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Example 1: Characterizing System Behavior

* We want the mass to stay at x = 0, but wind causes the mass to move.
What will happen?

e 1) K o ()
M=1|m X(s) :i i _/VV\_M:1 — X(s) _ 1
| F(s) s> | F(s) 24K
__________ =) E==e X0
p W 5 K )
1 0 0 10
— | M=]|mp 45 _ | _AM=1|m) X(s) _ 1
| F(s) 82+Bs§ _E[l F(s)  s2+Bs+K

== x(0) F==»> Xx()

 How to characterize different behaviors with TF (transfer function)? That
is, how to investigate the stability of the system? We will be revisiting this
example again in this lecture.
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Stability

e Utmost important specification in control design!

* Unstable closed-loop systems are useless.
* Unstable systems might be stabilized by feedback.

* What if a system is unstable? (“out-of-control”)
* |t may hit electrical/mechanical “stops”.
* It may break down or burn out.
* Signals diverge.

* Examples of unstable systems

 Tacoma Narrows Bridge collapse in 1940
* SAAB Gripen JAS-39 prototype accident in 1989
* Wind turbine explosion in Denmark in 2008
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aplace of mind

Stability Ve

‘i\|'|'ilih

What happens if a system becomes unstable?

* When a system becomes unstable, its response can grow without bounds—Ilike a motor
spinning faster and faster or a signal increasing uncontrollably. In real-world systems,
though, this growth cannot continue forever. Eventually, the system will hit physical or
electrical limits, often referred to as "stops."

* In a mechanical system, these might be physical barriers, maximum extension limits, or
hard end-stops (e.g., a piston reaching the end of a cylinder).

* In an electrical system, limits could be maximum voltage, current saturation, or thermal
shutdown.

Once these limits are reached, the system may:
 Become damaged
* Shut down abruptly

* Enter a non-functional or unpredictable state

* So, even though the math says the output might grow indefinitely, in practice, an unstable
system will usually hit a point where something breaks or trips—which is why preventing
instability is so critical in control system design.
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Definitions of stability

* BIBO (Bounded-Input-Bounded-Output) stability
Any bounded input generates a bounded output.

r(l‘) ICs =0 y(f)
BIBOstable | AT
system > L \//\\// R

* Asymptotic stability

Any ICs generates y(t) converging to zero.

IC.
- »(0)
Asymptotic stable \
() =0 _‘I system — \//\ -
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Some terminologies

n(s) (s—=1)(s+1)
G(s) = s) =
)= 1659 B GB) = @)
* Zero: roots of n(s) (Zeros of G) = £1
* Pole: roots of d(s) (Poles of G) = -2, 4;

* Characteristic polynomial: d(s)

* Characteristic equation: d(s) =0
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Stability condition in s-domain

* For a system represented by transfer function G(s):

System is BIBO stable

I

All the poles of G(s) are in the open left half of

the complex plane.

I

System is asymptotically stable

A

 Im

* In control theory, characterizing system behavior with transfer function is performed
by investigating the stability status (or stability condition) of a control system.
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Example 2: Idea of Stability Condition

 Example: 3/'(t) + ay(t) = r(t)
=) sY(s) - y(O) + aY(s) = R(s)

m) Y(s) =

1

Asymptotic Stability: y(t) = £} {Y(s)} = ! {my(O)} = %(0)=0& (-a)<0

(r() = R(s) = 0)

BIBO Stability: y(t) = £~ {¥(s)} = L1 {G(s)R(s)} = ] r(t=r)dr = / e~ (t—1)dr
(v(0) =0)

[
—QaT . —QT .
O < [ e irte - nldr < [ e ldr rmas )

lim [y(t)| < i Bounded if (o) < 0
—00 o
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Time-invariant & time-varying

* A system is called time-invariant if system parameters do
not change in time. If they do, it is called time-varying.

* Examples:
> M x(t) = f(1) (time-1nvariant)
» M) i(t) =f(f) (time-varying)
* For time-invariant systems:

r(t) S v

Tlme shift ; Time shift
to —>| System I—» to ﬁf\/

r\"“/(t —T) . y(t-=T)
to to+T to to+ T

* This course deals with time-invariant systems.

10
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Remarks on stability

* For general systems (nonlinear, time-varying),
BIBO stability condition and asymptotic stability
condition are different (beyond the scope of this
course).

* For linear time-invariant (LTI) systems (for which
we can use Laplace transform and we can obtain
transfer functions), these two stability conditions
happen to be the same.

* In this course, since we are interested in only LTI
systems, we simply use “stable” to mean both BIBO
and asymptotic stability.

© Siamak Najarian 2025
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Remarks on stability (cont’d)

* Marginally stable if

* Step 1: G(s) has no pole in the open RHP (Right Half Plane),
and

* Step 2: G(s) has at least one simple pole on jw-axis, and
* Step 3: G(s) has no multiple pole on jw-axis.

1 - 1
6ls) = s(s2+4)(s+1)? A= s(s?+4)2(s + 1)

Marginally stable NOT marginally stable

e Unstable if a system is neither stable nor marginally stable. In
this context, NOT marginally stable means the system is
unstable.

Note: A simple pole is a pole of order one (i.e., a non-repeating pole).
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“Marginally stable” in t-domain

aplace of mind

K 1@

_/MNA] 1 s — X(s) 1
7 IP F(S)ZSQ-I—K:G(S)

|
=== (0

* For any bounded input, except only special sinusoidal (bounded) inputs, the

output is bounded.
* In the example above, the special inputs are in the form of:

f(t) = asinVKt+BcosVKt = z(t) - +oo

* |f a system is marginally stable, it means that for some inputs, the system behaves
in a stable way (output remains bounded), but for other inputs, the system
becomes unstable (output grows unbounded).
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Stability summary

Let s, be poles of G(s). I
Then, G(s) is ... i
e stable if

Re(s,) <0 for all i.

Stable Unstable

region region
* marginally stable if
* Re(s,) <0 forall i, and R
 at least one simple pole for Re
Re(s;) =0 Stable |Unstable
* no multiple pole on jw-axis region region

e unstable if it is neither stable
nor marginally stable.

Re-axis is sometimes shown by ¢ or 0 while Im-axis is shown by jo.
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Example 3: Characterizing System Behavior (revisited)

* Characterizing system behavior with transfer function is performed by investigating the
stability status (or stability condition) of a control system.

(LetM=1,B=2and K=3)
(a) (b)

1@ K 1@
WAy ey K
F(s) 4K

X(s) 1
M= F(s) 82

! » X0 poles ? ! » X0 poles ?

Stable ? E Stable ?

____________________________________ L e e e e e e e
© k@

B £ - L f(t)X(S) 1
_IZ[_ M= F(s) 2+ Bs - _IZ[_ M |= F(s) s2+Bst+K

! - X0 Poles ? i ’ ! s X0 Poles ?

Stable ? i Stable ?
15
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Example 4: Stability Status

G(S) Stable/Marginally Stable/Unstable
(1) = 2
(s +1)(s+2)(s+3)
2) 20(s+1) )
(s = 1)(s*+ 25+ 3) |
1
2 (s +5)(s2 +2)2 ?
1

(4) s+ 583+ 10s2+3s5+1

16
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Routh-Hurwitz criterion

* This is for LTI systems with a polynomial denominator
(without sine, cosine, exponential, etc.)

* It determines if all the roots of a polynomial
* lie in the open LHP (left half-plane),
e or equivalently, have negative real parts.

e [t also determines the number of roots of a
nolynomial in the open RHP (right half-plane).

* It does NOT explicitly compute the roots numerical
values.

* Consider a polynomial

Q(s) =ans"+a, 15" 14+ ais+ag

18
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Routh array
Q(s) = ans" + an_lsn_l + .-+ a1s+ag

gM an Gyn Qp_a Gy - From the g_lven
1 polynomial

S Un—1 an—-3 ap—-5 ap-—7

g2 b1 bo b3 ba

s 3 | ¢q co c3 ca

s k1 ko

19
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Routh array

ELEC 341: Systems and Control

(How to compute the third row)

s" an An—2 anpn—4 Gan—6
—1
s" dn—-1 Apn-3 an-5 Un-7
Sn_Q‘ b1 bo b3 by . ‘
s 3 | ¢q co c3 ca
bl — Up—20p—1"0nGp_3
s2 k1 ko Up-1
b2 — In-40n—1"0nlp_5
st [1 an—1
0O b, = ap—60dn—1—"0andp-7
S ml 3 By
Note: For every calculation, we always use the

entries in the first column (in the two rows
above the line of our calculation) as our anchor.

© Siamak Najarian 2025
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Routh array

ELEC 341: Systems and Control

(How to compute the fourth row)

an Apn—2 Ap—-4 Qanp—6
Un—1 anpn—-3 anpn—-5 ap-—7

b1 bo b3 by

c1 co c3 ca

k1 ko (1 =
[1 2 =
mq g =

Op—301—ap—1b7

b1

ap—5b1—a,_1b3

b1

an—7 by —Qp—1bg

b1

21
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Routh-Hurwitz criterion

ELEC 341: Systems and Control

aplace of mind

Apn—2 Ap—-4 Qanp—6

dn—-3 apn—-5 Qnp—7

by bs
o c3
ko

ba

C4

The number of roots in the open right half-
plane is equal to the number of sign
changes in the first column of Routh array.
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Example 5

Investigate the stability.
Qs)=5"+5°+ 2548 =(s+2)(s*~s+4)
Routh array
311 2 2 -8
s |1 V 1
s 8 x (—6) —1x0

g0 * —6

Two sign changes Two roots in RHP
in the first column 1 V15 ‘
1——6—38 > + 5

© Siamak Najarian 2025
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Example 6

Investigate the stability.

Q(s) = °+352+65+8 = (s+2)(s°+s+4)

Routh array

3|1 6 6x3 — 8

2|3 3 3
"B -

Always same!

No sign changes ' -
g g No roots in RHP: l Stable

in the first column: ‘ 1 iviE

1—-3—10/3 — 38 —2,—— =+
2 2

24
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Example 7 (from slide 15)
Investigate the stability.

Q(s) = s* + 553+ 1052 + 35+ 1

Routh array 4 1 10 @
3|5 3

s219.4 @

s112.468 \

5O @f Always same!

No sign changes mm) Noroots in RHP. EEE)| Stable

in the first column.

© Siamak Najarian 2025
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Simple important criteria for stability

e 1st order polynomial Q(s) =a1s+ag
All roots are in LHP & ay and ag have the same sign
« 2nd order polynomial Q(s) = ass® + a1s + ag

All roots are in LHP & a9, a7 and ag have the same sign

26
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Example 8

Q(s)

ELEC 341: Systems an d Contro !

All roots in open LHP?

(1) 3s+5
(2) —232 - 5s-100
@ 52352575+ 189

@ st 4 253+ s52-1

5) s> 4+552410s—3

© Siamak Najarian 2025

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No
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Summary

e Stability for LTI systems
* (BIBO, asymptotically) stable, marginally stable, unstable
* Stability for G(s) is determined by poles of G(s).

* Routh-Hurwitz stability criterion

* To determine stability without explicitly computing the
poles of a system.

* Next
* More examples on Routh-Hurwitz criterion.
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