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Last time

• Barkhausen oscillation conditions
• Modeling the (nonlinear) amplitude stabilization -

van der Pol autonomous equation
• Separate feedback loops: (a) control the

frequency of oscillation + (b)control the
amplitude of oscillation

• Phase-shift harmonic oscillators



L32 Q01 - nonlinearity in oscillators

• Which feedback loop is responsible for
nonlinearities in a harmonic oscillator?

• A. frequency-control loop
• B. amplitude-control loop
• C. both frequency and amplitude control

circuits are linear
• D. both frequency and amplitude control are

nonlinear



Phase-shift oscillator with amplitude
control

• frequency of oscillation - controlled by the RC+ amplifier gain
• amplitude of oscillation - controlled by the diode soft-limiters



Further remarks on the oscillation criterion

• L(jw0)=A(jw0)b(jw0)=-1 (negative feedback scheme)
• In many textbooks, a different summation sign

(positive feedback scheme) is used in oscillator
theory



Oscillation criterion (2)
• For the circuit to oscillate at a specific frequency w0,  the

oscillation (Barkhausen) criteria should be only satisfied
for w=w0, or otherwise the resulting waveform will not be
a simple harmonic signal

• The frequency of oscillation is determined solely by the
phase characteristics of the feedback loop

• The stability of the oscillation frequency - determined by
the how the phase j(w) of the loop gain varies around w0



L32 Q02 - w0 stability
• What type of dependence of the phase on frequency

will ensure a more stable frequency of oscillation?
• A. a smooth, slow-slope dependence j(w) around w0

• B. a steep variation of j(w) around w0

• C. The stability of the oscillation frequency is not
dependent of the slope of j(w) around w0



Stability of the oscillation frequency
• Positive feedback convention
• The slope of j(w) gives the

stability: a steep variation results
in a more stable frequency

Source: Sedra&Smith, Microelectronic circuits



RLC oscillator example

• Exploit the selectivity of the LC resonant circuit (or
equivalent resonant structure, e.g. MEMS resonator)

• General analysis steps:
1. Break the feedback loop and determine the loop gain

A(s)b(S)
2. Find oscillation frequency from the phase condition (1800 or

3600, depending on the feedback model used)
3. Find the condition for the oscillations to start |A(jw0)b(jw0)|≥1
4. Add an additional amplitude control feedback to set the

desired amplitude level - force |Ab| to remain unity at the
desired output amplitude



MEMS resonators
• Used in microelectronics, instead of physical inductors  -

high Q at high frequencies

Source: H Xu et al[2025]Stability of capacitive MEMS oscillators, Microsystems
Technologies



Electromechanical coupling in
MEMS capacitive structures

• MEMS capacitor - movable plate



MEMS Capacitor model
• Assume single mechanical degree of freedom



L32 Q03 electrostatic forces
• How are the electrostatic forces between the movable and

fixed plates of a MEMS capacitor?
A. Always repulsive, regardless of the sign of the applied

voltage between plates
B. Attractive for positive voltages, and repulsive for

negative voltages
C. Always attractive, regardless of the sign of the applied

voltage between plates



RLC oscillator analysis
• LC resonator can be even a MEMS resonator device



RLC oscillator analysis (2)
• analysis after loop breaking



L32 Q04 Non-ideal opamp

• How would a finite Rin of a non-ideal op-amp
influence the oscillator behavior?

A. Rin<∞ does not influence the oscillation
conditions in this configuration

B. Rin<∞ has a stronger influence on w0

C. Rin<∞ has a stronger influence on the minimum
loop gain to onset the oscillation



RLC oscillator - oscillation condition

• Set s=jw and impose oscillation condition

Loop gain magnitude at w0:



Alternative analysis

• Used already for the phase-shift oscillator
1. We assume the circuit is oscillating => V(jw0),I(jw0)
2. Analyze the circuit - reduce to a single eqn. in terms of a

voltage or current variable
3. The circuit oscillates => non-zero V(jw0)(or I(jw0)) =>

eliminate variable by dividing in the eqn.
4. Obtain the oscillation condition from the remaining eqn:

D(s)=0 (D(s) = polynomial in s)=> Re(D(jw0)=0,
Im(D(jw0))=0

5. The resulting equations yield w0 value and the condition
for sustained oscillations



Amplitude control - limiter circuit
• Soft limiter => avoid distortions

When both D1 and D2 are off:

Negative limiting level   vA=-0.7V
Positive limiting level vB=+0.7V



Amplitude limiter action



Wien-bridge oscillator
• Active RC oscillator type - Max Wien (1891) for L measurement,

then W. Hewlett (1939) - HP200A sine-wave generator
• Circuit (without amplitude stabilization)



Wien-bridge oscillator analysis
• Compute the loop gain

Find the oscillation condition for w=w0:

Phase condition => w0:

Oscillation start condition:



Wien-bridge oscillator - Amplitude control
• Version (a)



Wien-bridge oscillator amplitude control

• Version (b) - reduced no of components
• Potentiometer P adjusts the the output amplitude

Node (b) output:
 - lower distortion than (a)
- higher impedance than (a)
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