

ELEC 341: Systems and Control

Lecture 7

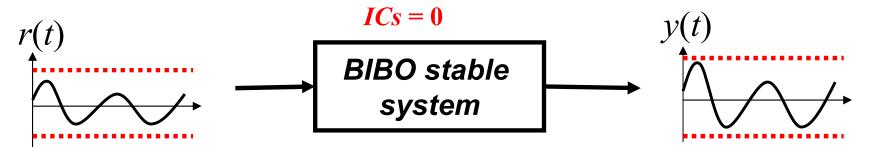
Routh-Hurwitz stability criterion: Examples

a place of mind Course roadmap Modeling Analysis Design Laplace transform Stability **Design specs** • Routh-Hurwitz Transfer function Nyquist **Root locus** Models for systems Time response Frequency domain Electrical Transient Electromechanical Steady state **PID & Lead-lag** Mechanical Frequency response **Design examples** Linearization, delay Bode plot Matlab simulations

© Siamak Najarian 2025

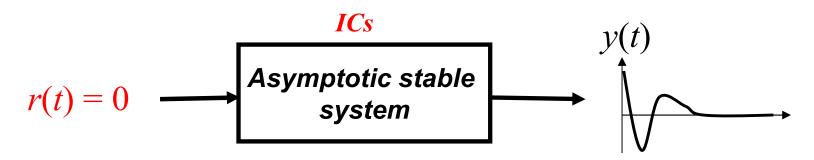
Definitions of stability (review)

• **BIBO (Bounded-Input-Bounded-Output) stability** Any bounded input generates a bounded output.



Asymptotic stability

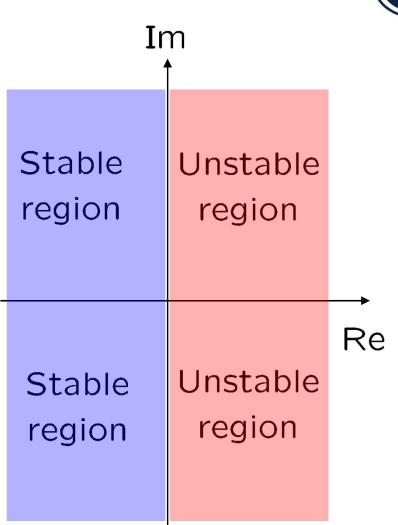
Any *ICs* generates *y*(*t*) converging to zero.



Stability summary (review)

Let s_i be	e <mark>poles</mark> o	f G(s)
Then, G	f(s) is	

- stable if
 - $\operatorname{Re}(s_i) < 0$ for all *i*.
- marginally stable if
 - $\operatorname{Re}(s_i) \leq 0$ for all *i*, and
 - at least one simple pole for Re(s_i) = 0
 - no multiple pole on $j\omega$ -axis
- unstable if it is neither stable nor marginally stable.



Routh-Hurwitz criterion (review)

- This is for LTI systems with a *polynomial* denominator (without sine, cosine, exponential, etc.)
- It determines if all the roots of a polynomial
 - lie in the open LHP (left half-plane),
 - or equivalently, have negative real parts.
- It also determines the number of roots of a polynomial in the open RHP (right half-plane).
- It **does NOT** explicitly compute the roots numerical values.

s^n	$\begin{vmatrix} a_n \\ a_{n-1} \\ b_1 \\ c_1 \end{vmatrix}$	a_{n-2}	a_{n-4}	a_{n-6}	• • •	From the given polynomial
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	a_{n-7}	•••	porynonnai
s^{n-2}	b_1	b_2	b_3	b_4	• • •	
s^{n-3}	c_1	c_2	cz	<i>c</i> 4	•••	
•		:				
<i>s</i> ²	k_1	k_2				
s^1	l_1		Q(s) =	$=a_ns^n+$	a_{n-1}	$s^{n-1} + \dots + a_1s + a_0$
s^0	m_1					

a place of mind

Routh array (How to compute the third row)

s^n	$ a_n $	a_{n-2}	a_{n-4}	a_{n-6}]
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	a_{n-7}	
s^{n-2}	b_1	<i>b</i> ₂	b_3	b_4	🗸
s^{n-3}	c_1	c_2	сз	<i>c</i> 4	
÷	:	:		,	$\underline{a_{n-2}a_{n-1}-a_na_{n-3}}$
<i>s</i> ²	k_1	k_2		01	$ a_{n-1}$
s^1	l_1			<i>b</i> 2	$= \frac{a_{n-4}a_{n-1}-a_na_{n-5}}{a_{n-1}}$
s^0	m_1			b_3	$= \frac{a_{n-6}a_{n-1}-a_{n}a_{n-7}}{a_{n-1}}$
					:

7

Routh array (How to compute the fourth row)

s^n	$ a_n $	a_{n-2}	a_{n-4}	a_{n-6}
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	a_{n-7}
s^{n-2}	b_1	b_2	b_3	$b_4 \cdots$
s^{n-3}	c_1	<i>c</i> ₂	сз	<i>c</i> ₄ ···
:	:	:		, ,
<i>s</i> ²	k_1	k_2		$c_1 = \frac{a_{n-3}b_1 - a_{n-1}b_2}{b_1}$
s^1	l_1			$c_2 = \frac{a_{n-5}b_1 - a_{n-1}b_3}{b_1}$
s^0	m_1			$c_3 = \frac{a_{n-7} b_1 - a_{n-1} b_4}{b_1}$
				:

a place of mind

Routh-Hurwitz criterion

s^n	$ a_n $	a_{n-2}	a_{n-4}	a_{n-6}	• • •
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	a_{n-7}	• • •
s^{n-2}	b_1	b_2	b_3	b_4	
s^{n-3}	c_1	c_2	cз	c_4	
:	:	:			
<i>s</i> ²	k_1	k_2		e number	
s^1	l_1		pla. cha	ne is eq anges in th	ual to t e <mark>first co</mark>
s^0	m_1				
	1				

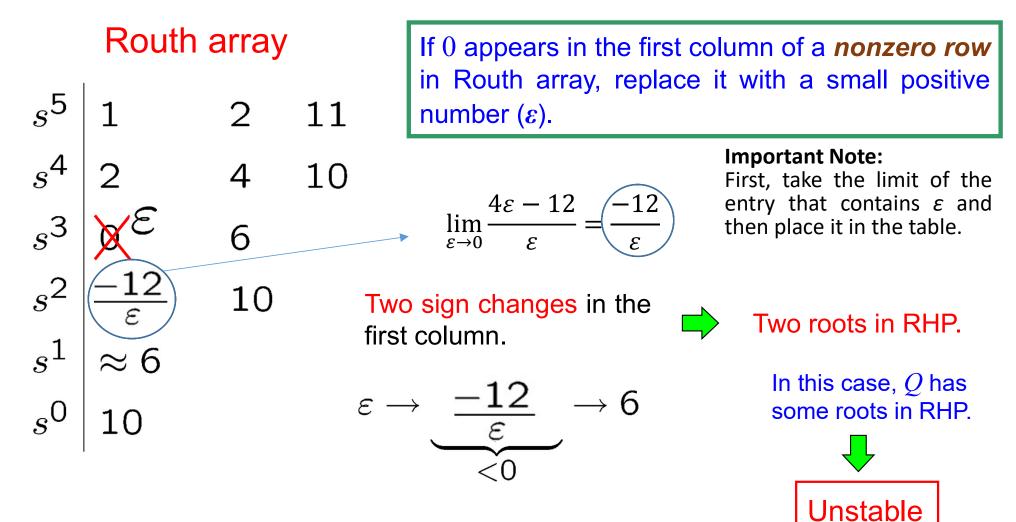
The number of roots in the open right halfplane is equal to the number of sign changes in the **first column** of Routh array.

a place of mind

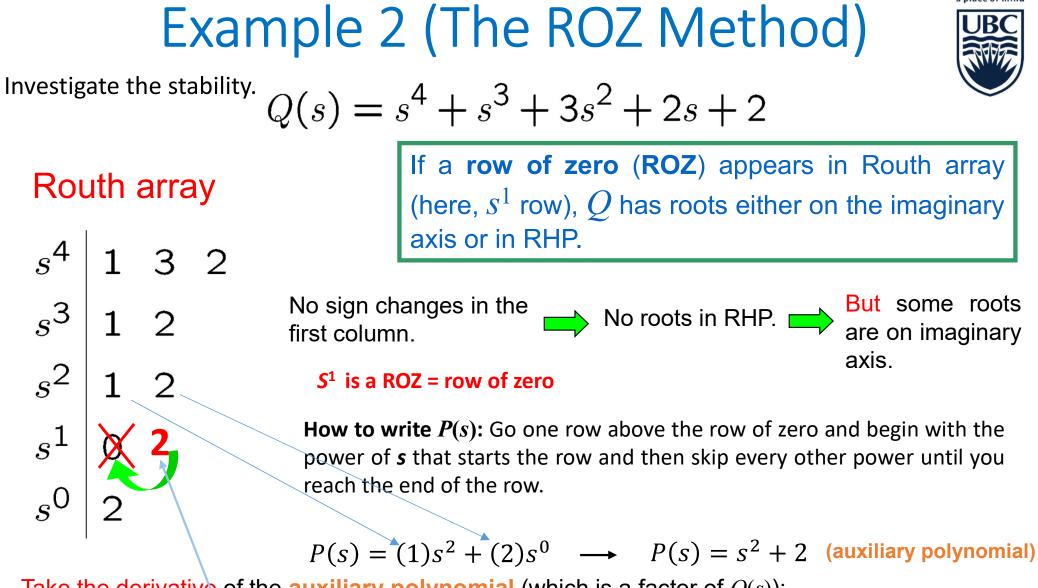
Example 1 (The Epsilon Method)

Investigate the stability.

$$Q(s) = s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10$$



10



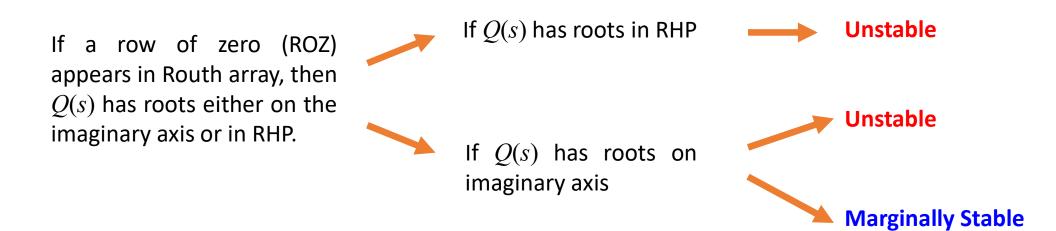
Take the derivative of the auxiliary polynomial (which is a factor of Q(s)):

$$P' = \frac{dP}{ds} = 2s$$
Marginally Stable

© Siamak Naiarian 2025

Replace the row of zero with the coefficients of the derivative polynomial in the dP/ds equation.

What does ROZ signify?



 s^3 .

 $\operatorname{ROZ} \longrightarrow s^1$

1 1

 s^2 | 1 1

Investigate the stability.

$$Q(s) = s^3 + s^2 + s + 1 = (s+1)(s^2+1)$$

Example 3

Routh array $P(s) = s^2 + 1$ (auxiliary polynomial)

Derivative of auxiliary polynomial:

$$\dot{P}(s) = (s^2 + 1)' = 2s$$

Auxiliary polynomial is a factor of Q(s).

No sign changes in the No roots in OPEN RHP. Arginally Stable first column.

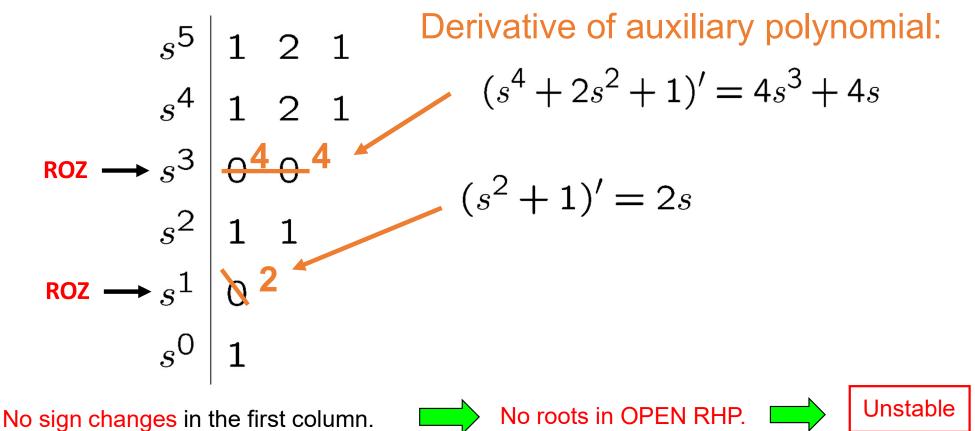
Note: Based on $s^2 + 1 = 0$, we have at least one simple pole on the imaginary axis and also no repeating poles on the imaginary axis . So, it is **marginally stable**.

Example 4

Investigate the stability.

$$Q(s) = s^{5} + s^{4} + 2s^{3} + 2s^{2} + s + 1 = (s+1)(s^{2}+1)^{2}$$

Routh array

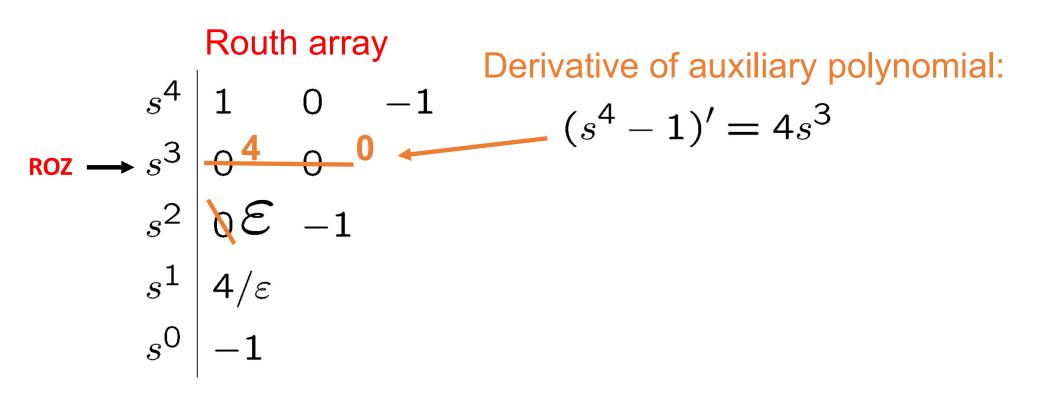


Note: Based on $s^4+2s^2+1=(s^2+1)^2=0$, we have repeating poles on imaginary axis. So, it is **unstable**.

Example 5

Investigate the stability.

$$Q(s) = s^4 - 1 = (s+1)(s-1)(s^2+1)$$



One sign changes in the first column.

a place of mind

Summary for stability when ROZ appears

Summary of procedure for determining if ROZ will lead to unstable or marginally stable systems:

- If there is a sign change in the first column, then we have poles in the open RHP and the system is **unstable**.
- If there is no sign change in the first column, there is no poles in the open RHP, but we will have poles on the Im-axis and we should see whether the system is marginally stable or unstable.
 If all the poles on the Im-axis are simple poles (i.e., with the
 - multiplicity of 1), then the system is marginally stable.
 - □ If the poles on the Im-axis have multiplicity of more than 1, then the system is **unstable**.

Notes on Routh-Hurwitz criterion

• Advantages:

- No need to explicitly compute roots of the polynomial.
 - High order Q(s) can be handled by hand calculations.
- Polynomials including undetermined parameters (plant and/or controller parameters in feedback systems) can be dealt with.
 - Root computation does not work in such cases!

• Disadvantage:

- Exponential functions (delay) cannot be dealt with.
 - Example:

$$Q(s) = e^{-s} + s^2 + s + 1$$

We will study Nyquist stability criterion later to deal with these cases!

Example 6

$$Q(s) = s^3 + 3Ks^2 + (K+2)s + 4$$

Find the range of *K* so that Q(s) has all roots in the left half plane. Here, *K* is a **design parameter**.

Routh array

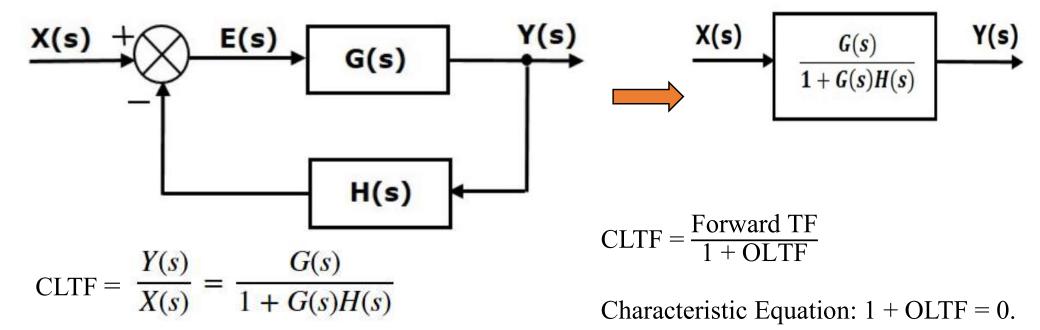
Note: In this course, we assume that the design parameters are always **positive**.

In order to have no sign changes in the first column:

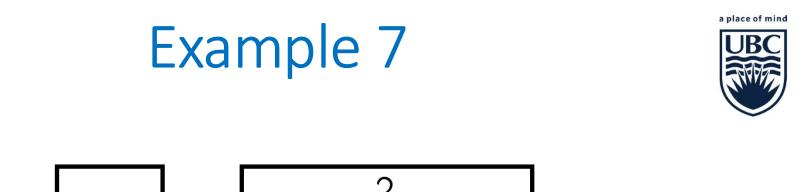
$$\begin{cases} 3K > 0 \qquad \qquad K > 0 \\ 3K(K+2) - 4 > 0 \\ \end{cases} \\ K > -1 + \frac{\sqrt{21}}{3} \\ K > 0.527 \end{cases}$$

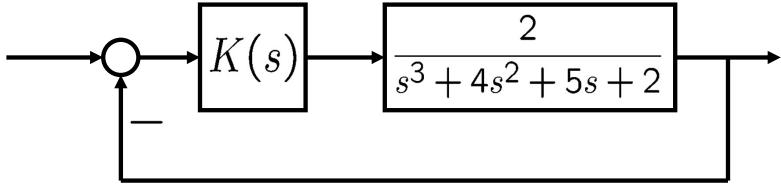
Characteristic Equation

• The following figure shows a negative feedback control system. Here, two blocks having transfer functions G(s) and H(s) form a closed loop.



• 1 + G(s)H(s) = 0 is called the **Characteristic Equation**. It is the left hand side of this equation that we have shown by Q(s) in the previous slides. That is, Q(s) = 1 + G(s)H(s). Here, Q(s) is called the **characteristic polynomial**.





- Design *K*(*s*) that stabilizes the closed-loop system for the following cases:
 - (a) K(s) = K (constant, P or Proportional controller)
 - (b) $K(s) = K_P + \frac{K_I}{S}$ (PI or Proportional-Integral controller)

Example 7 (cont'd): K(s) = K

(a)

• Characteristic equation:

$$1 + K \frac{2}{s^3 + 4s^2 + 5s + 2} = 0$$

$$s^3 + 4s^2 + 5s + 2 + 2K = 0$$

• Routh array: s^3 1 5 s^2 4 2+2K s^1 $\frac{18-2K}{4}$ s^0 2+2K $\longrightarrow -1 < K < 9$ 0 < K < 9

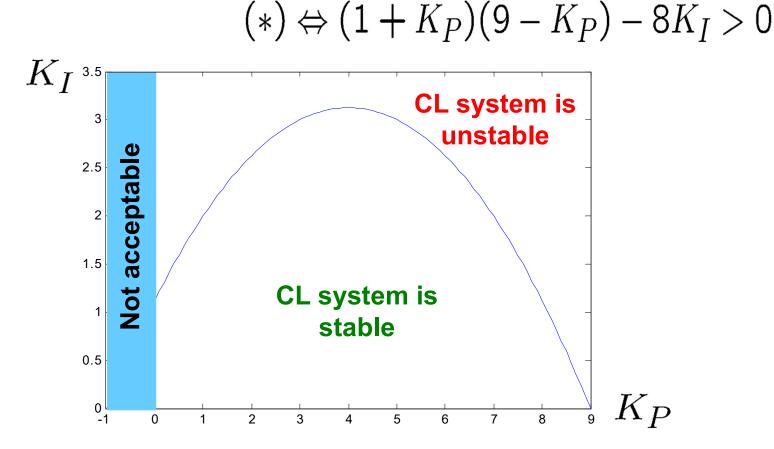
• Characteristic equation:

$$1 + \left(K_{P} + \frac{K_{I}}{s}\right) \frac{2}{s^{3} + 4s^{2} + 5s + 2} = 0$$

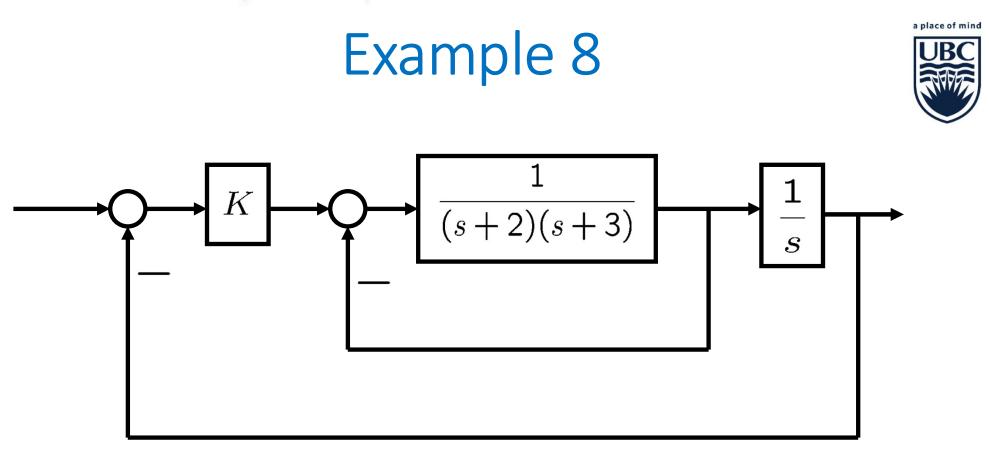
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 4s^{3} + 5s^{2} + (2 + 2K_{P})s + 2K_{I} = 0$$
• Routh array:
$$s^{4} + 2K_{I} = 0$$

(*)

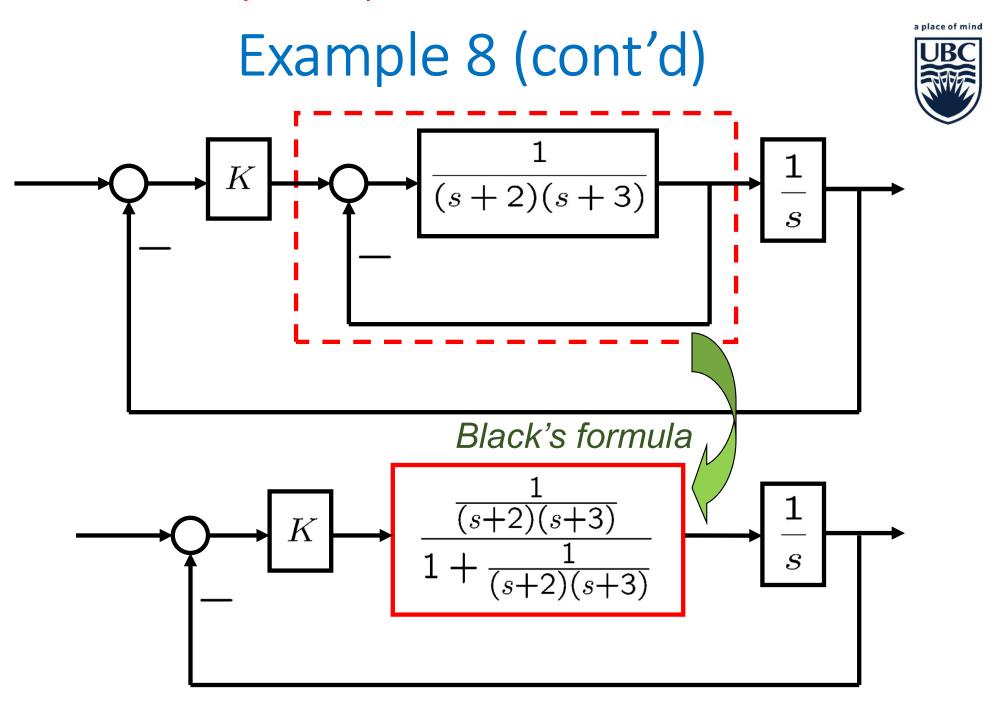
- Example 7 (cont'd): Range of (K_P, K_I)
- From Routh array, $K_P < 9$



 $K_{I} > 0$



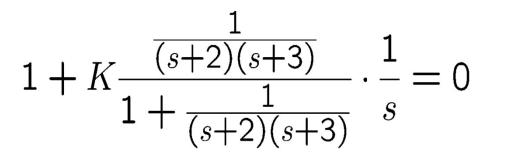
• Determine the range of *K* that stabilizes the closed-loop system.

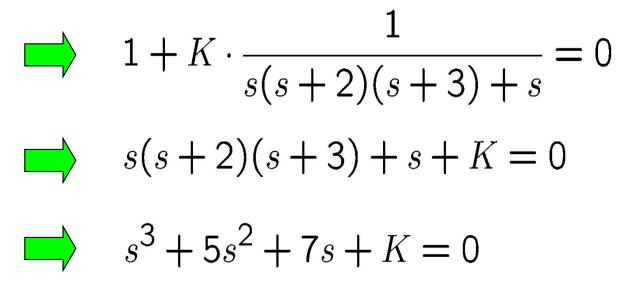


Note: We need to use the Black's formula *twice* if we want the closed-loop transfer function for the whole system.

Example 8 (cont'd)

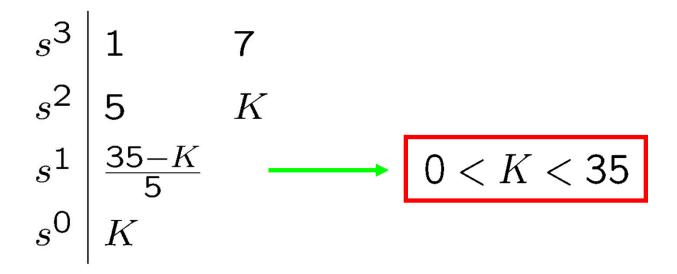
• Characteristic equation:





Example 8 (cont'd)

• Routh array for $s^3 + 5s^2 + 7s + K = 0$



- If *K* = 35, the closed-loop system is marginally stable.
- We can show that for K = 35, if we apply a step input, the system response (the output) will oscillate and that the frequency of oscillation will be $\sqrt{7}$ or 2.64 rad/sec.

Summary

- Examples for Routh-Hurwitz criterion
 - Cases when zeros appear in Routh array
 - P controller gain range for stability
 - PI controller gain range for stability
- Next
 - Time responses and steady-state errors

