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Example 1: Characterizing System Behavior 

• We want the mass to stay at x = 0, but wind causes the mass to move.
What will happen?

• How to characterize different behaviors with TF (transfer function)? That
is, how to investigate the stability of the system? We will be revisiting this
example again in this lecture.
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Stability
• Utmost important specification in control design!
• Unstable closed-loop systems are useless.
• Unstable systems might be stabilized by feedback.
• What if a system is unstable? (“out-of-control”)

• It may hit electrical/mechanical “stops”.
• It may break down or burn out.
• Signals diverge.

• Examples of unstable systems
• Tacoma Narrows Bridge collapse in 1940
• SAAB Gripen JAS-39 prototype accident in 1989
• Wind turbine explosion in Denmark in 2008
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Stability
What happens if a system becomes unstable?

• When a system becomes unstable, its response can grow without bounds—like a motor
spinning faster and faster or a signal increasing uncontrollably. In real-world systems,
though, this growth cannot continue forever. Eventually, the system will hit physical or
electrical limits, often referred to as "stops."

• In a mechanical system, these might be physical barriers, maximum extension limits, or
hard end-stops (e.g., a piston reaching the end of a cylinder).

• In an electrical system, limits could be maximum voltage, current saturation, or thermal
shutdown.

Once these limits are reached, the system may:

• Become damaged

• Shut down abruptly

• Enter a non-functional or unpredictable state

• So, even though the math says the output might grow indefinitely, in practice, an unstable
system will usually hit a point where something breaks or trips—which is why preventing
instability is so critical in control system design.
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Definitions of stability
• BIBO (Bounded-Input-Bounded-Output) stability

Any bounded input generates a bounded output.

• Asymptotic stability
Any ICs generates y(t) converging to zero.
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Some terminologies

• Zero: roots of n(s)

• Pole: roots of d(s)

• Characteristic polynomial: d(s)

• Characteristic equation: d(s) = 0
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Stability condition in s-domain 
• For a system represented by transfer function G(s):

System is BIBO stable

All the poles of G(s) are in the open left half of 
the complex plane.

System is asymptotically stable
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• In control theory, characterizing system behavior with transfer function is performed
by investigating the stability status (or stability condition) of a control system.
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Example 2: Idea of Stability Condition

• Example:
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Asymptotic Stability: 
(r(t) = R(s) = 0)

BIBO Stability: 
(y(0) = 0)

Bounded if 0
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Time-invariant & time-varying
• A system is called time-invariant if system parameters do

not change in time. If they do, it is called time-varying.
• Examples:

 M (t) = f(t) (time-invariant)
 M(t) (t) = f (t) (time-varying)

• For time-invariant systems:

• This course deals with time-invariant systems.
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System
Time shift Time shift
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Remarks on stability
• For general systems (nonlinear, time-varying),

BIBO stability condition and asymptotic stability
condition are different (beyond the scope of this
course).

• For linear time-invariant (LTI) systems (for which
we can use Laplace transform and we can obtain
transfer functions), these two stability conditions
happen to be the same.

• In this course, since we are interested in only LTI
systems, we simply use “stable” to mean both BIBO
and asymptotic stability.
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Remarks on stability (cont’d)
• Marginally stable if

• Step 1: G(s) has no pole in the open RHP (Right Half Plane),
and

• Step 2: G(s) has at least one simple pole on jω-axis, and
• Step 3: G(s) has no multiple pole on jω-axis.

• Unstable if a system is neither stable nor marginally stable. In
this context, NOT marginally stable means the system is
unstable.
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Marginally stable NOT marginally stable

Note: A simple pole is a pole of order one (i.e., a non-repeating pole). 
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“Marginally stable” in t-domain

• For any bounded input, except only special sinusoidal (bounded) inputs, the
output is bounded.

• In the example above, the special inputs are in the form of:

• If a system is marginally stable, it means that for some inputs, the system behaves
in a stable way (output remains bounded), but for other inputs, the system
becomes unstable (output grows unbounded).
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Stability summary
Let si be poles of G(s).   
Then, G(s) is …
• stable if

Re(si) < 0 for all i.

• marginally stable if
• Re(si) ≤ 0 for all i, and
• at least one simple pole for 

Re(si) = 0
• no multiple pole on jω-axis

• unstable if it is neither stable 
nor marginally stable.
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Re-axis is sometimes shown by σ or δ while Im-axis is shown by jω.
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Example 3: Characterizing System Behavior (revisited) 
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• Characterizing system behavior with transfer function is performed by investigating the
stability status (or stability condition) of a control system.
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Example 4: Stability Status
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Routh-Hurwitz criterion
• This is for LTI systems with a polynomial denominator

(without sine, cosine, exponential, etc.)
• It determines if all the roots of a polynomial

• lie in the open LHP (left half-plane),
• or equivalently, have negative real parts.

• It also determines the number of roots of a
polynomial in the open RHP (right half-plane).

• It does NOT explicitly compute the roots numerical
values.

• Consider a polynomial
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Routh array
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Routh array 
(How to compute the third row)
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Note: For every calculation, we always use the
entries in the first column (in the two rows
above the line of our calculation) as our anchor.
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Routh array 
(How to compute the fourth row)
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Routh-Hurwitz criterion
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Note:  If the polynomial has any roots in the open RHP, the system is unstable.

The number of roots in the open right half-
plane is equal to the number of sign
changes in the first column of Routh array.
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Example 5
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Routh array

Two sign changes
in the first column

Two roots in RHP
Unstable

Investigate the stability.
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Example 6
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Routh array

No sign changes
in the first column:

No roots in RHP:

Always same!

Stable

Investigate the stability.
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Example 7 (from slide 15)
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Routh array

No sign changes
in the first column.

No roots in RHP.

9.4

2.468

Always same!

9.4
2.468

Stable

Investigate the stability.
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Simple important criteria for stability

• 1st order polynomial

• 2nd order polynomial
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Example 8
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Summary
• Stability for LTI systems

• (BIBO, asymptotically) stable, marginally stable, unstable
• Stability for G(s) is determined by poles of G(s).

• Routh-Hurwitz stability criterion
• To determine stability without explicitly computing the

poles of a system.

• Next
• More examples on Routh-Hurwitz criterion.
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