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Modeling of Electrical & Mechanical Systems in Control Engineering:
• Purpose of Modeling:

• To represent real-world systems mathematically for analysis and controller design.
• Enables prediction of system behavior under different conditions.

• Mechanical System Modeling:
• Based on Newton’s laws or other mechanical principles.

• Elements: Mass (inertia), damper (viscous friction), spring (elasticity).
• Common Models: Translational and rotational systems.

• Represented using differential equations.
• Electrical System Modeling:

• Based on Kirchhoff’s laws (KVL and KCL).
• Elements: Resistor (R), inductor (L), capacitor (C), voltage and current

sources.
• Also modeled using differential equations.



Lecture 4: Modeling of electrical & mechanical systems ELEC 341: Systems and Control

© Siamak Najarian 2025

Modeling of electrical & mechanical systems

3

• Electromechanical Systems:
• Combine both electrical and mechanical components in one system.

• Examples include DC motors, stepper motors, and solenoids.
• Electrical input produces mechanical motion (or vice versa).
• Modeling requires coupling of electrical and mechanical equations (e.g., torque-

current and back EMF-speed relationships in motors).
• Essential for applications like robotics, automotive systems, and mechatronics.

• Analogies Between Systems:
• Mechanical Electrical analogies help unify analysis.
• Two common analogies: Force-Voltage and Force-Current analogies.

• Transfer Function Representation:
• Systems are often represented in Laplace domain for analysis.
• Transfer function relates input to output as a ratio of polynomials in 's'.

• State-Space Modeling:
• An alternative to transfer functions, suitable for MIMO (multiple input multiple

output) systems and time-domain analysis.
• Importance in Control Engineering:

• Models are essential for system design, simulation, stability analysis, and
controller synthesis.
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Water tank level control

4

Process Valve A

Control Unit

On/Off 
Control Valve

Tank A Tank B

Inlet Valve A Inlet Valve B

Valve AB

Pump

Process Valve BDisturbance 
Valve 
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Figure: Schematic of the Tank Level Control Setup.

Requirement:

Maintain the liquid level of
Tank B at a desired level by
controlling the flow through
control valve.

Control 
valve
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Water tank level control (Block diagram)
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Two main tasks
• Calibration

• Relate transducer output voltage to actual water level.

• Implementation of the Proportional or ON/OFF controller
• Analyze the performance of the closed-loop system with a

provided ON/OFF controller block.
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ON/OFF (bang-bang) control
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Remarks on ON/OFF control
• Simplest design control algorithm.
• Oscillatory behavior.
• Difficult to maintain the level at the desired level.
• Small difference between high and low limits causes

the chattering (rapid switching) problem.
• Over-reaction (small change of water level may cause

full action of valve). This can be avoided by using a
proportional control algorithm instead.

8
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Course roadmap
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Controller design process (review)

• What is the “mathematical model”?
• What is the “transfer function”?
• How to do “modeling of electrical & mechanical systems”?

10

plant
Input OutputRef.

Sensor

ActuatorController

Disturbance

1. Modeling

2. Analysis3. Design

4. Implementation

Mathematical model
Controller
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Mathematical model
• A mathematical model is a representation of the

input-output (signal) relation of a physical system:

• A model is used for the analysis and design of
control systems.

11

Physical 
system

Model

Modeling

Input Output
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Important remarks on models
• Modeling is one of the most important and most

difficult tasks in control system design.
• No mathematical model exactly represents a physical

system.

• Do not confuse math models with physical/engineering
systems!

12
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Block diagram
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• Communication tool for engineering systems
Composed of blocks with inputs and outputs

• Each block can be considered as a “system”
 Output from one block becomes input to another
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Transfer function
• A transfer function is defined by:

• Transfer function is a generalization of “gain” concept.

14

Laplace transform of system output

Laplace transform of system input

input output
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Impulse response
• Suppose that r(t) is the unit impulse function and

system is at rest.

• The output g(t) for the unit impulse input is called
unit impulse response.

• Since R(s) =1, the system transfer function G(s) can
also be defined as the Laplace transform of impulse
response, i.e., Y(s):

15

SystemL
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Course roadmap
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Models of electrical elements
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v(t)

i(t)

R

Resistance CapacitanceInductance

v(t)

i(t)

L v(t)

i(t)

C

Laplace 
transform

Impedance



Lecture 4: Modeling of electrical & mechanical systems ELEC 341: Systems and Control

© Siamak Najarian 2025

Example 1: Modeling

• Kirchhoff voltage law (with zero initial conditions),

• By Laplace transform,

18

v1(t)

i(t)

R2Input

R1

v2(t) Output

C

Method 1: Conventional circuit analysis method
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Example 1 (cont’d)

• Transfer function G(s):
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(first-order system)

v1(t)
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Example 1 (cont’d)

• How to use impedance method?
• Step 1: Replace electrical elements with impedances.
• Step 2: Deal with impedances as if they were resistances.

20

V1(s) R2Input

R1

V2(s) Output

1/(sC)

Method 2: Impedance method
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Impedance computation
• Series connection

• Parallel connection
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V(s)

I(s)
Z1(s) Z2(s)

V(s)

I(s) Z1(s)

Z2(s)

V(s) = Z(s)I(s)
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Operational amplifier (op-amp)
• Electronic voltage amplifier
• Basic building block of analog circuits
• Ideal op-amp (does not exist, but is a good

approximation of reality):

22
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Example 2: Modeling of op-amp

• Impedance Z(s): V(s) = Z(s)I(s)

• Transfer function of the above op amp:

23

vdVi (s)
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Example 2 (cont’d)

• Using the formula in previous slide,

24

vi (t)

i(t)

R2

Input

R1

vo(t) Output

C

-
+

i
-

vd

(first-order system)

vd = 0

i
-
= 0

Goal: Let us find the transfer function
G(s) for the following op-amp.
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Course roadmap
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Translational mechanical elements
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Mass DamperSpring

M

f (t) x(t) x1(t)

K
x2(t)

x1(t)

B

Note: The above equations are mostly conceptual. In practice, the elements are connected to other elements and because
of that, we will use a systematic convention to be explained later on in order to tackle mechanical problems.

f (t)

f (t)

f (t)

f (t)

x2(t)
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Example 3: Mass-spring-damper system

• Equation of motion by Newton’s 2nd law

• By Laplace transform (with zero initial conditions),

27

M

f (t) x(t)

K B

Static equilibrium

(2nd order system)
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How to write the governing differential equations 
for translational mechanical elements 

Step 1:
Always put the mass of the system times a or on the left-hand side of the equation and everything else
on the right. Below I will describe the remaining terms which will all be on the right-hand side of the
equation.

Step 2:
Draw free body diagram for each mass. Add artificial coordinates for x’s on the masses and on the
stationary walls. The direction of x’s should be in the same direction of the given f (t). The direction of
forces (except for f (t), which is given) should always be away from the object. For the stationary
walls, use xi = 0.

Step 3:
• For “K” elements, use: (-K)(xleft – xright).
• For “B” elements, use: (-B)(xʹleft – xʹright).
• For “M” elements, use: 𝑴

• Here, the subscript M on 𝑴 refers to the x-coordinate which is placed on the mass.

Important Note:
To find xleft , we look at the left side of the spring to find the relevant x. For xʹleft , we look at the left
side of the dashpot. For xright or xʹright , we look at the right side of the element.
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Let us find the governing differential equation in Example 3:

x1(t) = 0 x2(t) = x

f (t)M

B

K

Free body diagram for mass M:

M f (t)
FB

FK

ଶ ஻ ௄

ଵ ଶ ଵ ଶ

𝑥ଶ = 𝑥

𝑥ଶ  = 𝑥
𝑥̇ଶ = 𝑥̇0 0

How to write the governing differential equations 
for translational mechanical elements (cont’d) 

x2(t) = x

Static equilibrium

The diagram can be rotated to
make the concept of “left” and
“right” easier to apply.
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Example 4: Automobile suspension system

• Equations of motion by Newton’s 2nd law

30

M2

f (t)
x2(t)

K1 B

K2

M1

x1(t)
automobile

suspension

wheel

tire
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Example 4: Automobile suspension system
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x3(t)
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Example 4 (cont’d)
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Laplace transform with zero ICs

Make transfer functions so that 
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Example 4 (cont’d)
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Block diagram

We will study how to derive this
transfer function in the next lecture
using a more systematic method.

+

+
ଶ ଵ

ଷ

ଶ ଵ
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Rotational mechanical elements
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Moment of inertia FrictionRotational spring

J

K
B

torque

rotation angle
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Example 5: Torsional pendulum system

• Equation of motion by Newton’s law,

• By Laplace transform (with zero ICs),

35

J

K

B

friction between 
bob and air

(2nd order system)
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Rigid satellite
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Thrustor

Double 
integrator

• Broadcasting
• Weather forecast
• Communication
• GPS, etc.
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State-Space Modeling
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• Two approaches are available for the analysis and design of feedback control systems.
• First Approach: The first approach is known as the classical approach, or frequency-

domain approach.
 This approach is based on converting a system’s differential equation to a transfer

function, thus generating a mathematical model of the system that algebraically
relates a representation of the output to a representation of the input.

• Replacing a differential equation with an algebraic equation not only simplifies the
representation of individual subsystems but also simplifies modeling of
interconnected subsystems.

• The primary disadvantage of the classical approach is its limited applicability: It can
mostly be applied only to linear, time-invariant systems or systems that can be
approximated as such.

• A major advantage of frequency-domain techniques is that they rapidly provide
stability and transient response information.
 Thus, we can immediately see the effects of varying system parameters until an

acceptable design is met.
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State-Space Modeling
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• With the advent of space exploration, the demands on control systems expanded
significantly, providing strong motivation for adopting the second approach.

• Second Approach: The second approach, state-space approach (also referred to as the
modern approach, or time-domain approach) is a unified method for modeling,
analyzing, and designing a wide range of systems.

• Time-varying systems, (for example, missiles with varying fuel levels or lift in an aircraft
flying through a wide range of altitudes) can be represented in state space.

• Additionally, many systems do not have just a single input and a single output (SISO).
 Multiple-input, multiple-output systems (MIMO) can be compactly represented in state-

space with a model similar in form and complexity to that used for single-input, single-
output systems.

• The state-space approach is also attractive because of the availability of numerous state-
space software packages for the personal computer.

• While the state-space approach can be applied to a wide range of systems (a great
advantage), it is not as intuitive as the classical approach (a disadvantage).
 The designer has to engage in several calculations before the physical interpretation of the

model is apparent, whereas in classical control a few quick calculations or a graphical
presentation of data rapidly yields the physical interpretation.
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State-Space Modeling
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1. We select a particular subset of all possible system variables and
call the variables in this subset state variables.

2. For an nth-order system, we write n simultaneous, first-order
differential equations in terms of the state variables. We call this
system of simultaneous differential equations state equations.

3. If we know the initial condition of all of the state variables at t0 as
well as the system input for t t0, we can solve the simultaneous
differential equations for the state variables for t t0.

4. We algebraically combine the state variables with the system’s
input and find all of the other system variables for t t0. We call
this algebraic equation the output equation.

5. We consider the state equations and the output equations a viable
representation of the system. We call this representation of the
system a state-space representation.
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State-Space Modeling
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State Variables of a Dynamic System:

• The time-domain analysis and design of control systems utilizes the
concept of the state of a system.

• The state of a system is a set of variables such that the knowledge of these
variables and the input functions will, with the equations describing the
dynamics, provide the future state and output of the system.

• For a dynamic system, the state of a system is described in terms of a set
of state variables:

1 2[ ( ) ( ) ( )]nx t x t x t
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State-Space Modeling
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• Put differently, the state variables are those variables that determine the
future behavior of a system when the present state of the system and the
excitation signals (i.e., input signals) are known.

• Consider the system shown below, where y1(t) and y2(t) are the output signals
and u1(t) and u2(t) are the input signals. A set of state variables [x1 x2 ... xn] for
the system shown in the figure is a set such that knowledge of the initial
values of the state variables at the initial time t0 , i.e., [x1(t0) x2(t0) ... xn(t0)], and
of the input signals u1(t) and u2(t) for t ≥ t0, suffices to determine the future
values of the outputs and state variables.

System

Input Signals

u1(t)

u2(t)

Output Signals

y1(t)

y2(t) System
u(t)

Input Signal

x(0) Initial condition

y(t)

Output Signal

[x1(t0) x2(t0) ... xn(t0)] compare with

SISOMIMO
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State-Space Modeling
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State Differential Equation:

• The state of a system is described by the set of first-order differential equations
written in terms of the state variables [x1 x2 ... xn]. These first-order differential
equations can be written in general form as:

1 11 1 12 2 1 11 1 1

2 21 1 22 2 2 21 1 2

1 1 2 2 1 1

n n m m

n n m m

n n n nn n n nm m

x a x a x a x b u b u

x a x a x a x b u b u

x a x a x a x b u b u

    
    

    

 
 

 
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State-Space Modeling
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• Thus, this set of simultaneous differential equations can be written in
matrix form as follows:

1 11 12 1 1
11 1 1

2 21 22 2 2

1
1 2

n
m

n

n nm m
n n n nn n

x a a a x
b b u

x a a a xd

dt
b b u

x a a a x

     
        
                  
            

     





   

     




n: number of state variables, m: number of inputs.

• The column matrix consisting of the state variables is called the
state vector and is written as:

1

2x

n

x

x

x

 
 
 
 
 
 


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State-Space Modeling
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• If the vector of input signals is defined as u, then the system can be represented
by the compact notation of the state variable differential equation as:

x = A x + B u

• This differential equation is also commonly called the state equation. The matrix
A (the system matrix) is an n×n square matrix, and B (the input matrix) is an
n×m matrix. The state differential equation relates the rate of change of the state
of the system to the state of the system (i.e., x) and the input signals (i.e., u). In
general, the outputs of a linear system can be related to the state variables and
the input signals by the output equation:

y = C x + D u

• Where y is the set of output signals expressed in column vector form, C is the
output matrix, and D is the feed-forward matrix. The state-space
representation (or state-variable representation) is comprised of the state
equation and the output equation. The state-space representation is sometimes
called dynamical equation.

(state equation)

(output equation)
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Example 6: State-space representation 
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21 xyx  

r
M

y
M

k
y

M

b
yx

1
2  

u
M
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M

k
x

M

b 1
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k b
x x x u

M M M

  

   




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2 2

0 1 0

1
x x
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                         


   1

2

1 0 0
x

y u
x

 
   

 

F M y r ky by M y       

1 2let ,

M y by ky r

x y x y

   
 

 






By Newton’s Law:

)(tr
)( ),( tyty 

k

M
b

A B
C

uBxAx 
uDxCy 

D

;

;
1 1 2(1) (0) (0)y x y x x u    

Find the state-space representation of the following system:
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Example 7: State-space representation
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Remark: The choice of states is not unique and also one can have multiple outputs. 
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(b)

Find the state-space representation of the following system:
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Example 7: State-space representation
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(a)



Lecture 4: Modeling of electrical & mechanical systems ELEC 341: Systems and Control

© Siamak Najarian 2025

Example 7: State-space representation
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Example 7: State-space representation
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Obtain transfer function from state-space representation

50

Dynamical equation

Transfer function

)()()(

)()()(

tDutCxty

tButAxtx




)()()(

)()()0()(

sDUsCXsY

sBUsAXxssX




Laplace transform

0)0( xassume

)(])([)(

)()()(
1

1

sUDBAsICsY

sBUAsIsX








A, B, C, D, and I are all matrices.

Transfer function

Dynamical equation

Transfer function
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Reminder for calculation of inverse of a matrix

51

Minors and Cofactors:
• A minor is defined as the determinant of a square matrix, shown by “A”, that is formed

when a row and a column is deleted from a square matrix. The minors are based on the
columns and rows that are deleted. Let Mij be the (n–1)×(n–1) matrix obtained by
deleting the ith row and jth column. So, we will have: minor of aij = det(Mij).

• Co-factors are the number you get when you eliminate the row and column of a
designated element in a matrix, which is just a grid in the form of a square or a rectangle.
The co-factor is always preceded by a negative (-) or a positive (+) sign, depending on
whether the number is in a + or – position.

Cofactor Formula:
• Let A be any matrix of order n×n and Mij be the (n–1)×(n–1) matrix obtained by deleting

the ith row and jth column. Here, det(Mij) is the minor of aij. The cofactor Cij of aij can
be found using the formula:

Cij = (−1)i+j det(Mij)

• Thus, cofactor is always represented with +ve (positive) or -ve (negative) signs.
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Reminder for calculation of inverse of a matrix
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• For a 2x2 matrix the inverse is:

• In other words, swap the positions of a and d, put negatives in
front of b and c, and divide everything by ad − bc .

• In general, the inverse of a matrix is obtained as follows:

where,

adj (A) = CT = transpose of matrix of cofactors
= the determinant of A

A = A-1 =

Note: The transpose of a matrix is found by interchanging its rows into columns or
columns into rows.
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Example 8: Calculation of inverse of a matrix
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Find the inverse matrix of the given 3 by 3 matrix:

Solution:

C

= CT.
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Example 9: Converting state-space representation to transfer function

54

Given the system defined by the following equations, find the transfer
function, T(s) = Y(s)/U(s) where U(s) is the input and Y(s) is the output.

Solution:

(t) = (t) + (t)

(t) = (t) + (t)

x Ax Bu

y Cx Du

 Compare with the above
two equations
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Signal Flow Graphs (Introduction)
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• Signal-flow graphs are an alternative to block diagrams.
 Block diagram approach will be discussed in details later in the

next lecture.
• Signal flow graphs are a pictorial representation of the

simultaneous equations describing a system.
• These graphs display the transmission of signals through the

system, as does the block diagrams.
• Unlike block diagrams, which consist of blocks, signals, summing

junctions, etc., a signal-flow graph consists only of branches,
which represent systems, and nodes, which represent signals.
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Fundamentals of Signal Flow Graphs

• Consider a simple equation below and let us draw its signal flow graph:

Xi = AijXj

• The signal flow graph of the equation is shown below:

• Every variable (i.e., signal) in a signal flow graph is designated by a Node.
• Every transmission function in a signal flow graph is designated by a Branch. 
• Branches are always unidirectional.
• The arrow in the branch denotes the direction of the signal flow.
• The variables Xi and Xj are represented by a small dot or circle called a Node.
• The transmission function Aij is represented by a line with an arrow and placed on the 

line (i.e., on the branch).
• The node Xj is called input node and node Xi  is called output node.

Xj
Xi

AijNode Node

Branch
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Terminology

• An input node or source, i.e., X1, contains only the outgoing branches.
• An output node or sink, i.e., X4, contains only the incoming branches.
• A path is a continuous, unidirectional succession of branches along which no node is passed

more than once, i.e., X1 to X2 to X3 to X4 , also X2 to X3 to X4, and X1 to X2 to X4, are all paths.
• A forward path is a path from the input node to the output node, i.e., X1 to X2 to X3 to X4,

and X1 to X2 to X4, are forward paths.
• A feedback path or feedback loop is a path which originates and terminates on the same

node, i.e., X2 to X3 and back to X2 is a feedback path.
• A self-loop is a feedback loop consisting of a single branch, e.g., A33 is a self loop.
• The branch gain is the transmission function of the branch.
• The path gain is the product of branch gains encountered in traversing a path, e.g., X1 to X2 to

X3 to X4 is A21A32A43. This is because the transmission function is a multiplicative operator.
• The loop gain is the product of the branch gains of the loop, e.g., the loop gain of the

feedback loop from X2 to X3 and back to X2 is A32A23.

X1 X2 X3 X4

A21

A23

A32 A43

A42

A33
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Example 10:
Converting feedback system block diagram into a signal flow graph 
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• Step 1: Draw the signal nodes for the system. The signal nodes for the given system are
shown in Figure (a).

• Step 2: Interconnect the signal nodes with system branches. The interconnection of
the nodes with branches that represent the systems is shown in Figure (b).

Figure (a)

Figure (b)
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Example 10 (cont’d)
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• Step 3: Simplify the signal-flow graph to the one shown in Figure (c) by eliminating
signal nodes that have a single flow in and a single flow out, such as V2(s), V6(s), V7(s),
and V8(s). Make sure that you multiply the transmission functions before and after these
particular signal nodes.

Figure (b)

Figure (c)

(from previous slide)
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Mason’s Rule (an alternative to block diagram)

• As will be shown later, the block diagram reduction technique requires
successive application of fundamental relationships in order to arrive at the
system transfer function.

• On the other hand, Mason’s rule for reducing a signal-flow graph to a single
transfer function requires the application of one formula. However, the use of
the rule is quite cumbersome and less straightforward.

• In this course, we will be using Block Diagram approach and Mason’s Rule will
not be covered.
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Summary
• Modeling

• Modeling is an important task!
• Transfer function
• Modeling of electrical & mechanical systems
• State-space modeling
• Signal flow graph

• Next
• Modeling of electromechanical systems

61


