

ELEC 341: Systems and Control

Lecture 6

Stability: Routh-Hurwitz stability criterion

© Siamak Naiarian 2025

1

a place of mind Course roadmap Modeling Analysis Design Laplace transform Stability **Design specs** • Routh-Hurwitz Transfer function Nyquist **Root locus** Models for systems Time response Frequency domain Electrical Transient Electromechanical Steady state **PID & Lead-lag** Mechanical Frequency response **Design examples** Linearization, delay Bode plot Matlab simulations

Example 1: Characterizing System Behavior

• We want the mass to stay at x = 0, but wind causes the mass to move. What will happen?

• How to characterize different behaviors with TF (transfer function)? That is, how to investigate the **stability** of the system? We will be revisiting this example again in this lecture.

Stability

- Utmost important specification in control design!
- Unstable closed-loop systems are useless.
- Unstable systems might be stabilized by feedback.
- What if a system is unstable? ("out-of-control")
 - It may hit electrical/mechanical "stops".
 - It may break down or burn out.
 - Signals diverge.
- Examples of unstable systems
 - Tacoma Narrows Bridge collapse in 1940
 - SAAB Gripen JAS-39 prototype accident in 1989
 - Wind turbine explosion in Denmark in 2008

Stability

What happens if a system becomes unstable?

- When a system becomes unstable, its response can grow without bounds—like a motor spinning faster and faster or a signal increasing uncontrollably. In real-world systems, though, this growth cannot continue forever. Eventually, the system will hit physical or electrical limits, often referred to as "stops."
- In a mechanical system, these might be physical barriers, maximum extension limits, or hard end-stops (e.g., a piston reaching the end of a cylinder).
- In an electrical system, limits could be maximum voltage, current saturation, or thermal shutdown.

Once these limits are reached, the system may:

- Become damaged
- Shut down abruptly
- Enter a non-functional or unpredictable state
- So, even though the math says the output might grow indefinitely, in practice, an unstable system will usually hit a point where something breaks or trips—which is why preventing instability is so critical in control system design.

Definitions of stability

• BIBO (Bounded-Input-Bounded-Output) stability

Any bounded input generates a bounded output.

• Asymptotic stability

Any ICs generates y(t) converging to zero.

- $G(s) = \frac{n(s)}{d(s)} \qquad \qquad \text{Ex.} \quad G(s) = \frac{(s-1)(s+1)}{(s+2)(s^2+1)}$
- Zero: roots of *n*(*s*)

 $(\text{Zeros of } G) = \pm 1$

• **Pole:** roots of d(s)

- (Poles of G) = $-2, \pm j$
- Characteristic polynomial: d(s)
- Characteristic equation: d(s) = 0

Stability condition in s-domain

• For a system represented by transfer function G(s):

• In control theory, characterizing system behavior with transfer function is performed by investigating the stability status (or stability condition) of a control system.

a place of mind

a place of mind

Example 2: Idea of Stability Condition

• Example: $y'(t) + \alpha y(t) = r(t)$

$$\Rightarrow SY(s) - y(0) + \alpha Y(s) = R(s)$$
$$\Rightarrow Y(s) = \frac{1}{s + \alpha} (R(s) + y(0))$$

Asymptotic Stability: $y(t) = \mathcal{L}^{-1} \{Y(s)\} = \mathcal{L}^{-1} \left\{ \frac{1}{s+\alpha} y(0) \right\} = e^{-\alpha t} y(0) \rightarrow 0 \Leftrightarrow (-\alpha) < 0$ (r(t) = R(s) = 0)

BIBO Stability:
$$y(t) = \mathcal{L}^{-1} \{Y(s)\} = \mathcal{L}^{-1} \{G(s)R(s)\} = \int_0^t g(\tau)r(t-\tau)d\tau = \int_0^t e^{-\alpha\tau}r(t-\tau)d\tau$$

 $(y(0) = 0)$
 $|y(t)| \le \int_0^t |e^{-\alpha\tau}||r(t-\tau)|d\tau \le \int_0^t |e^{-\alpha\tau}|d\tau \cdot r_{max}$
 $\lim_{t \to \infty} |y(t)| \le \frac{r_{max}}{\alpha}$ Bounded if $(-\alpha) < 0$

Time-invariant & time-varying

- a place of mind
- A system is called *time-invariant* if system parameters do not change in time. If they do, it is called *time-varying*.
- Examples:
 - $\succ M \ddot{x}(t) = f(t)$ (time-invariant)
 - \succ $M(t) \ddot{x}(t) = f(t)$ (time-varying)
- For time-invariant systems:

• This course deals with time-invariant systems.

Remarks on stability

- For general systems (nonlinear, time-varying), BIBO stability condition and asymptotic stability condition are different (beyond the scope of this course).
- For linear time-invariant (LTI) systems (for which we can use Laplace transform and we can obtain transfer functions), these two stability conditions happen to be the same.
- In this course, since we are interested in only LTI systems, we simply use "stable" to mean both BIBO and asymptotic stability.

- Marginally stable if
 - Step 1: G(s) has no pole in the open RHP (Right Half Plane), and
 - Step 2: G(s) has at least one simple pole on $j\omega$ -axis, and
 - Step 3: G(s) has no multiple pole on $j\omega$ -axis.

$$G(s) = \frac{1}{s(s^2 + 4)(s + 1)^2} \qquad G(s) = \frac{1}{s(s^2 + 4)^2(s + 1)^2}$$

Marginally stable

NOT marginally stable

 Unstable if a system is neither stable nor marginally stable. In this context, *NOT marginally stable* means the system is unstable.

Note: A simple pole is a pole of order one (i.e., a non-repeating pole).

For any bounded input, except only special sinusoidal (bounded) inputs, the output is bounded.

"Marginally stable" in t-domain

• In the example above, the special inputs are in the form of:

$$f(t) = \alpha \sin \sqrt{K}t + \beta \cos \sqrt{K}t \quad \Rightarrow \quad x(t) \to \pm \infty$$

If a system is marginally stable, it means that for **some inputs**, the system behaves in a stable way (output remains bounded), but for other inputs, the system becomes unstable (output grows unbounded).

Let s_i be poles of $G(s)$.	Im		
Then, $G(s)$ is	1		
 stable if	Stable	Unstable	
Re(s _i) < 0 for all <i>i</i> . marginally stable if Re(s_i) < 0 for all <i>i</i>, and	region	region	
 at least one simple pole for Re(s_i) = 0 no multiple pole on jω-axis unstable if it is neither stable nor marginally stable. 	Stable region	Unstable region	

Re-axis is sometimes shown by σ or δ while **Im-axis** is shown by $j\omega$.

Re

Example 3: Characterizing System Behavior (revisited)

 Characterizing system behavior with transfer function is performed by investigating the stability status (or stability condition) of a control system.

a place of mind

a place of mind Course roadmap Modeling Analysis Design Laplace transform Stability **Design specs** • Routh-Hurwitz Transfer function Nyquist **Root locus** Models for systems Time response Frequency domain Electrical Transient Electromechanical Steady state **PID & Lead-lag** Mechanical Frequency response **Design examples** Linearization, delay Bode plot Matlab simulations

Routh-Hurwitz criterion

- This is for LTI systems with a *polynomial* denominator (without sine, cosine, exponential, etc.)
- It determines if all the roots of a polynomial
 - lie in the open LHP (left half-plane),
 - or equivalently, have negative real parts.
- It also determines the number of roots of a polynomial in the open RHP (right half-plane).
- It does NOT explicitly compute the roots numerical values.
- Consider a polynomial

$$Q(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

 $Q(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$

a place of mind

Routh array

Routh array (How to compute the third row) $\begin{vmatrix} a_n & a_{n-2} & a_{n-4} & a_{n-6} & \cdots \\ a_{n-1} & a_{n-3} & a_{n-5} & a_{n-7} & \cdots \end{vmatrix}$ s^{n-1} s^{n-2} $b_2 \quad b_3 \quad b_4$ b_1 c_2 C_1

 c_3

 c_4

Note: For every calculation, we always use the entries in the first column (in the two rows above the line of our calculation) as our anchor.

 k_{2}

1

 k_1

 l_1

 m_1

 s^n

:

 s^2

 s^1

 s^0

Routh array (How to compute the fourth row)

a place of mind

Routh-Hurwitz criterion

s^n	a_n	a_{n-2}	a_{n} -	_4	a_{n-6}	• • •			
s^{n-1}	a_{n-1}	a_{n-3}	a_{n} -	-5	a_{n-7}	• • •			
s^{n-2}	b_1	b_2	b_3		<i>b</i> 4	•••			
s^{n-3}	c_1	c_2	cз		С4	•••			
:	:	÷							
s ²	k_1	k_2		The	number o	of roots in	n the ope	en right	half-
s^1	l_1			plane is equal to the number of sign changes in the first column of Routh array.					
s^0	m_1		L						
	-								

Note: If the polynomial has any roots in the open RHP, the system is unstable.

Example 5

Investigate the stability.

$$Q(s) = s^3 + s^2 + 2s + 8 = (s+2)(s^2 - s + 4)$$

Routh array

Two sign changes in the first column $1 \rightarrow -6 \rightarrow 8$

Investigate the stability.

$$Q(s) = s^3 + 3s^2 + 6s + 8 = (s+2)(s^2 + s + 4)$$

Example 6

Routh array

No sign changes in the first column: $1 \rightarrow 3 \rightarrow 10/3 \rightarrow 8$

Example 7 (from slide 15)

Investigate the stability.

$$Q(s) = s^4 + 5s^3 + 10s^2 + 3s + 1$$

Simple important criteria for stability

• 1st order polynomial $Q(s) = a_1s + a_0$

All roots are in LHP $\Leftrightarrow a_1$ and a_0 have the same sign

• 2nd order polynomial $Q(s) = a_2s^2 + a_1s + a_0$

All roots are in LHP \Leftrightarrow a_2 , a_1 and a_0 have the same sign

	Example 8			
	Q(s)	All roots in open LHP?		
(1)	3 <i>s</i> + 5	Yes / No		
(2)	$-2s^2 - 5s - 100$	Yes / No		
(3)	$523s^2 - 57s + 189$	Yes / No		
(4)	$s^4 + 2s^3 + s^2 - 1$	Yes / No		
(5)	$s^3 + 5s^2 + 10s - 3$	Yes / No		

Summary

- Stability for LTI systems
 - (BIBO, asymptotically) stable, marginally stable, unstable
 - Stability for G(s) is determined by poles of G(s).
- Routh-Hurwitz stability criterion
 - To determine stability without explicitly computing the poles of a system.
- Next
 - More examples on Routh-Hurwitz criterion.