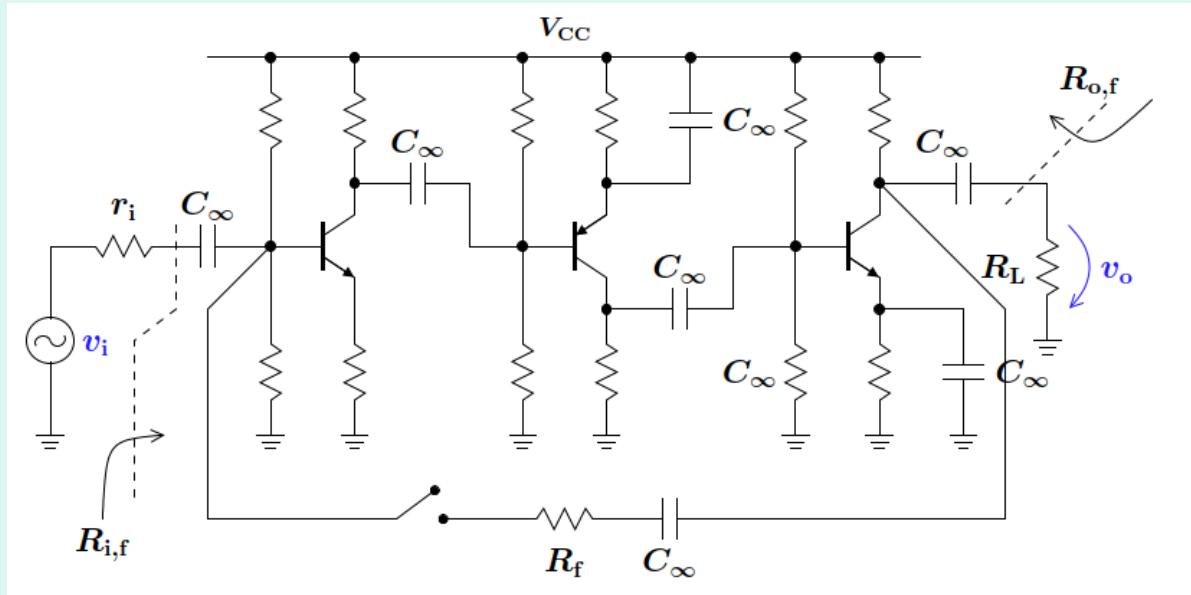


ELEC 301 - Oscillators (2)

L32 - Nov 27

Instructor: Edmond Cretu

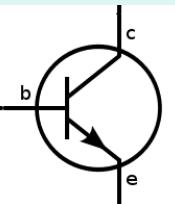




Last time

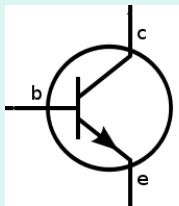
- Barkhausen oscillation conditions
- Modeling the (nonlinear) amplitude stabilization - van der Pol autonomous equation
- Separate feedback loops: (a) control the frequency of oscillation + (b) control the amplitude of oscillation
- Phase-shift harmonic oscillators

The "Barkhausen criterion":
$$\begin{cases} |A(j\omega_0)\beta(j\omega_0)| = 1 \\ \varphi(A(j\omega_0)) + \varphi(\beta(j\omega_0)) = 180^\circ \end{cases}$$



L32 Q01 - nonlinearity in oscillators

- Which feedback loop is responsible for nonlinearities in a harmonic oscillator?
- A. frequency-control loop
- B. amplitude-control loop
- C. both frequency and amplitude control circuits are linear
- D. both frequency and amplitude control are nonlinear

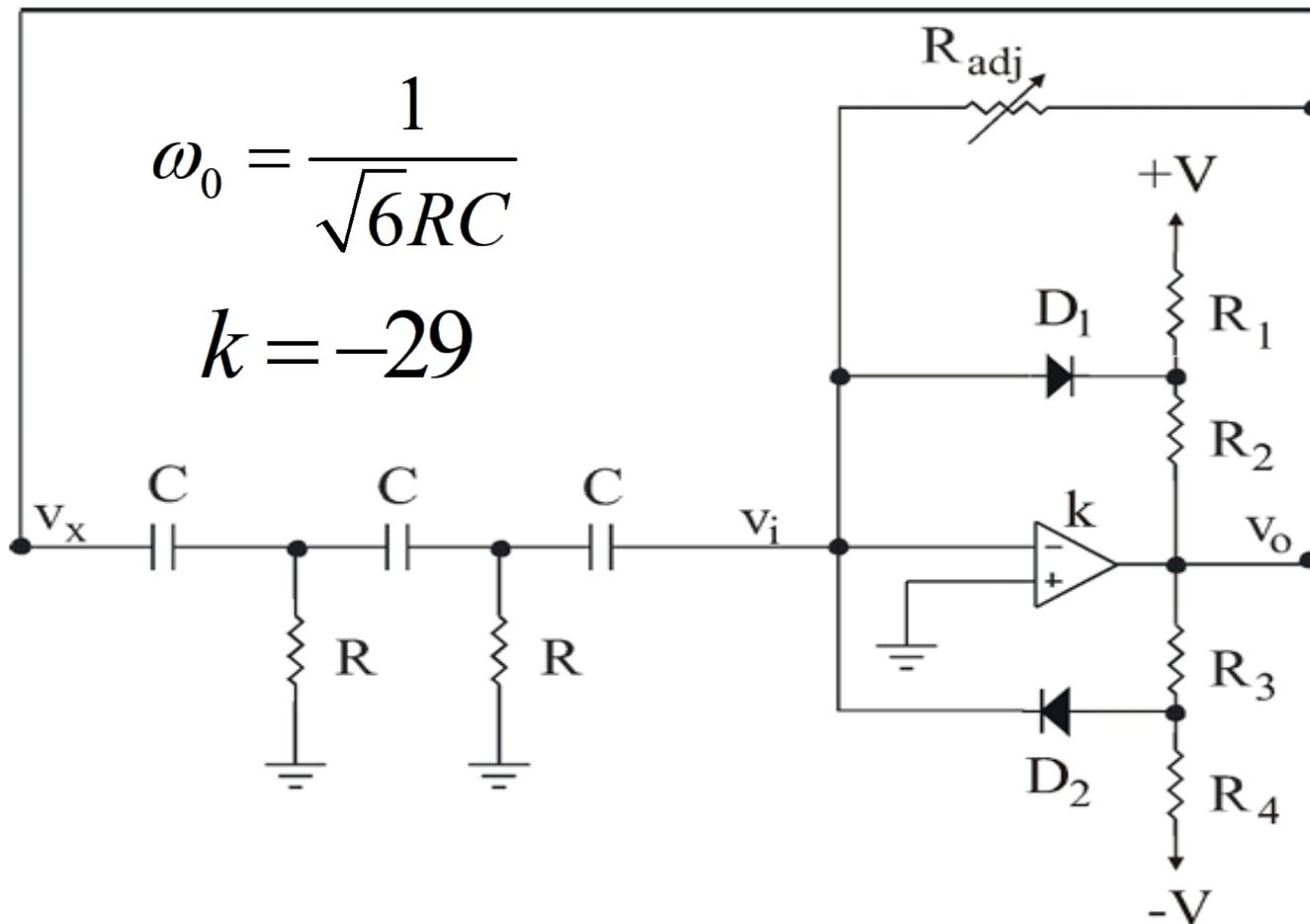


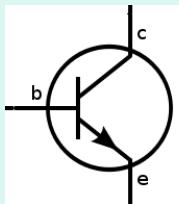
Phase-shift oscillator with amplitude control

- frequency of oscillation - controlled by the $RC+$ amplifier gain
- amplitude of oscillation - controlled by the diode soft-limiters

$$\omega_0 = \frac{1}{\sqrt{6}RC}$$

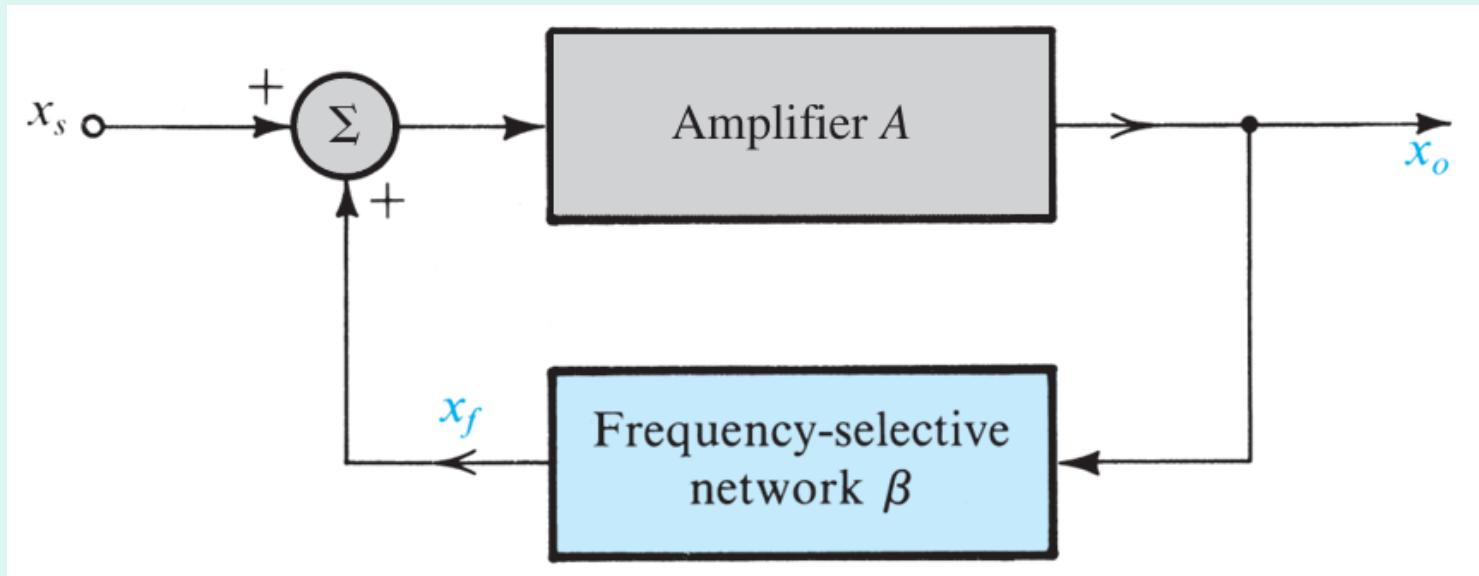
$$k = -29$$



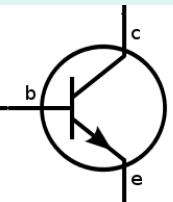


Further remarks on the oscillation criterion

- $L(j\omega_0) = A(j\omega_0)\beta(j\omega_0) = -1$ (negative feedback scheme)
- In many textbooks, a different summation sign (positive feedback scheme) is used in oscillator theory

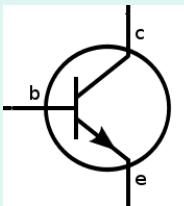


$$1 - A(j\omega_0)\beta(j\omega_0) = 0 \Leftrightarrow \begin{cases} |A(j\omega_0)\beta(j\omega_0)| = 1 \\ \varphi(A(j\omega_0)) + \varphi(\beta(j\omega_0)) = 0^\circ \end{cases}$$



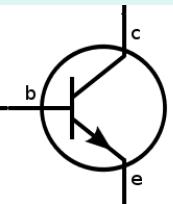
Oscillation criterion (2)

- For the circuit to oscillate at a specific frequency ω_0 , the oscillation (Barkhausen) criteria should be only satisfied for $\omega=\omega_0$, or otherwise the resulting waveform will not be a simple harmonic signal
- The frequency of oscillation is determined solely by the phase characteristics of the feedback loop
- The stability of the oscillation frequency - determined by the how the phase $\varphi(\omega)$ of the loop gain varies around ω_0



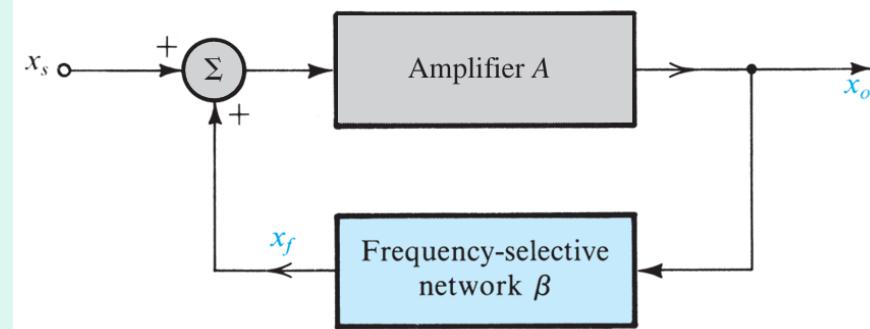
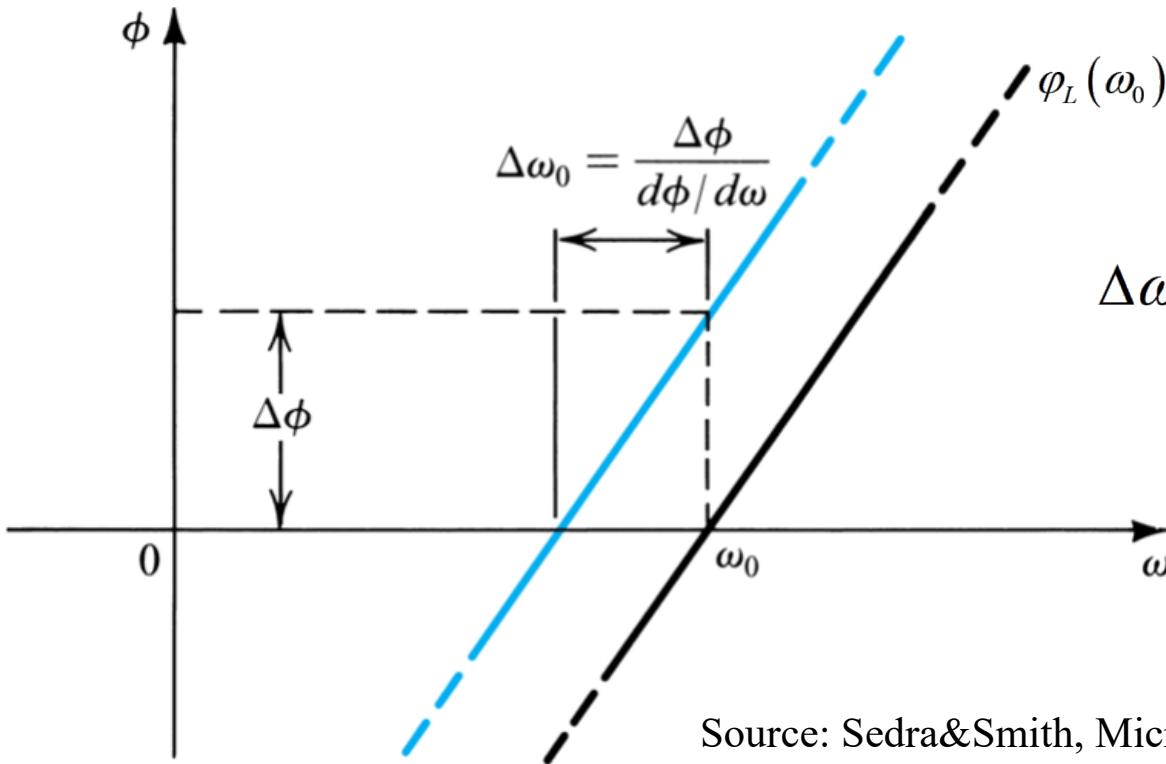
L32 Q02 - ω_0 stability

- What type of dependence of the phase on frequency will ensure a more stable frequency of oscillation?
- A. a smooth, slow-slope dependence $\varphi(\omega)$ around ω_0
- B. a steep variation of $\varphi(\omega)$ around ω_0
- C. The stability of the oscillation frequency is not dependent of the slope of $\varphi(\omega)$ around ω_0



Stability of the oscillation frequency

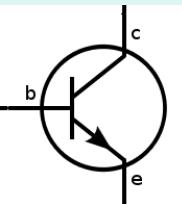
- Positive feedback convention
- The slope of $\varphi(\omega)$ gives the stability: a steep variation results in a more stable frequency



$$\varphi_L(\omega_0) = 0 \Rightarrow \varphi_L(\omega_0 + \Delta\omega) \approx 0 + \frac{d\varphi_L}{d\omega}(\omega_0) \Delta\omega$$

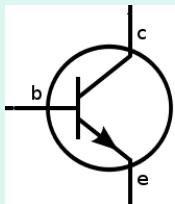
$$\Delta\omega = \frac{\varphi_L(\omega_0 + \Delta\omega) - \varphi_L(\omega_0)}{\frac{d\varphi_L}{d\omega}(\omega_0)}$$

Source: Sedra&Smith, Microelectronic circuits



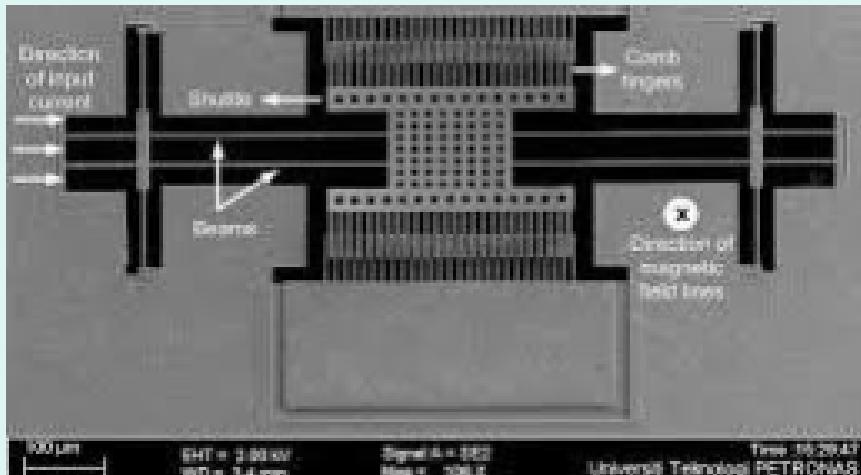
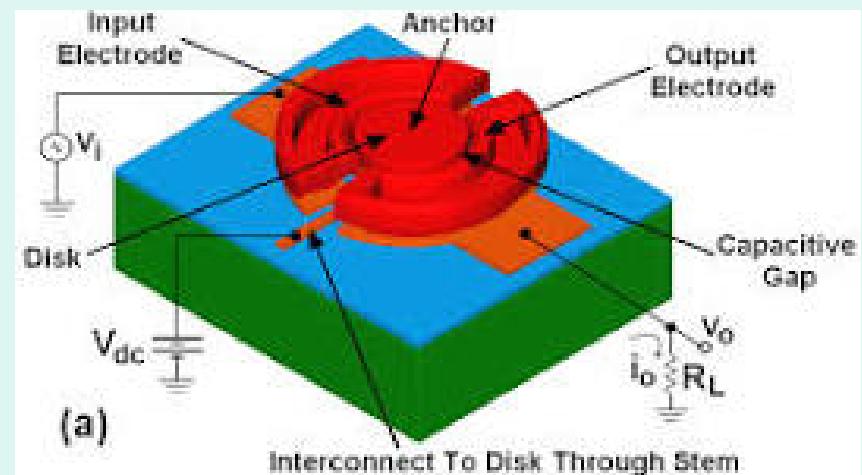
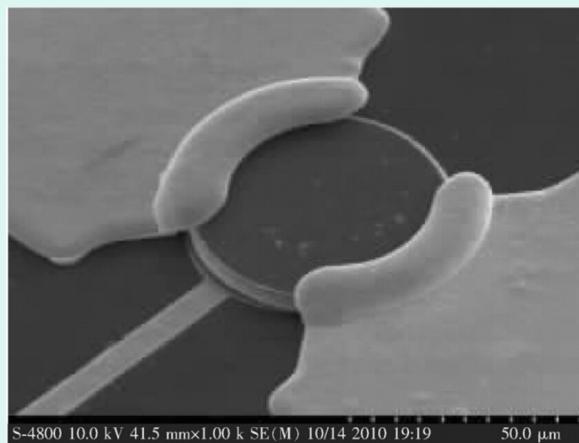
RLC oscillator example

- Exploit the selectivity of the LC resonant circuit (or equivalent resonant structure, e.g. MEMS resonator)
- General analysis steps:
 1. Break the feedback loop and determine the loop gain $A(s)\beta(S)$
 2. Find oscillation frequency from the phase condition (180° or 360° , depending on the feedback model used)
 3. Find the condition for the oscillations to start $|A(j\omega_0)\beta(j\omega_0)| \geq 1$
 4. Add an additional amplitude control feedback to set the desired amplitude level - force $|A\beta|$ to remain unity at the desired output amplitude

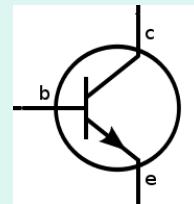


MEMS resonators

- Used in microelectronics, instead of physical inductors - high Q at high frequencies

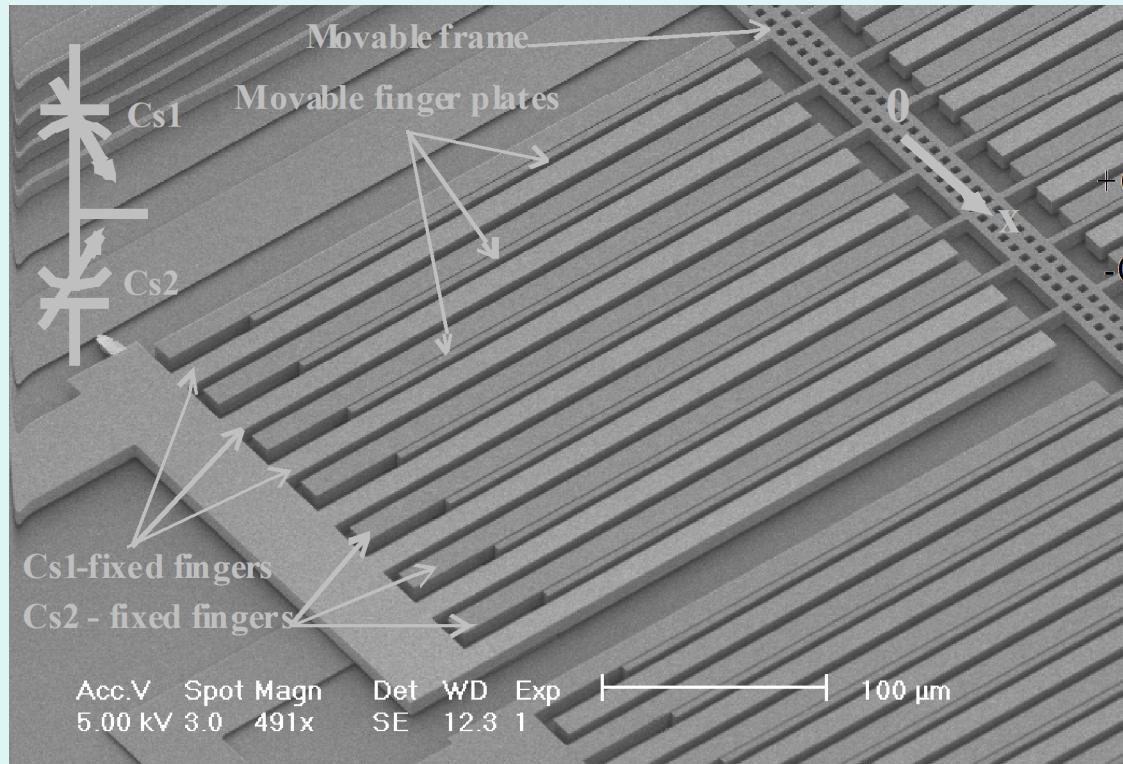
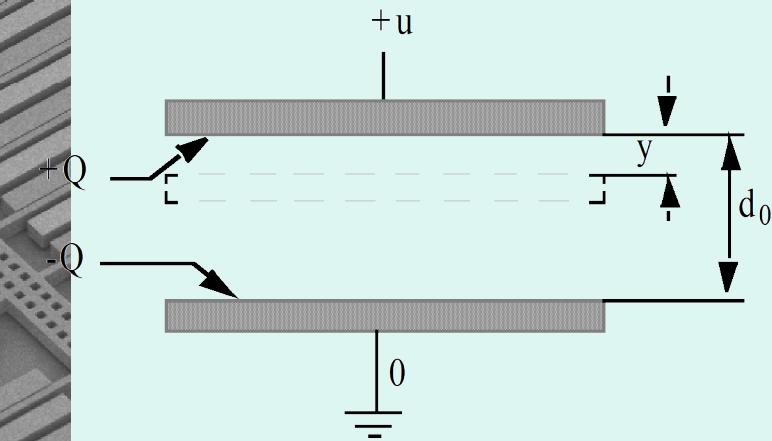


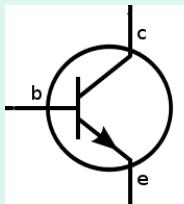
Source: H Xu et al[2025]Stability of capacitive MEMS oscillators, Microsystems Technologies



Electromechanical coupling in MEMS capacitive structures

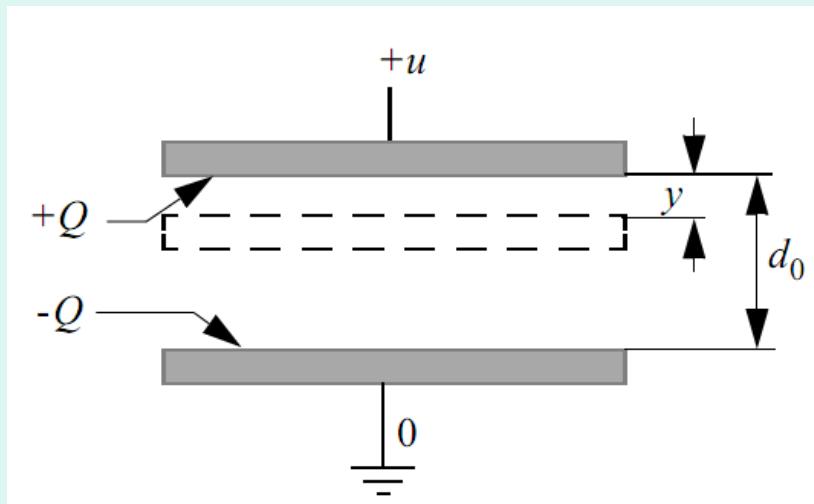
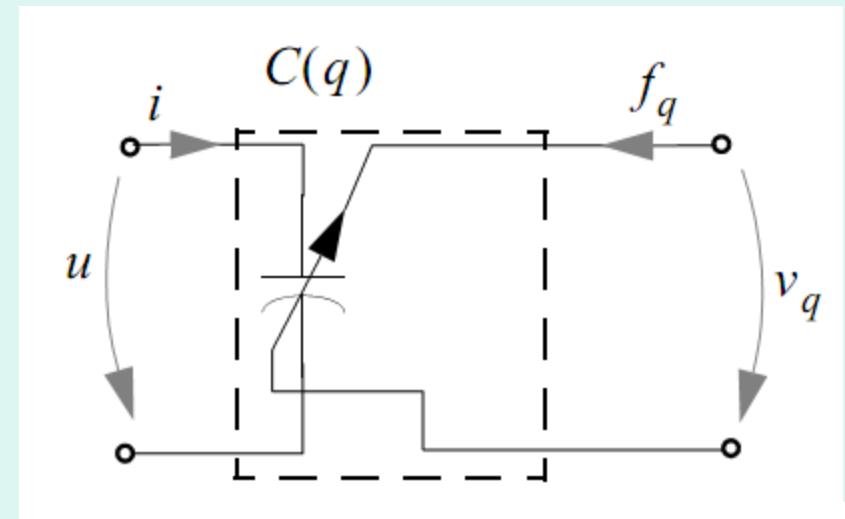
- MEMS capacitor - movable plate



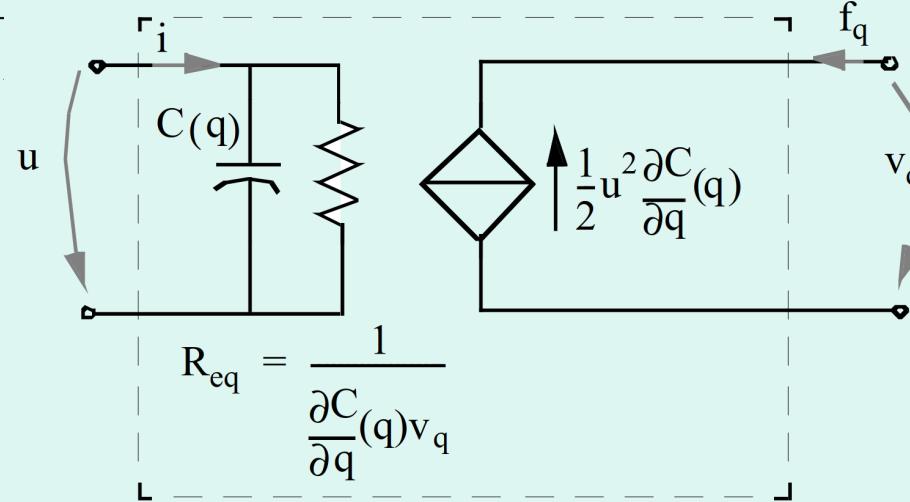


MEMS Capacitor model

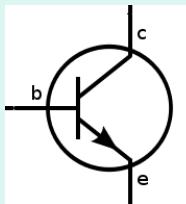
- Assume single mechanical degree of freedom



$$C(y) = \epsilon \frac{A}{d_0 - y} = \frac{C}{1 - \frac{y}{d_0}}$$

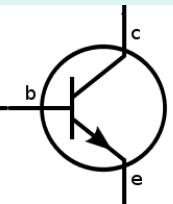


$$ui + f_q v_q = \frac{dW_c}{dt}$$



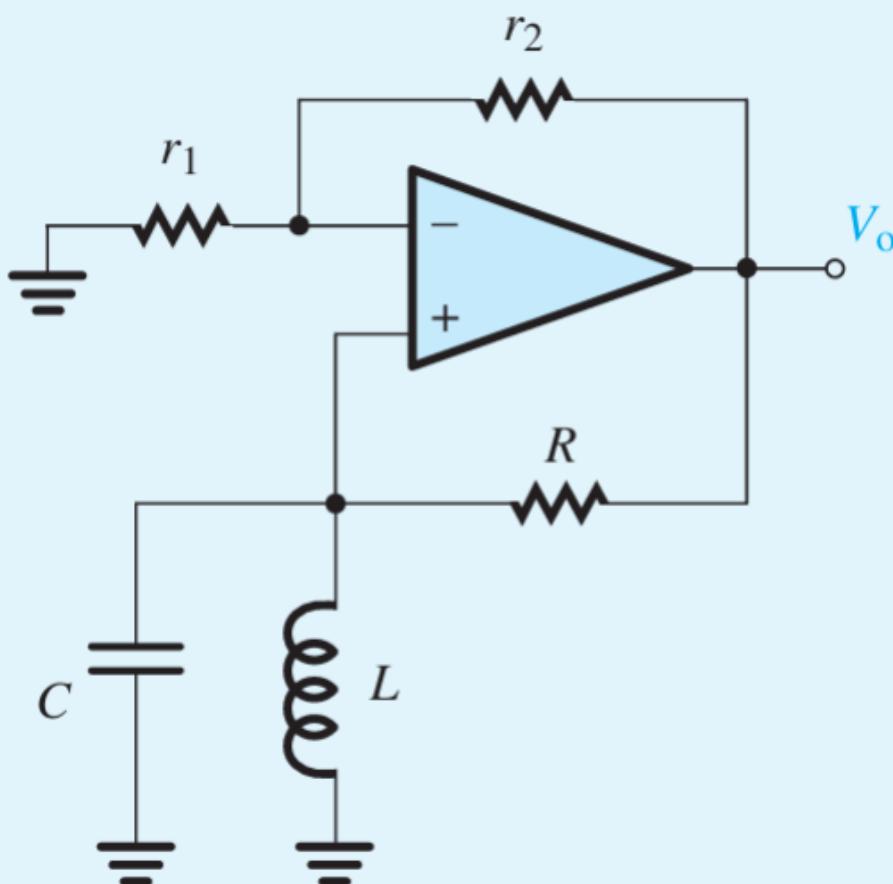
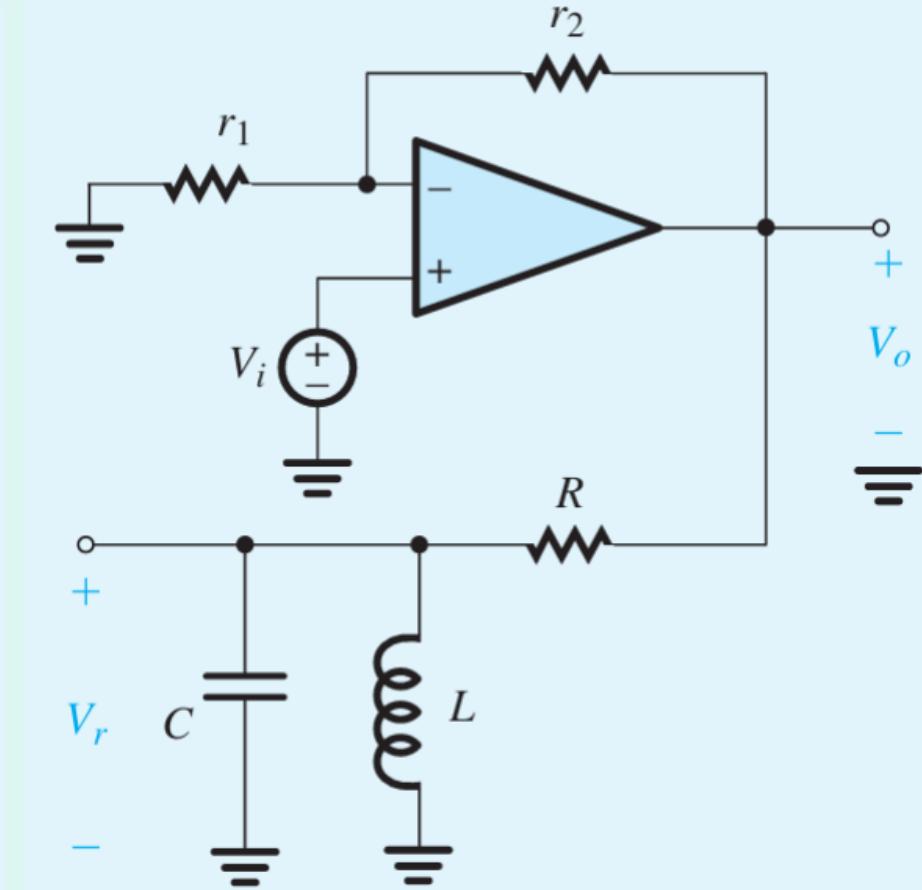
L32 Q03 electrostatic forces

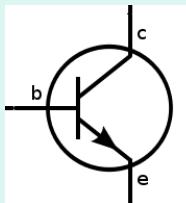
- How are the electrostatic forces between the movable and fixed plates of a MEMS capacitor?
 - A. Always repulsive, regardless of the sign of the applied voltage between plates
 - B. Attractive for positive voltages, and repulsive for negative voltages
 - C. Always attractive, regardless of the sign of the applied voltage between plates



RLC oscillator analysis

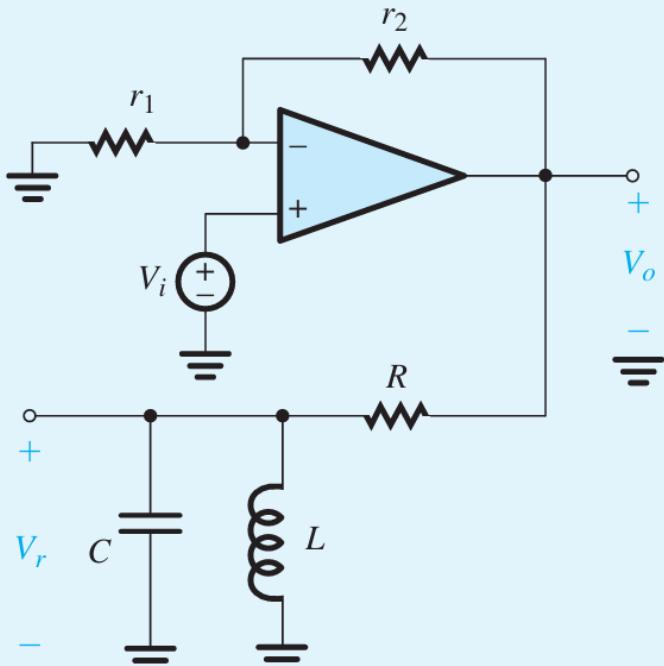
- LC resonator can be even a MEMS resonator device





RLC oscillator analysis (2)

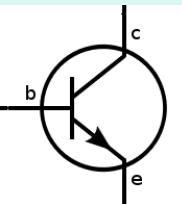
- analysis after loop breaking



$$A(s) = \frac{V_o}{V_i} = 1 + \frac{r_2}{r_1}$$

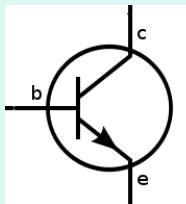
$$\beta(s) = \frac{V_r}{V_o} = \frac{s \frac{1}{RC}}{s^2 + s \frac{1}{RC} + \frac{1}{LC}}$$

$$L(s) = A(s) \beta(s) = \frac{s \frac{1}{RC} \left(1 + \frac{r_2}{r_1} \right)}{s^2 + s \frac{1}{RC} + \frac{1}{LC}}$$



L32 Q04 Non-ideal opamp

- How would a finite R_{in} of a non-ideal op-amp influence the oscillator behavior?
 - A. $R_{in} < \infty$ does not influence the oscillation conditions in this configuration
 - B. $R_{in} < \infty$ has a stronger influence on ω_0
 - C. $R_{in} < \infty$ has a stronger influence on the minimum loop gain to onset the oscillation



RLC oscillator - oscillation condition

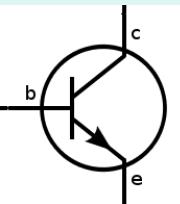
- Set $s=j\omega$ and impose oscillation condition

$$L(j\omega) = A(j\omega)\beta(j\omega) = \frac{j \frac{\omega}{RC} \left(1 + \frac{r_2}{r_1}\right)}{\left(\frac{1}{LC} - \omega^2\right) + j \frac{\omega}{RC}}$$

Positive feedback: $\varphi(L(j\omega_0)) = 0 \Leftrightarrow \omega_0 = \frac{1}{\sqrt{LC}}$

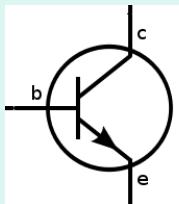
Loop gain magnitude at ω_0 :

$$|A(j\omega_0)\beta(j\omega_0)| = 1 + \frac{r_2}{r_1} \Rightarrow \text{oscillation starts for: } \frac{r_2}{r_1} \geq 1$$



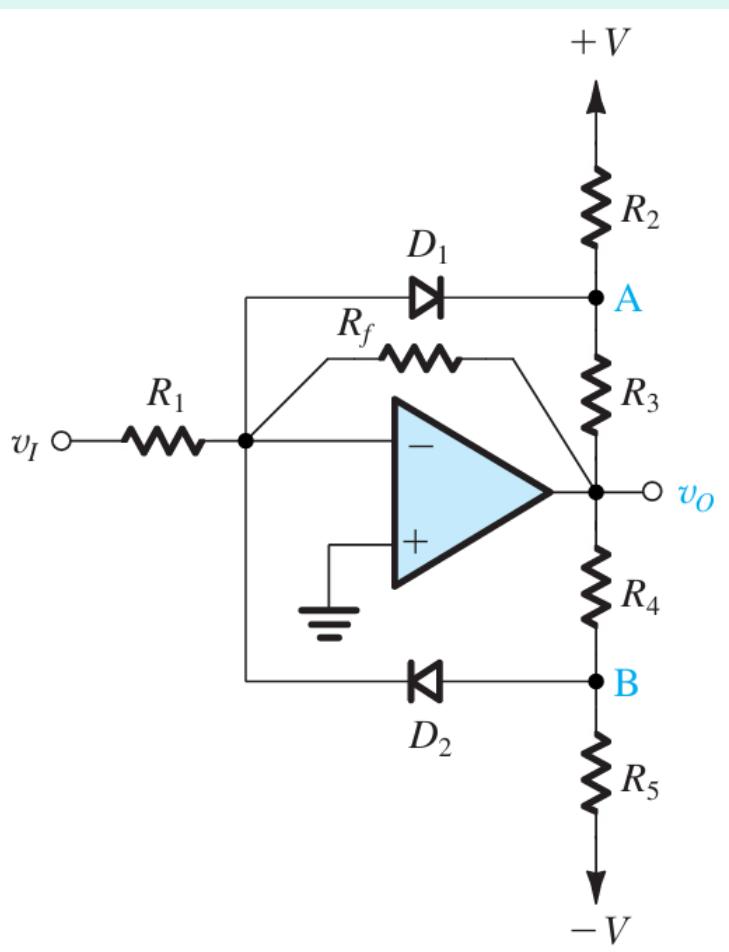
Alternative analysis

- Used already for the phase-shift oscillator
- 1. We assume the circuit is oscillating $\Rightarrow V(j\omega_0), I(j\omega_0)$
- 2. Analyze the circuit - reduce to a single eqn. in terms of a voltage or current variable
- 3. The circuit oscillates \Rightarrow non-zero $V(j\omega_0)$ (or $I(j\omega_0)$) \Rightarrow eliminate variable by dividing in the eqn.
- 4. Obtain the oscillation condition from the remaining eqn:
 $D(s)=0$ ($D(s)$ = polynomial in s) $\Rightarrow \text{Re}(D(j\omega_0))=0$,
 $\text{Im}(D(j\omega_0))=0$
- 5. The resulting equations yield ω_0 value and the condition for sustained oscillations



Amplitude control - limiter circuit

- Soft limiter => avoid distortions



When both D_1 and D_2 are off:

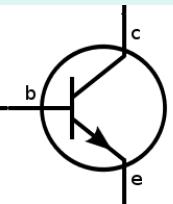
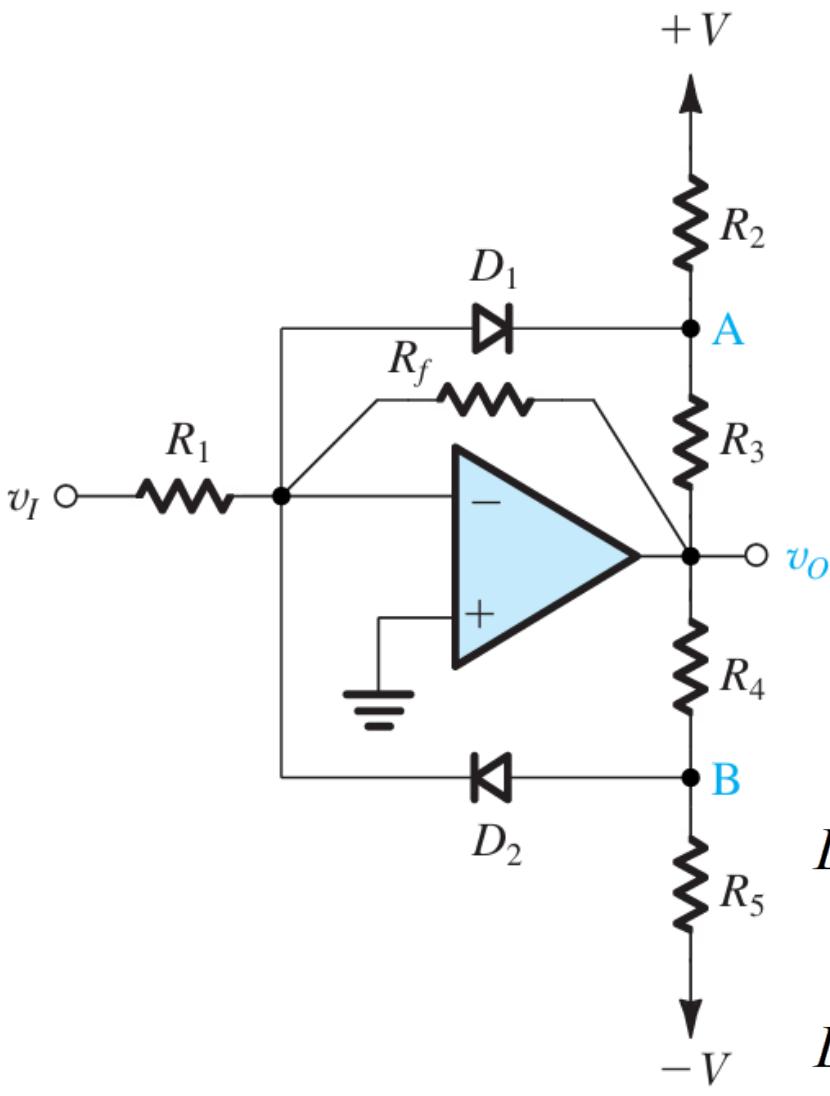
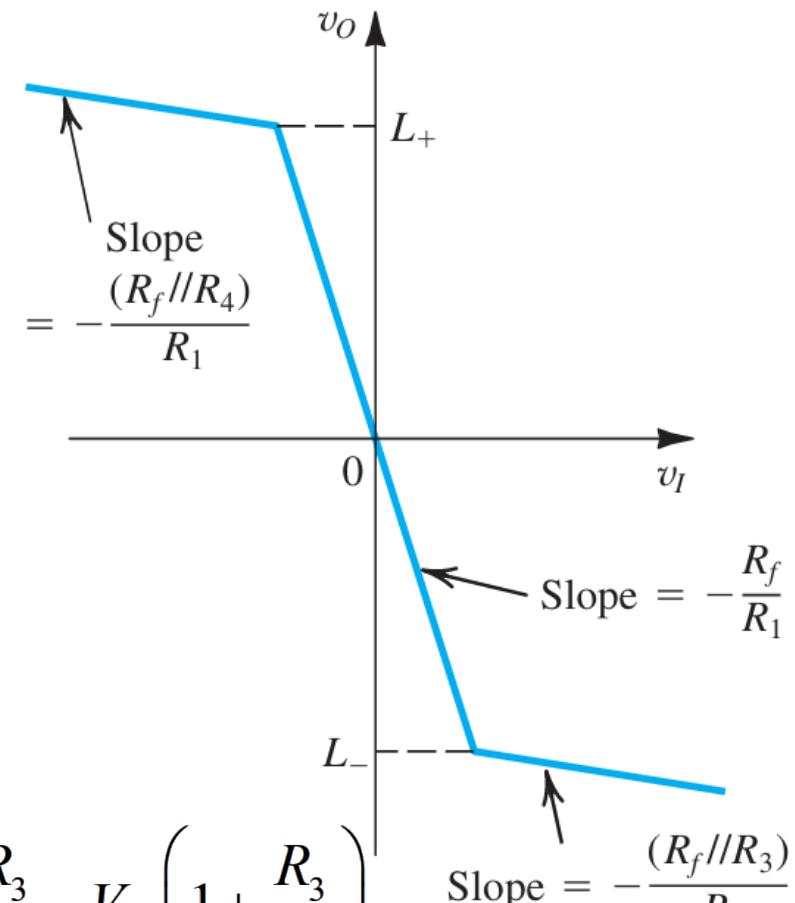
$$v_O = -\frac{R_f}{R_1} v_I$$

$$v_A = V \frac{R_3}{R_2 + R_3} + v_O \frac{R_2}{R_2 + R_3}$$

$$v_B = -V \frac{R_4}{R_4 + R_5} + v_O \frac{R_5}{R_4 + R_5}$$

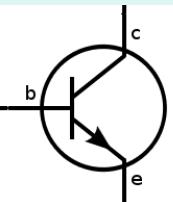
Negative limiting level $v_A = -0.7V$
 Positive limiting level $v_B = +0.7V$

Amplitude limiter action



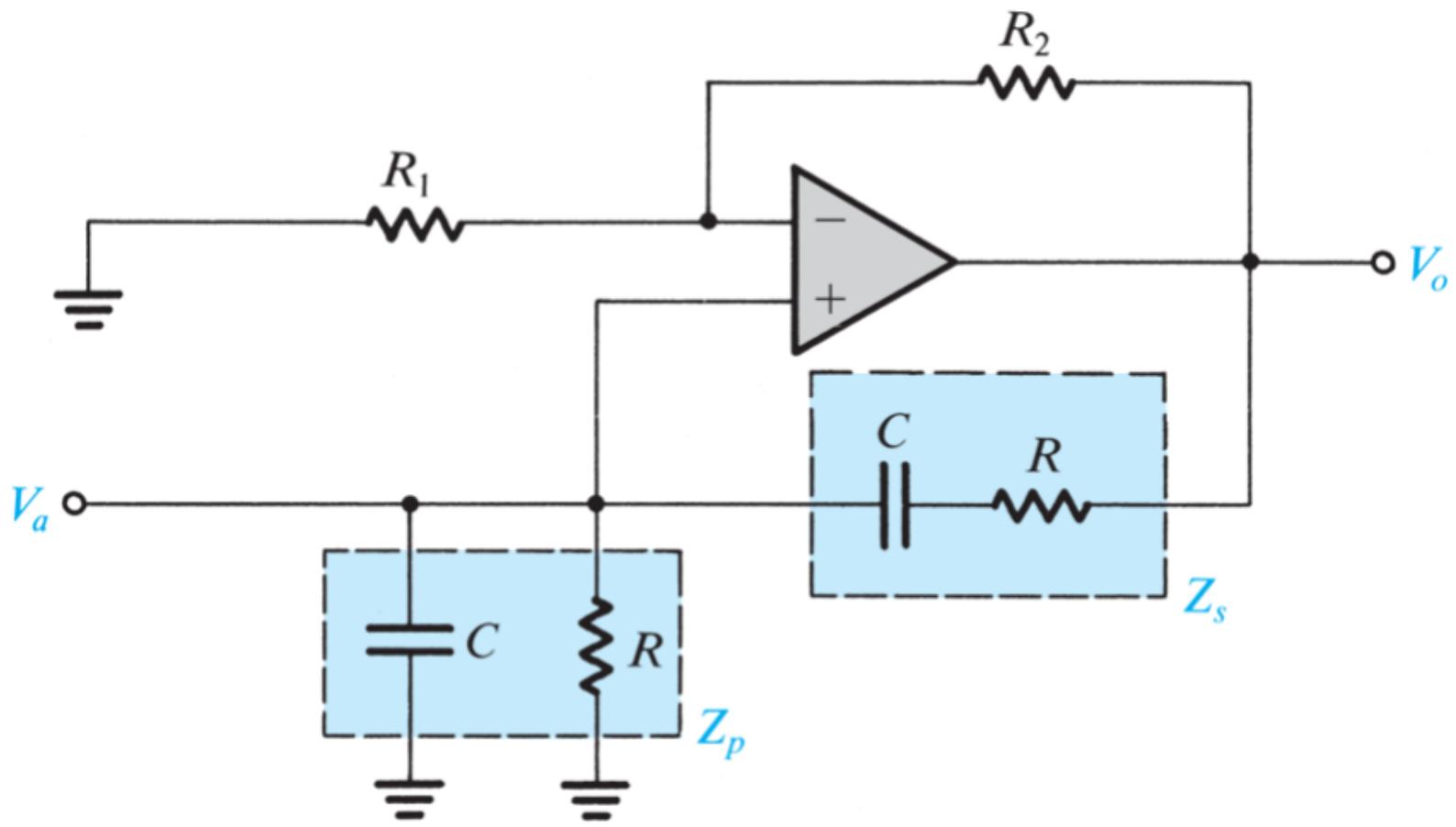
$$L_- = -V \frac{R_3}{R_2} - V_D \left(1 + \frac{R_3}{R_2} \right)$$

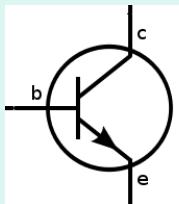
$$L_+ = V \frac{R_4}{R_5} + V_D \left(1 + \frac{R_4}{R_5} \right)$$



Wien-bridge oscillator

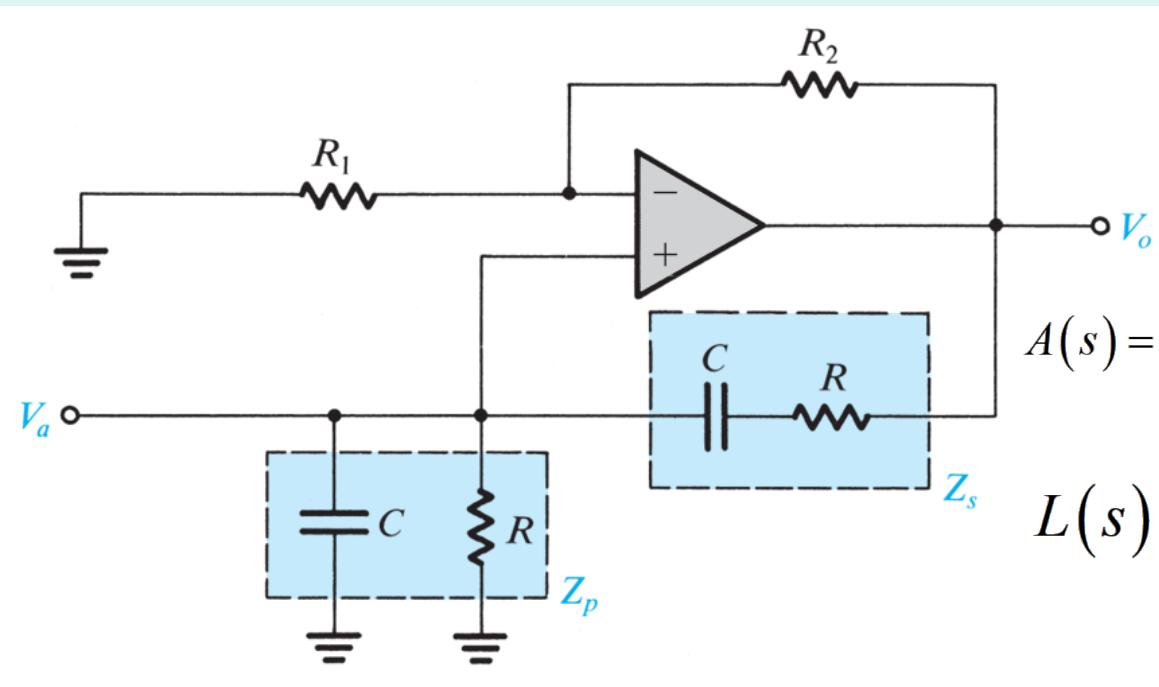
- Active RC oscillator type - Max Wien (1891) for L measurement, then W. Hewlett (1939) - HP200A sine-wave generator
- Circuit (without amplitude stabilization)





Wien-bridge oscillator analysis

- Compute the loop gain



$$A(s) = 1 + \frac{R_2}{R_1}, \beta(s) = \frac{Z_p(s)}{Z_p(s) + Z_s(s)} = \frac{1}{1 + Z_s Y_p}$$

$$L(s) = \frac{1 + R_2 / R_1}{1 + Z_s Y_p} = \frac{1 + R_2 / R_1}{3 + sCR + \frac{1}{sCR}}$$

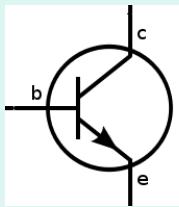
$$L(j\omega) = \frac{1 + R_2 / R_1}{3 + j\left(\omega CR - \frac{1}{\omega CR}\right)}$$

Find the oscillation condition for $\omega = \omega_0$:

Phase condition $\Rightarrow \omega_0$: $\omega_0 = \frac{1}{RC}$

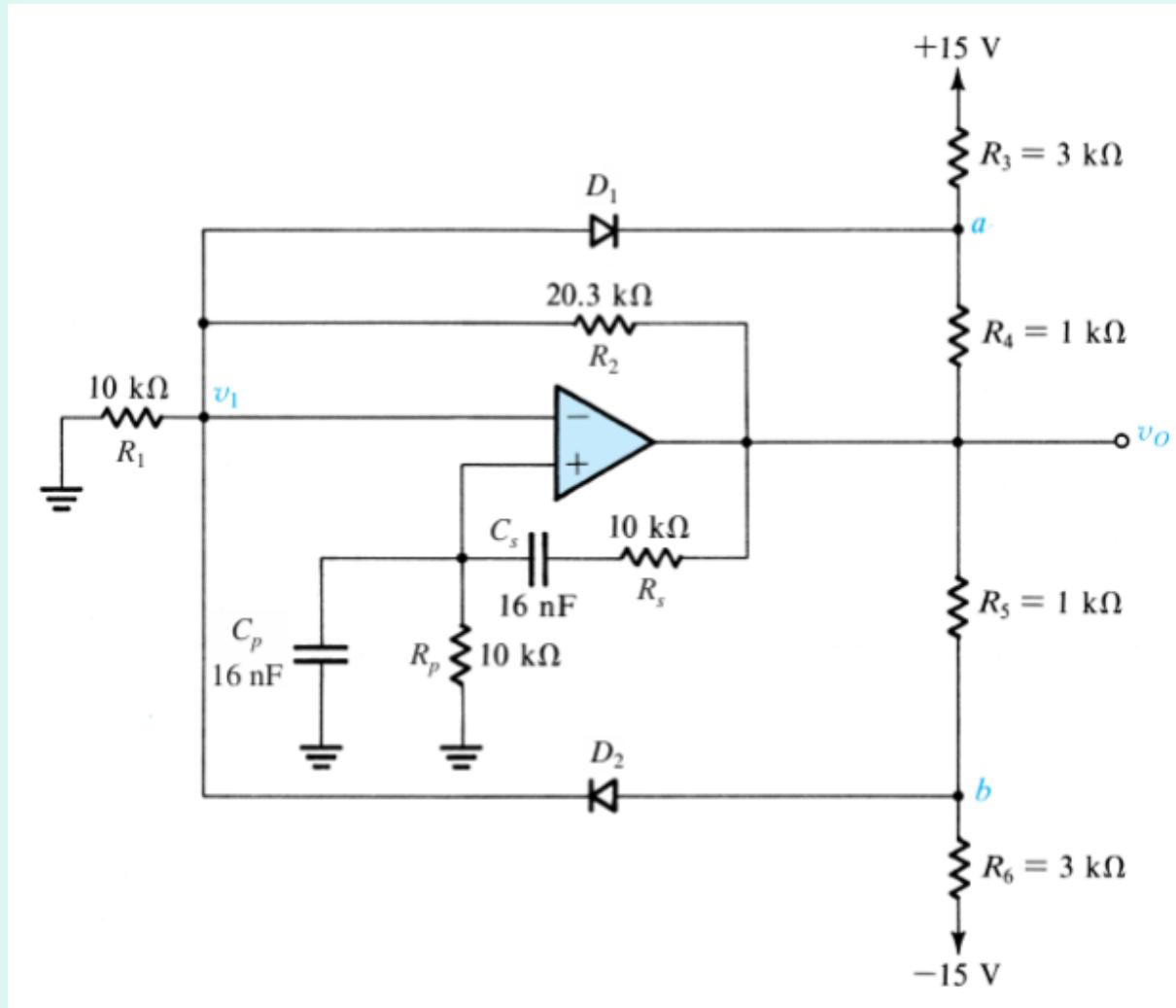
Oscillation start condition:

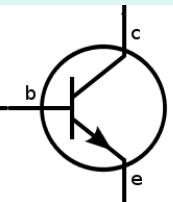
$$L(j\omega_0) = \frac{1 + R_2 / R_1}{3} \geq 1 \Leftrightarrow \frac{R_2}{R_1} \geq 2$$



Wien-bridge oscillator - Amplitude control

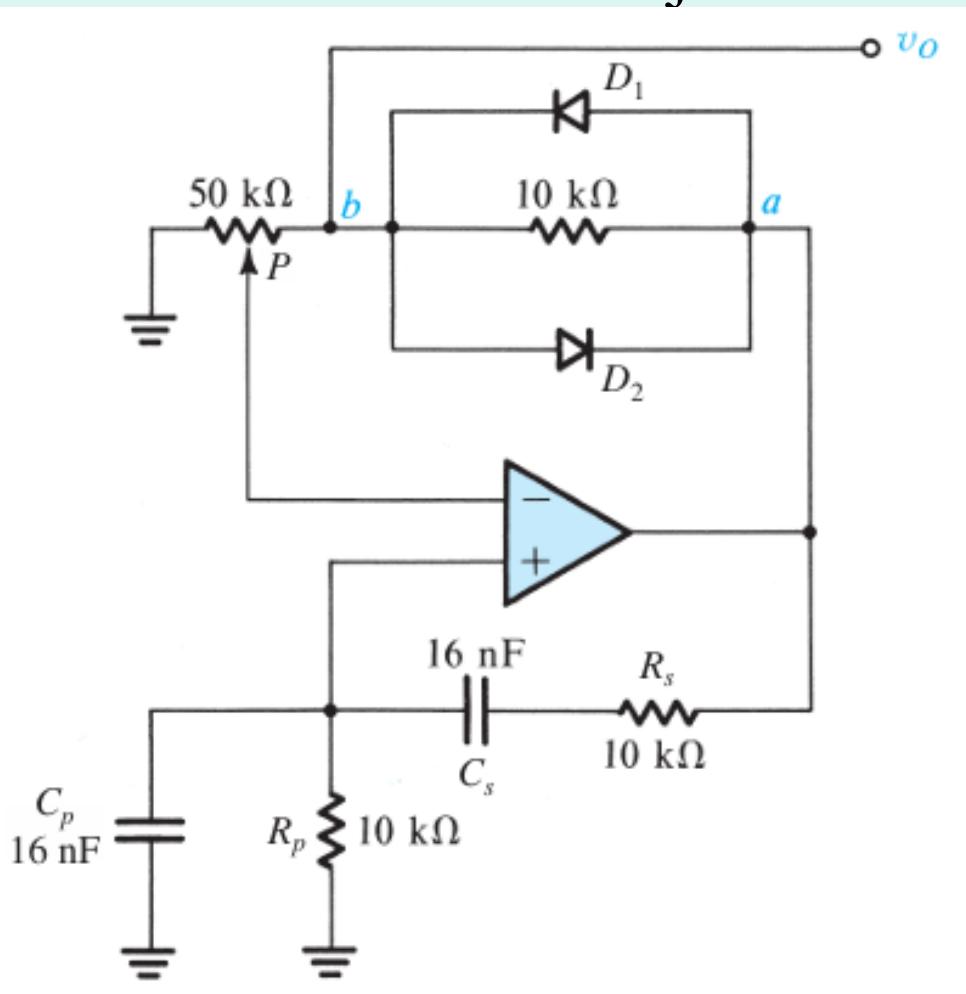
- Version (a)





Wien-bridge oscillator amplitude control

- Version (b) - reduced no of components
- Potentiometer P adjusts the the output amplitude



Node (b) output:

- lower distortion than (a)
- higher impedance than (a)

