ELEC 301 - Filters - Chebyshev
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@ [ ast time

e The design of Butterworth filters
« Use 1st and 2" order Sallen-Key circuit blocks

« Butterworth polynomials - distribute the poles regularly on a
half-circle in the HLP

* The Butterworth active filters minimize the ripples in the
passband
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Recall: Network synthesis
e Network synthesis - design methodology for linear CT filters

* Technique: take an ideal filter frequency response and
approximate 1t by a polynomial function

* Filter groups:
— Butterworth filters - maximally flat frequency response in the pass-
band

— Chebyschev filters - best approximation to the ideal response of any
filter for a specified order and ripple

— Elliptic filters - steepest cutoff of any filter for a specified order and
ripple
— Bessel filters - maximally flat phase delay

® Further information - see Ch 16 in Sedra and Smith -
Microelectronic circuits




*’@ Chebyshev filter

 Active filter (opamps + Rs,Cs) - it can also be
implemented using Sallen-Key circuit structure

* Chebyshev filter vs Butterworth filter:

— the Chebyshev filter, for the same polynomial
order, has a steeper roll-off (smaller gap between
the pass-band and the stop-band

— Chebyshev filter has more ripple 1n both the pass-
band and the stop-band




*’@ Chebyshev filters

* Two common types:

— Type 1 filter - “equiripple” response 1n the pass-band

+ monotonically decreasing transmission in the stop-
band

— Type 2 filter - maximally flat pass-band and
equiripple response in the stop-band

* The number of passband maxima and minima
combined 1s equal with the order of the filter




@ Odd- and even-order type I Chebyshev filters

* The even-order filter has a maximum magnitude
deviation at ®=0

T

 The odd-order filter has a minimum deviation at =0
* Like the Butterworth filter, this 1s an all-pole filter




*’@ Chebyshev type I - T(s)

» Use same variables as for the Butterworth filter, in
order to specify the key properties

&= pass-band deviation parameter - determines A

» Nth order Chebyshev filter, with a pass-band edge at
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*’@ The pass-band ripple A

* & = pass-band deviation parameter - determines A

A, =20logy1+&” =10log(1+&?) & & =100 1

The attenuation of the Chebyshev filter at the stop-band edge (0=w,):
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@ Design - determine N

 For a desired minimum attenuation Amin of the

stop-band, we can determine the minimum
number N of poles needed to achieve the
requirement A(o )>A .

 Increasing N => the magnitude response of the
filter will approach the 1deal case
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*’@ Chebyshev filter - poles
* The poles of the Chebyshev filter, for n=1,2 .. N
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The transfer function:
wg/g
A (S—pl)(S—pz)...(S—pN)

Remark: poles are spaced along an elliptical path in the LHP of the s-

plane. The closer proximity of the poles to the jo-axis (compared with

the Butterworth filter) is the source of both the increased ripple in the
UBC | transfer function and the steeper roll-off beyond the 3dB point

T(S):K




*’@ Oscillators

e Linear oscillator = a circuit that generates a stable
sinusoidal waveform at a specific frequency, with
uniform amplitude

e Nonlinear oscillator = a circuit that generates a
function different than an harmonic signal, e.g. a
square or triangular waveform - Exm: use as a
timing device (provide clock pulses to be used as
timing reference for digital systems)

* QOscillators can generate an output signal without
an 1put signal




*’@ Op-amp sine-wave oscillators

 Remark: even for a linear oscillator, some
nonlinearity 1s essential in order to provide an
amplitude control of the output sine wave
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*’@ S-plane behavior

* An oscillator circuit will maintain poles on the jm-axis

Roots at + jo, = 1 A(ja)),ﬁ’(ja))zs2 W,

. a) S
sm(a)ol)<#>s2 +Oa)§ ; cos(a)ot)ész P

*The oscillation condition needs to be satisfied for only one
frequency in order to get harmonic output signal!

1+ A(jw,)B(jw,)=0

The "Barkhausen criterion:<




@ Mathematical model - van der Pol oscillator

 Balthasar van der Pol - proposed the equation
while working at Philips (1926)

e Autonomous van der Pol equation (u>0):
d’x dx

o ,u(l—xz)Eer:O
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