* The cut-oft frequency 1s w_=1/(RC)




Design example

* Problem: Use the normalized tables to design a 4™ order LP
Butterworth filter with a cut-off frequency £ =10kHz

e Solution: N=4 — look into the table

Normalized Butterworth Polynomials

Order Factors of Polynomial

(s+1)

(s"+ 1.414s+ 1)

(s+ D)(s"+s+1)

(s+ 1)(s+0.618s + 1)(s* + 1.618s + 1)

(s2+0.518s + 1)(s>+ 1.414s + 1)(s* + 1.932s + 1)

(s + 1)(s2+ 0.445s + 1)(s* + 1.247s + 1)(s* + 1.802s + 1)

(s2+0.390s + 1)(s*+ L.111s + 1)(s2 + 1.663s + 1)(s? + 1.932s + 1)




*’@ Design example (2)

D(s)=(s* +0.765s +1)(s” +1.848s +1)

* For stage 1: 2% order filter, gain K,=3-0.765=2.235
« For stage 2:2"¢ order filter, with gain K,=3-1.848=1.152

* use K=1+R /R,, arbitrarily choose a common value
(choose standard resistor values) R,=10kQ =>
R,=12.35kQ) for stage 1

 Stage 2 - choose R, =10kQ => R, =1.52k()

 For R, C - we wish small values for C, so that the
physical component 1s not bulky => for R=10kC2, we
get C=1.6nF
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*’@ Design example (3)

e Resulting circuit - gain~2.5
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