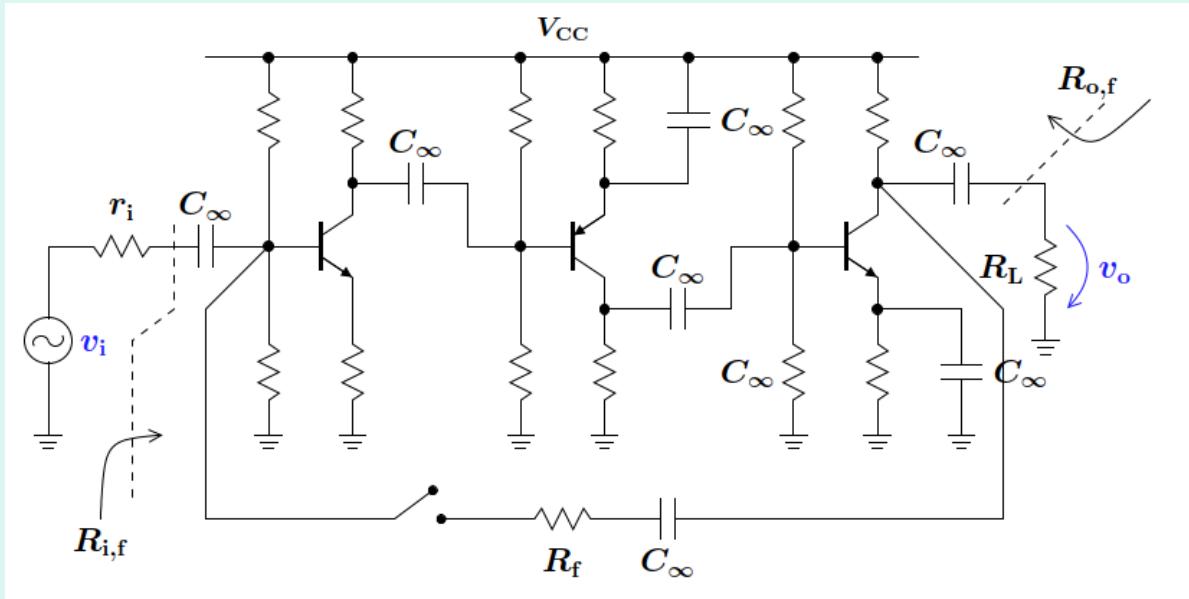
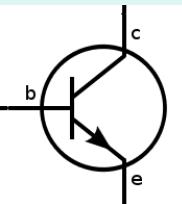


ELEC 301 - Oscillators

L31 - Nov 25

Instructor: Edmond Cretu

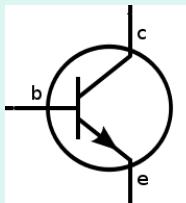




Last time

- Oscillators - linear (harmonic) vs nonlinear (relaxation) oscillators
- Barkhausen oscillation conditions
- Separate feedback loops: (a) control the frequency of oscillation + (b) control the amplitude of oscillation

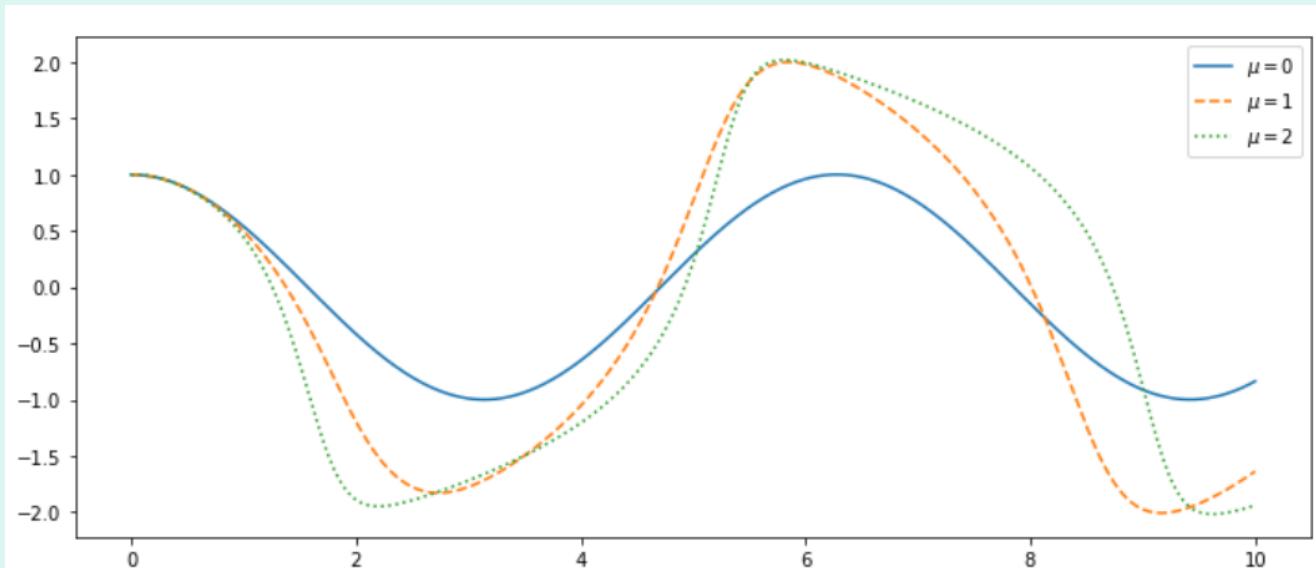
The "Barkhausen criterion":
$$\begin{cases} |A(j\omega_0)\beta(j\omega_0)| = 1 \\ \varphi(A(j\omega_0)) + \varphi(\beta(j\omega_0)) = 180^\circ \end{cases}$$

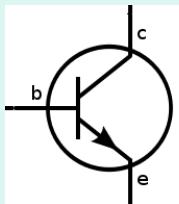


Mathematical model - van der Pol oscillator

- Balthasar van der Pol - proposed the equation while working at Philips (1926)
- Autonomous van der Pol equation ($\mu > 0$):

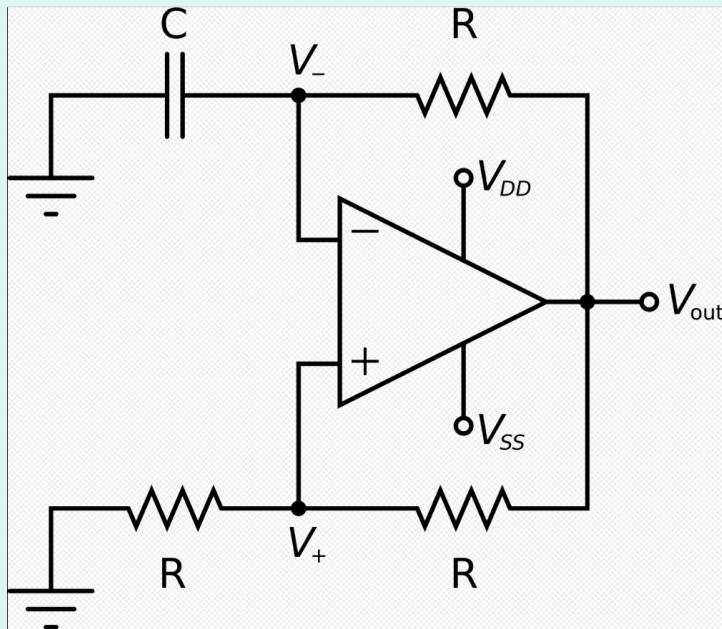
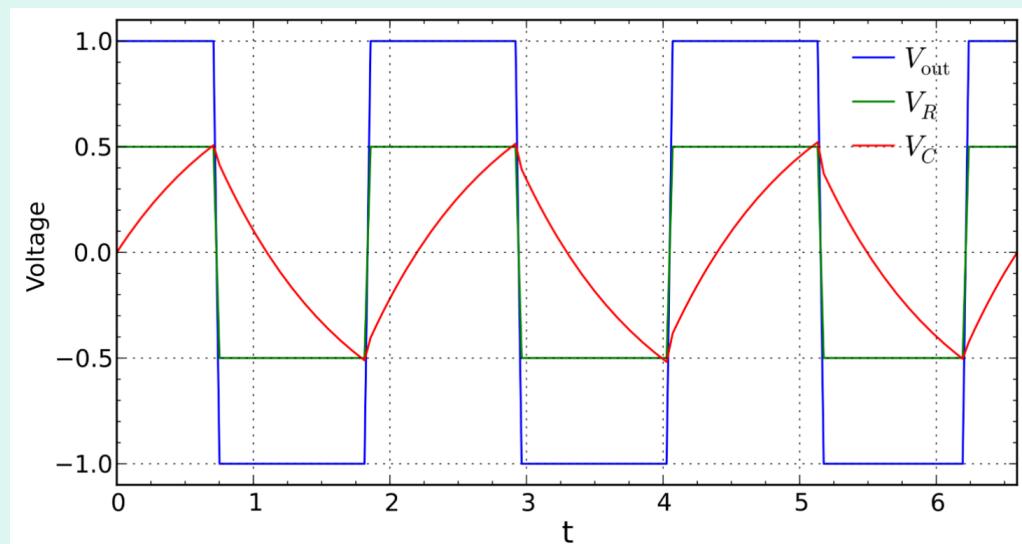
From: $\frac{d^2x}{dt^2} + x = 0$ ($\omega_0 = 1, Q \rightarrow \infty$) to: $\frac{d^2x}{dt^2} - \mu(1 - x^2) \frac{dx}{dt} + x = 0$

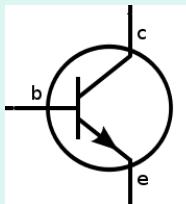




Exm: relaxation oscillator

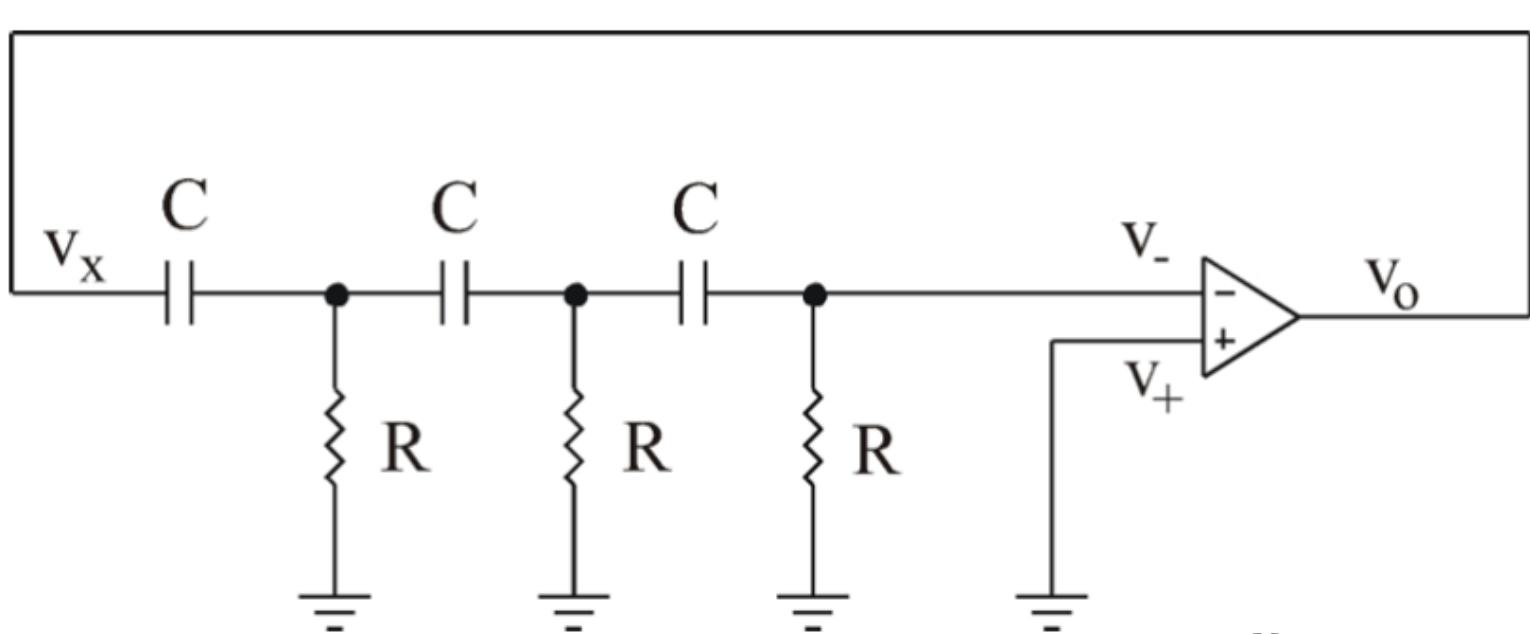
- Two feedback loops: a fast acting positive (regenerative) feedback loop + a slow acting but dominant negative feedback loop



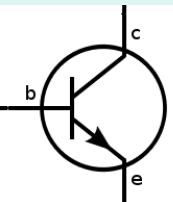


Exm: phase-shift oscillator

- Op-amp + R_s + C_s
- Concept: provide sequential phase shifts to sum up to 180°

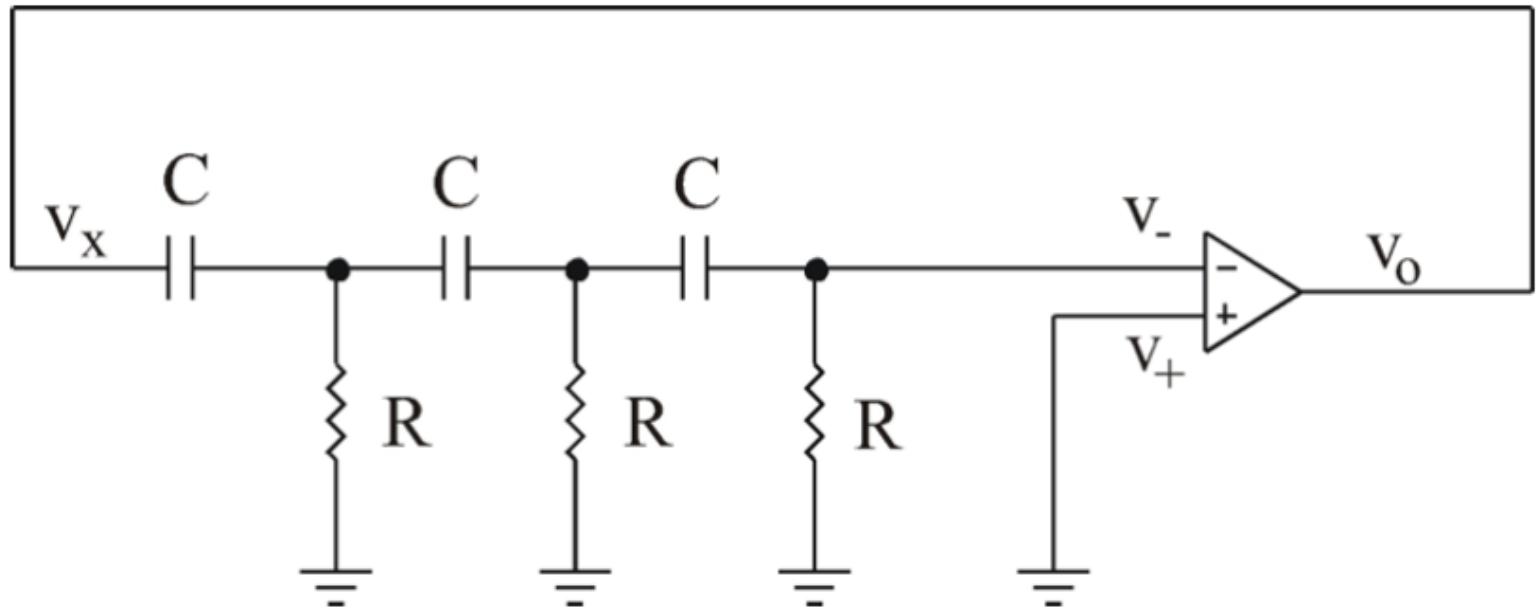


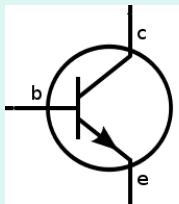
$$\omega_0 = \frac{1}{\sqrt{6RC}}$$



Phase-shift oscillator

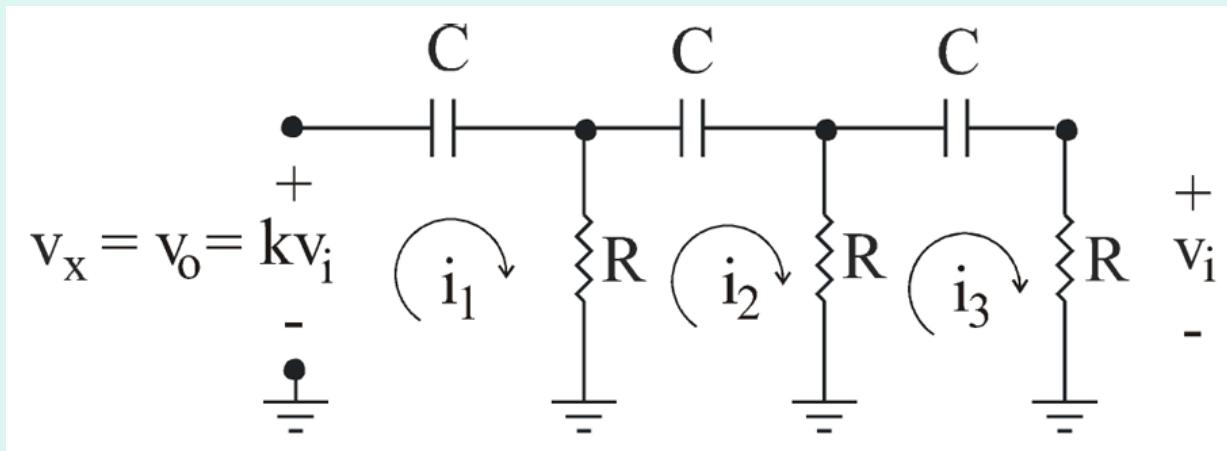
- 2 poles would only asymptotically provide the required 180° phase-shift \Rightarrow need for 3 poles
- The 3rd pole makes it possible to set ω_0 (oscillation frequency) at any value by choosing the appropriate pole locations.





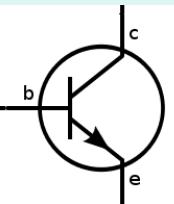
Phase-shift oscillator analysis

- Assume the op-amp stage gain=k



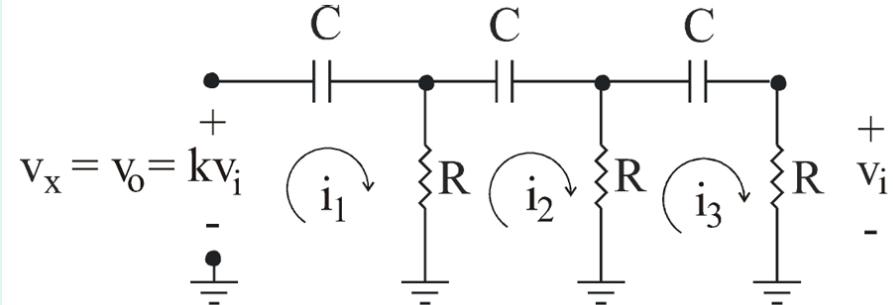
Loop equations:

$$\begin{cases} \left(R + \frac{1}{sC} \right) i_1 - R i_2 = k v_i \\ -R i_1 + \left(2R + \frac{1}{sC} \right) i_2 - R i_3 = 0 \\ -R i_2 + \left(2R + \frac{1}{sC} \right) i_3 = 0 \end{cases}$$



Eliminate the loop currents variables

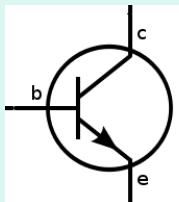
- Eliminate variable i_1, i_2, i_3



$$i_3 = \frac{v_i}{R} \rightarrow i_2 = \frac{1}{R} \left(2R + \frac{1}{sC} \right) i_3 = \frac{v_i}{R^2} \left(2R + \frac{1}{sC} \right)$$

$$i_1 = \frac{v_i}{R^3} \left(2R + \frac{1}{sC} \right)^2 - \frac{v_i}{R}$$

$$\left(R + \frac{1}{sC} \right) \left[\frac{v_i}{R^3} \left(2R + \frac{1}{sC} \right)^2 - \frac{v_i}{R} \right] - \frac{v_i}{R} \left(2R + \frac{1}{sC} \right) = kv_i$$



Phase-shift oscillator (cont.)

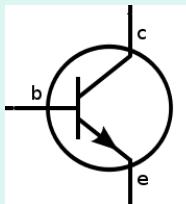
- Cancel v_i terms, expand and collect like terms:

$$\left(R + \frac{1}{sC} \right) \left[\frac{3}{R} + \frac{4}{sR^2C} + \frac{1}{s^2R^3C^2} \right] - 2 - \frac{1}{sRC} = k$$

$$3 + \frac{7}{sRC} + \frac{5}{s^2R^2C^2} + \frac{1}{s^3R^3C^3} - 2 - \frac{1}{sRC} = k$$

$$1 + \frac{6}{sRC} + \frac{5}{s^2R^2C^2} + \frac{1}{s^3R^3C^3} = k$$

$$\frac{s^3R^3C^3 + 6s^2R^2C^2 + 5sRC + 1}{s^3R^3C^3} = k$$



Oscillation condition

- set $s=j\omega \Rightarrow$ the equation transforms into:

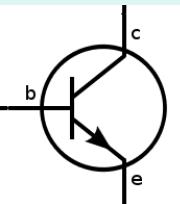
$$\frac{\omega^3 R^3 C^3 - 5\omega R C + j(6\omega^2 R^2 C^2 - 1)}{\omega^3 R^3 C^3} = k$$

The phase condition (assume $k < 0$):

$$\tan^{-1} \left(\frac{6\omega^2 R^2 C^2 - 1}{\omega^3 R^3 C^3 - 5\omega R C} \right) = -180^\circ \Rightarrow 6\omega^2 R^2 C^2 - 1 = 0 \Leftrightarrow \omega = \frac{1}{\sqrt{6}RC}$$

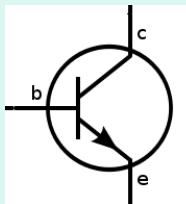
Getting back to the oscillation condition eqn:

$$k = -29$$



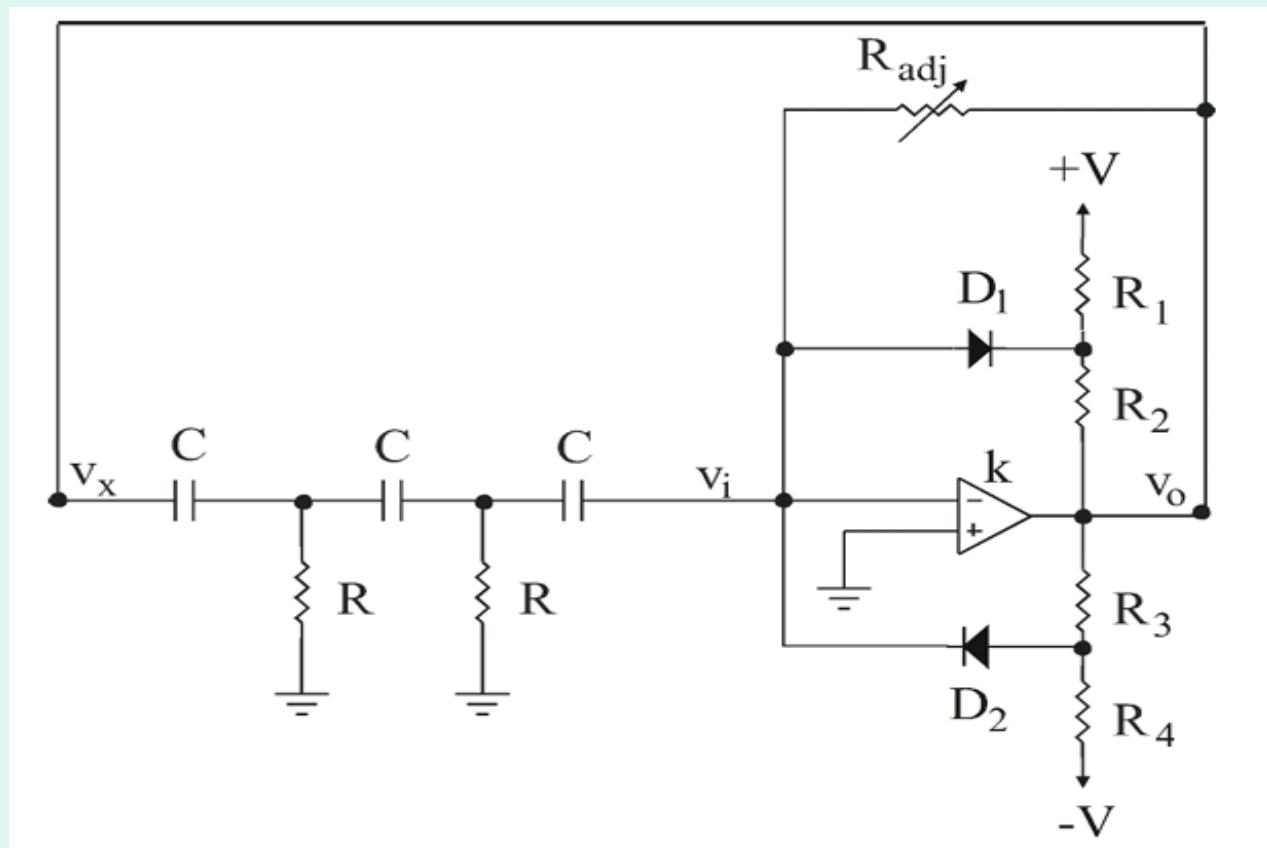
The amplitude control

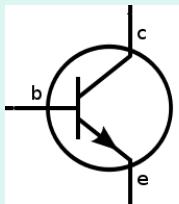
- Goal: set and maintain a desired oscillation amplitude, despite potential change (e.g. due to temperature) in $A\beta$
- Need: a control circuit to force $A\beta=1$ at the desired output amplitude
 - Transient regime: to make sure oscillations can and will begin, the circuit is designed so that $|Ab|>1$ (only slightly higher) → poles initially in the RHP (exponential amplitude growth)
 - Damping regime: when the desired amplitude is reached, the control network must reduce $|A\beta|$ to unity → poles pulled onto the $j\omega$ -axis
 - Maintenance: if the loop gain $|A\beta|$ varies in either direction, then the control must act to readjust the loop gain to unity



Amplitude control - soft limiter

- A simple way: use a limiter circuit to prevent amplitude from exceeding a preset level
- Soft limiter - usually used to minimize nonlinear distortions



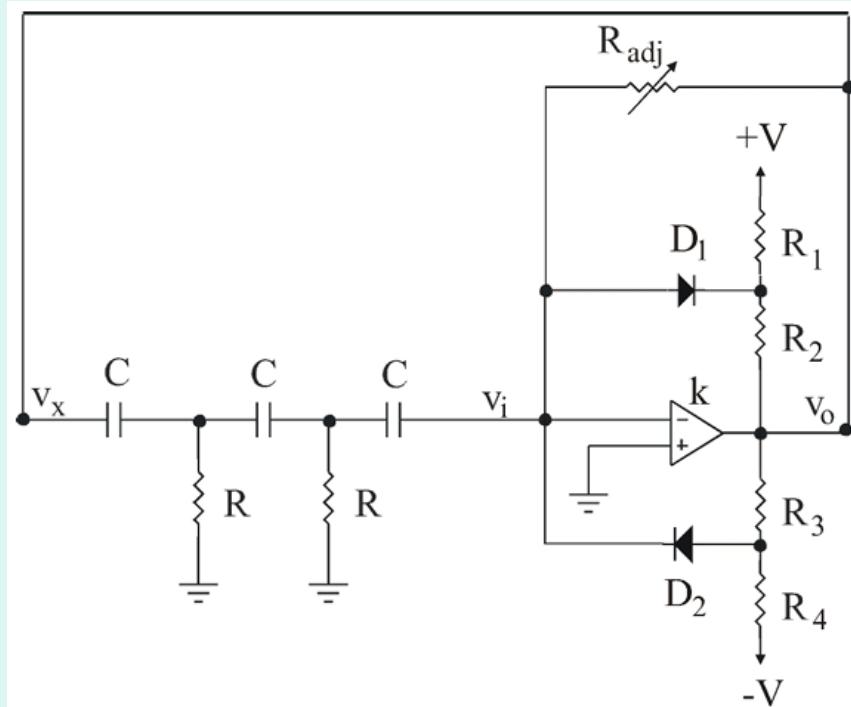


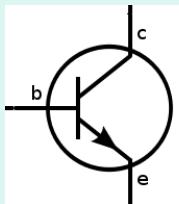
Soft limiter

- Resistor network + diodes

$$\text{For } u_{D2} < 0.6V : u_{D2} = \frac{G_3 v_O + G_4 (-V)}{G_3 + G_4} = \frac{R_4}{R_3 + R_4} v_O - \frac{R_3}{R_3 + R_4} V$$

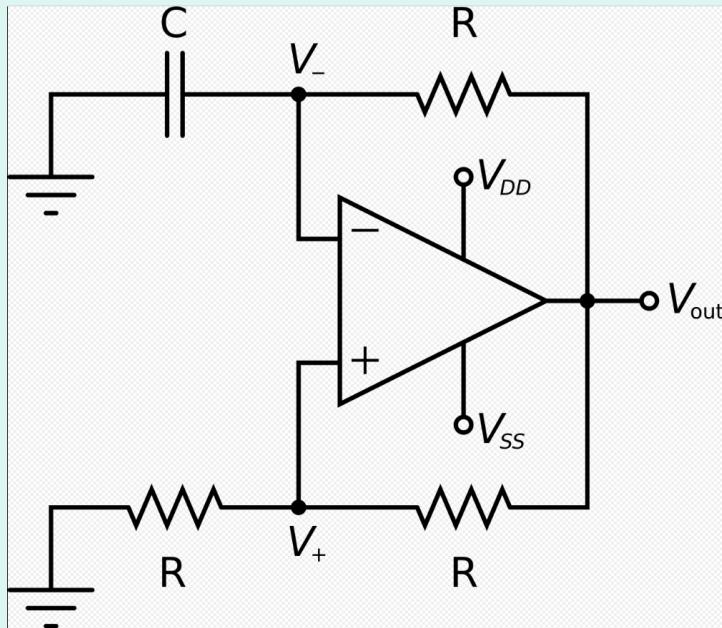
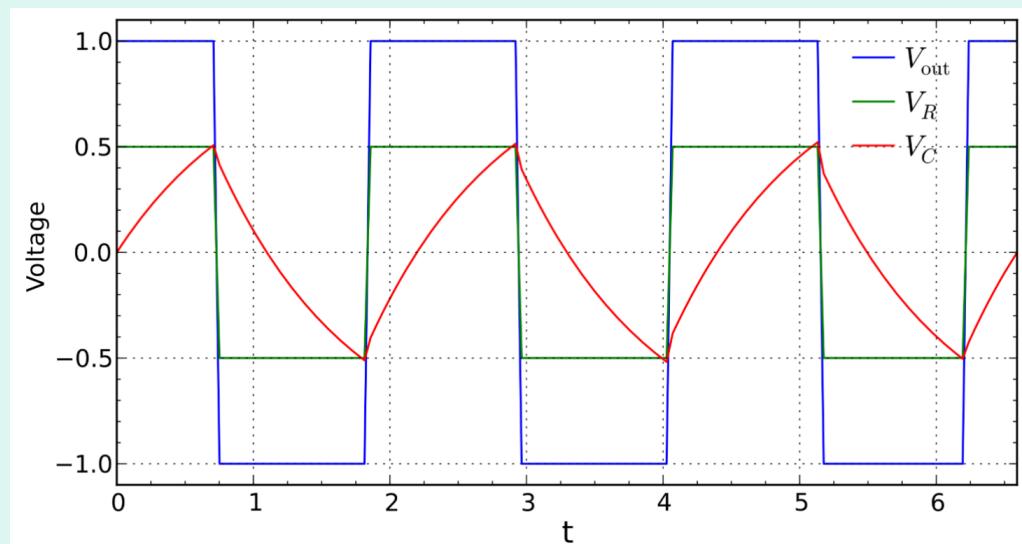
$$\text{For } u_{D1} > -0.6V : u_{D1} = \frac{R_1}{R_1 + R_2} v_O + \frac{R_2}{R_1 + R_2} V$$

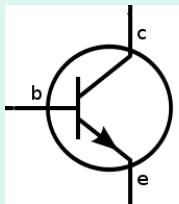




Relaxation oscillator

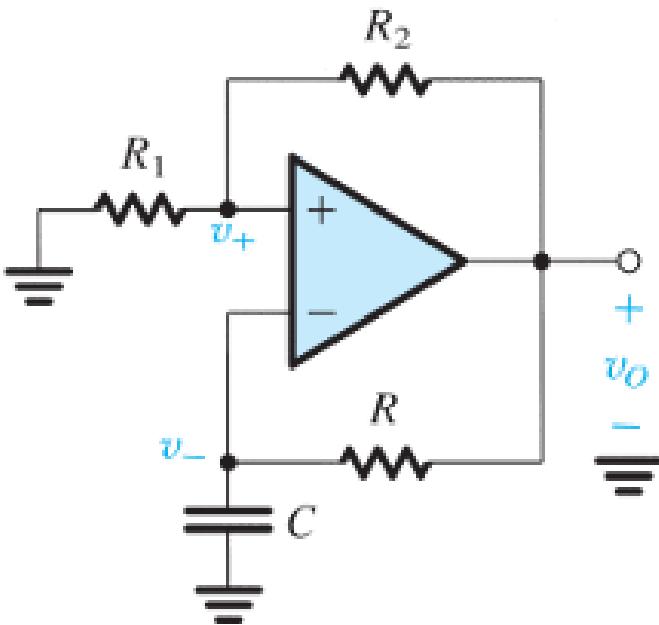
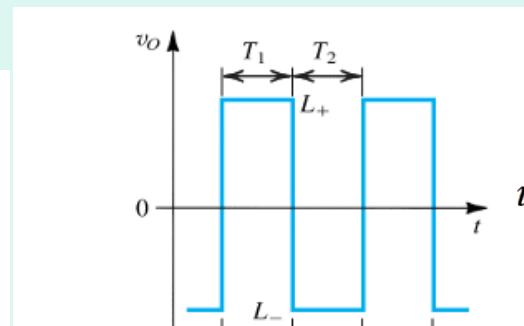
- Two feedback loops: a fast acting positive (regenerative) feedback loop + a slow acting but dominant negative feedback loop





Relaxation oscillator analysis

- Astable multivibrator circuit

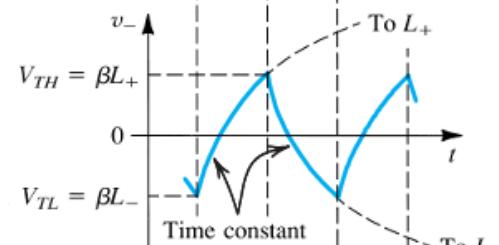


$$\beta = \frac{R_1}{R_1 + R_2}, \tau = RC$$

$$u_c(t) = u_c(\infty) - (u_c(\infty) - u_c(0+))e^{-t/\tau}$$

$$T_1 = \tau \ln \frac{1 - \beta}{1 + \beta}$$

$$T_2 = \tau \ln \frac{1 + \beta}{1 - \beta}$$



$$T = T_1 + T_2 \xrightarrow{L_+ = L} T = 2\tau \ln \frac{1 + \beta}{1 - \beta}$$

