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@ Last time

 Barkhausen oscillation conditions

* Modeling the (nonlinear) amplitude stabilization -
van der Pol autonomous equation

» Separate feedback loops: (a) control the
frequency of oscillation + (b)control the
amplitude of oscillation

 Phase-shift harmonic oscillators
r‘A(].a)o)ﬁ(ja)o)‘ =1

The "Barkhausen criterion":< | .
p(A(ja,))+o(B(jo,))=180




‘b@ L32 QOI - nonlinearity in oscillators

* Which feedback loop 1s responsible for
nonlinearities in a harmonic oscillator?

* A. frequency-control loop
* B. amplitude-control loop

* C. both frequency and amplitude control
circuits are linear

* D. both frequency and amplitude control are
nonlinear




~— Phase-shift oscillator with amplitude
@ control

e frequency of oscillation - controlled by the RC+ amplifier gain

« amplitude of oscillation - controlled by the diode soft-limiters
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@ Further remarks on the oscillation criterion

* Ljo,)=A(Jjo,)B(un,)=-1 (negative feedback scheme)

* In many textbooks, a different summation sign
(positive feedback scheme) 1s used in oscillator

theory
, +
Xs 0—>®—> Amplifier A
+ | )
;: Frequency-selective
network 3

4(j@,) B(jm,) =1
p(4(ja,))+o(B(jao,))=0°

Y
=y

1-A(ja,) B(Jja,) =0+




@ Oscillation criterion (2)

* For the circuit to oscillate at a specific frequency ®,, the
oscillation (Barkhausen) criteria should be only satisfied
for m=w,, or otherwise the resulting waveform will not be
a simple harmonic signal

* The frequency of oscillation 1s determined solely by the
phase characteristics of the feedback loop

* The stability of the oscillation frequency - determined by
the how the phase @(w) of the loop gain varies around o,




—"@ 132 Q02 - w, stability

* What type of dependence of the phase on frequency
will ensure a more stable frequency of oscillation?

* A. asmooth, slow-slope dependence ¢(w) around o,
* B. a steep variation of ¢(®») around o,

* C. The stability of the oscillation frequency 1s not
dependent of the slope of ¢(») around »,




@ Stability of the oscillation frequency

Positive feedback convention

-+

Amplifier A >
e The slope of ¢p(w) gives the
stability: a steep variation results |
. K Frequency-selective | _
in a more stable frequency network

/ / Source: Sedra&Smith, Microelectronic circuits



@ RLC oscillator example

« Exploit the selectivity of the LC resonant circuit (or
equivalent resonant structure, e.g. MEMS resonator)

* General analysis steps:

1. Break the feedback loop and determine the loop gain
A(s)B(S)

2. Find oscillation frequency from the phase condition (180° or
360", depending on the feedback model used)

3. Find the condition for the oscillations to start |A(Jo,)B(jw,)|=1

4. Add an additional amplitude control feedback to set the
desired amplitude level - force |AB| to remain unity at the
desired output amplitude




: MEMS resonators

e

* Used 1n microelectronics, instead of physical inductors -
high Q at high frequencies
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@ Electromechanical coupling in

MEMS capacitive structures
« MEMS capacitor - movable plate

Movable frame/ .
Movable finger plates

Cs1

Csl-fixed fingers .
Cs2 - fixed fingers
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*’@ MEMS Capacitor model

» Assume single mechanical degree of freedom
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‘b@ [.32 Q03 electrostatic forces

« How are the electrostatic forces between the movable and
fixed plates of a MEMS capacitor?

A. Always repulsive, regardless of the sign of the applied
voltage between plates

B. Attractive for positive voltages, and repulsive for
negative voltages

C. Always attractive, regardless of the sign of the applied
voltage between plates




@ RLC oscillator analysis

EMS resonator device

e LC resonator can be even a M|

I




@ RLC oscillator analysis (2)

 analysis after loop breaking




@ .32 Q04 Non-1deal opamp

 How would a finite Rin of a non-ideal op-amp
influence the oscillator behavior?

A. Rin<oo does not influence the oscillation
conditions 1n this configuration

B. Rin<co has a stronger influence on o,

C. Rin<o has a stronger influence on the minimum
loop gain to onset the oscillation




@ RLC oscillator - oscillation condition

* Set s=jm and 1impose oscillation condition

L(jo)=A(jo)B(jo)= [ 1J ;é(ljijw
ILC RC

Positive feedback: ¢(L(ja,))=0< o, =

Loop gain magnitude at o,:

A(jo,) B(j, )| =1 +II:—2 — oscillation starts for: ’;—2 >1
1 1




@ Alternative analysis

« Used already for the phase-shift oscillator
1. We assume the circuit 1s oscillating => V(jo,),I(jo,)

2. Analyze the circuit - reduce to a single eqn. 1n terms of a
voltage or current variable

3. The circuit oscillates => non-zero V(jo,)(or I(jw,)) =>
eliminate variable by dividing in the eqn.

4. Obtain the oscillation condition from the remaining eqn:
D(s)=0 (D(s) = polynomial in s)=> Re(D(jw,)=0,
Im(D(w,))=0

5. The resulting equations yield o, value and the condition
for sustained oscillations
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Amplitude control - limiter circuit

e Soft limiter => avoid distortions
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@ Amplitude limiter action
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@ Wien-bridge oscillator

« Active RC oscillator type - Max Wien (1891) for L measurement,
then W. Hewlett (1939) - HP200A sine-wave generator

o Circuit (without amplitude stabilization)
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Wien-bridge oscillator analysis

. Compute the loop gain

Z,(s) 1

Z,(s)+Z,(s) 1+2Y,

_I+R,/R,  1+R,/R

+2Y, 3. R+ 1

SCR

1+R, /R,

L(jo)- 1
0,

1+R2/R121<:>£22

=57 (Oscillation start condition: L(jo,)= 3 R
1




Wien-bridge oscillator - Amplitude control

e

« Version (a)
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@ Wien-bridge oscillator amplitude control

* Version (b) - reduced no of components

e Potentiometer P adjusts the the output amplitude
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