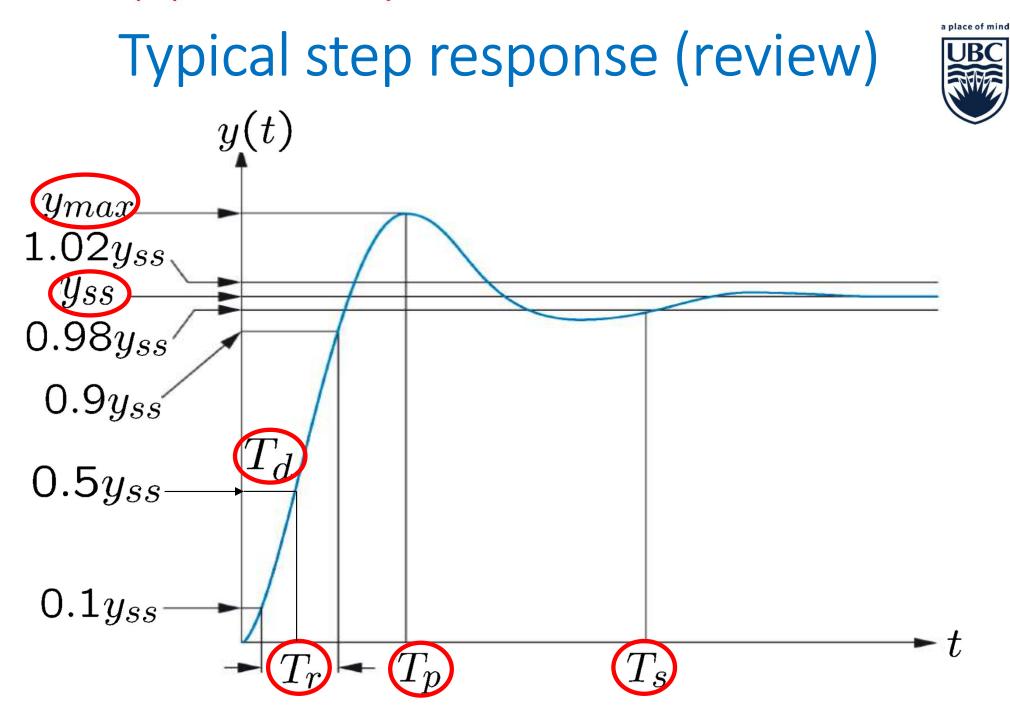


ELEC 341: Systems and Control

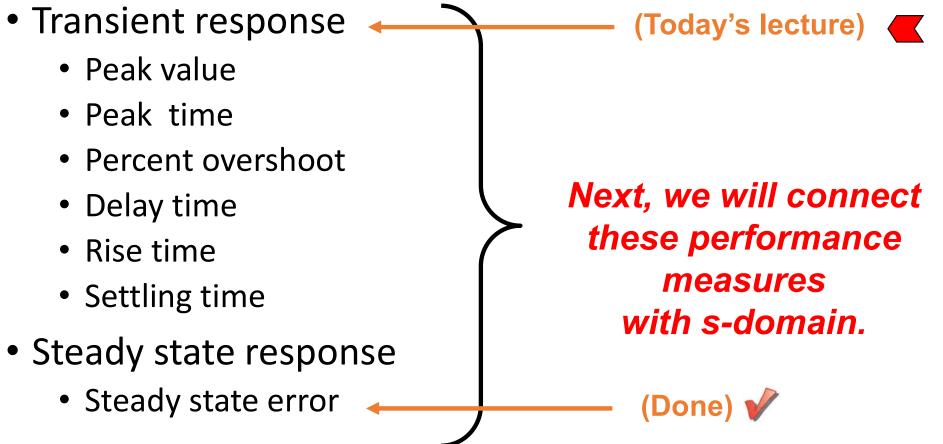
Lecture 9

Step responses of 1st and 2nd order systems

a place of mind Course roadmap Modeling Analysis Design Laplace transform Stability **Design specs** • Routh-Hurwitz Transfer function Nyquist **Root locus** Models for systems Time response Frequency domain Transient Electrical Electromechanical Steady state **PID & Lead-lag** Mechanical Frequency response **Design examples** Linearization, delay Bode plot Matlab simulations



Performance measures



Today's topics

- Characterization of step responses (performance measures) for 1st-order and 2nd-order systems in terms of (1) system parameters and (2) pole locations:
 - 1st-order system:

$$G(s) = \frac{K}{Ts+1}$$

• 2nd-order system:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

• System parameters are: (*K*, *T*), (ζ , ω_n)

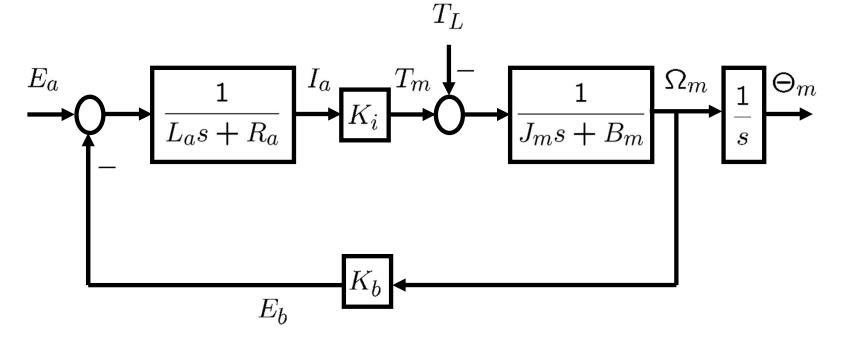
Note: For second-order systems, it is not necessary to have ω_n^2 in the numerator of G(s).

First-order system

• A standard form of the first-order system:

$$G(s) = \frac{K}{Ts+1}$$

• DC motor example (See L5)



DC motor example (cont'd)

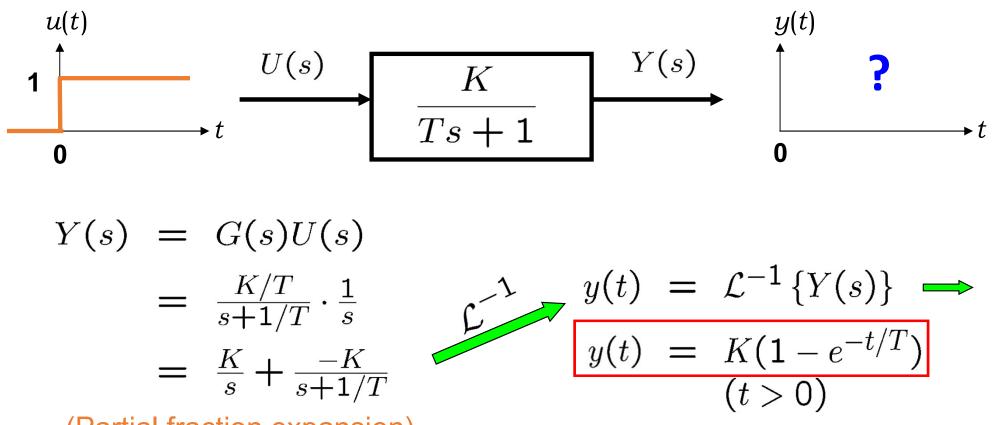
• If $L_a s \ll R_a$, we can obtain a 1st-order system:

$$\frac{\Omega_m(s)}{E_a(s)} = \frac{K_i}{(L_a s + R_a)(J_m s + B_m) + K_b K_i} \approx \frac{K_i}{R_a(J_m s + B_m) + K_b K_i}$$
$$= \frac{K}{Ts + 1} \left(K = \frac{K_i}{R_a B_m + K_b K_i}, T = \frac{R_a J_m}{R_a B_m + K_b K_i} \right)$$

2nd order system \longrightarrow 1st order system

- Remember that:
 - TF from motor voltage (E_a) to motor speed (Ω_m) is 1st-order (after using the approximation)
 - TF from motor voltage (E_a) to motor position (Θ_m) is 2nd-order

Input a unit step function to a first-order system.
 What is the output?



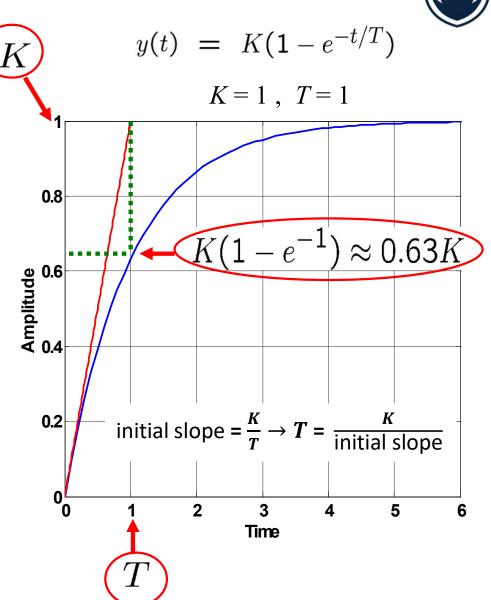
(Partial fraction expansion)

Meaning of K and T

- K : DC gain (next slide)
 - Final (steady-state) value

$$\lim_{t\to\infty}y(t)=K=\boldsymbol{y}_{ss}$$

- *T* : Time constant
 - Time when response rises to 63% of final value
 - Indication of speed of response (convergence)
 - Response is faster as T (also shown by τ) becomes smaller.



DC gain for a stable system

• For a stable system G, DC gain is G(0).

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sG(s) \frac{1}{s} = G(0)$$
f
Final value theorem

• Example:

$$G(s) = \frac{3}{2s+5} \qquad \longrightarrow \qquad G(0) = \frac{3}{5}$$

Note: The formula for the DC gain can also be used for systems of any other order. For example, if you have a 2nd order system, you can use the same formula to find the DC gain.

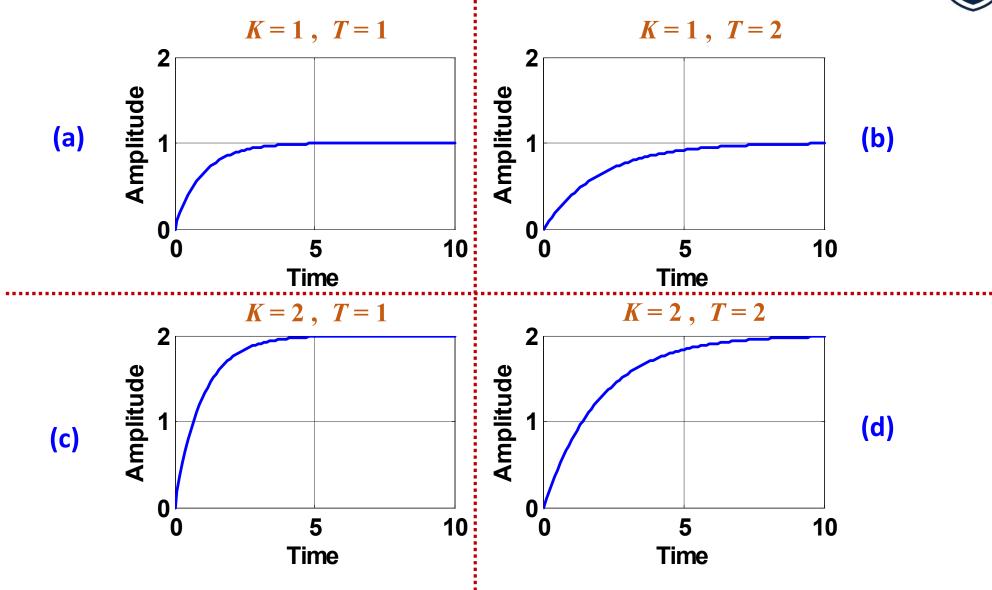
Settling time of 1st-order systems $y(t) = K(1 - e^{-t/T})$ or $y(t) = y_{ss}(1 - e^{-t/T})$

• Relation between time and exponential decay ($K = y_{ss}$):

t	$e^{-\frac{t}{T}}$	<i>y</i> (<i>t</i>)	
0	1	0	
Т	0.3679	0.6321 <i>y_{ss}</i>	
2 <i>T</i>	0.1353	0.8647 <i>y_{ss}</i>	
3 <i>T</i>	0.0498 ≈ <mark>5%</mark>	$0.9502y_{ss} \approx 95\%y_{ss}$	
4 <i>T</i>	0.0183 ≈ <mark>2%</mark>	0.98171 <i>y_{ss}≈ <mark>98%y_{ss}</mark></i>	
5 <i>T</i>	0.0067	0.9933 <i>y_{ss}</i>	

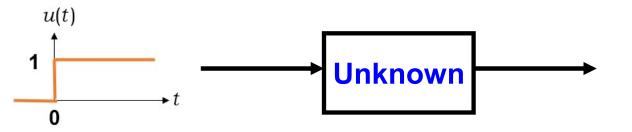
5% settling time is about 3T2% settling time is about 4T

Step response for some K& T

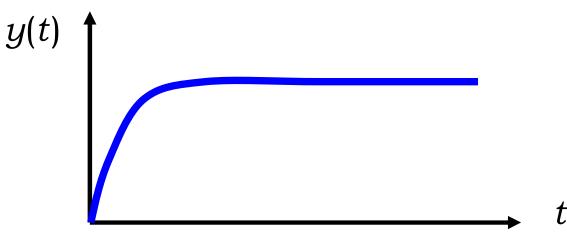


System identification

• Suppose that we have a "black-box" system:



• Obtain step response experimentally:



Can you obtain a transfer function? How?

a place of mind

Summary: Step response of 1st order systems $G(s) = \frac{K}{Ts + 1}$

- For 1st order systems, step responses have:
 - Steady-state value: K
 - Peak value, peak time, percent overshoot: undefined
 - Delay time: **0.7***T*
 - Rise time: **2.2***T*
 - Settling time:
 - 2%: 4*T*
 - 5%: **3***T*
 - Characterization in terms of poles:

$$Ts + 1 = 0 \rightarrow s = -\frac{1}{T} \rightarrow |\text{pole}| = \frac{1}{T} \rightarrow T = \frac{1}{|\text{pole}|}$$

× is used to show **poles**

slower

Im

faster

Re

Second-order systems

• A standard form of the second-order system:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \quad \begin{cases} \zeta : & \text{damping ratio} \\ \omega_n : & \text{undamped natural frequency} \end{cases}$$

Note 1:

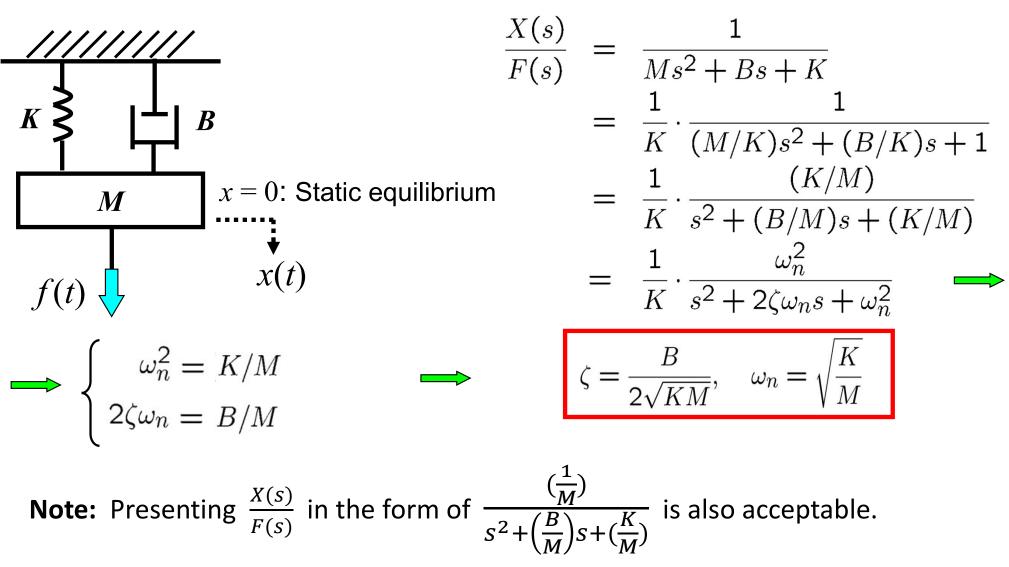
For second-order systems, it is not necessary to have ω_n^2 in the numerator of G(s).

Note 2:

Other names for ζ are **damping factor** and **damping coefficient**.

Example 1: Second-order system (a mechanical system)

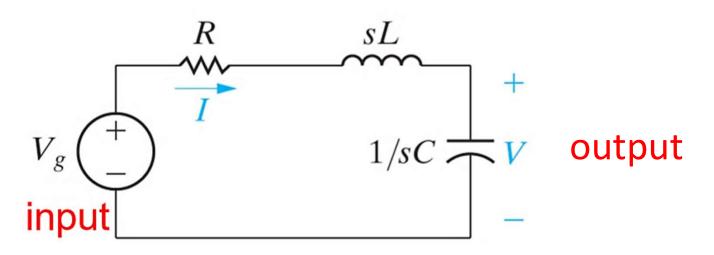
• Mass spring damper system (L4):



Example 2:

Second-order system (an electrical system)

• Series RLC circuit system:



• If the output is the capacitor voltage (V):

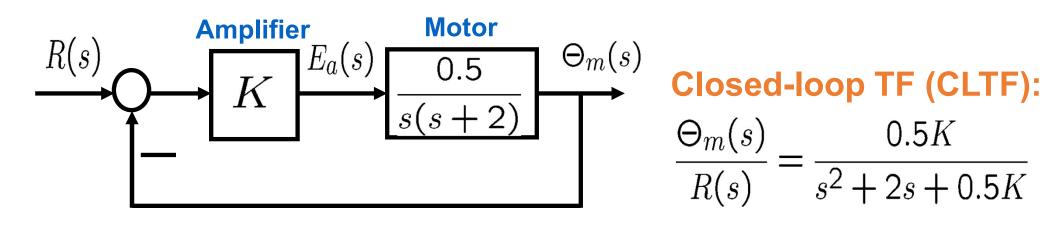
$$\frac{V}{V_g} = \frac{(sC)^{-1}}{R + sL + (sC)^{-1}} = \frac{1}{s^2 LC + sRC + 1}$$

$$\omega_n = ?; \zeta = ?$$

Example 3:

Second-order system (an electromechanical system)

• DC motor position control:

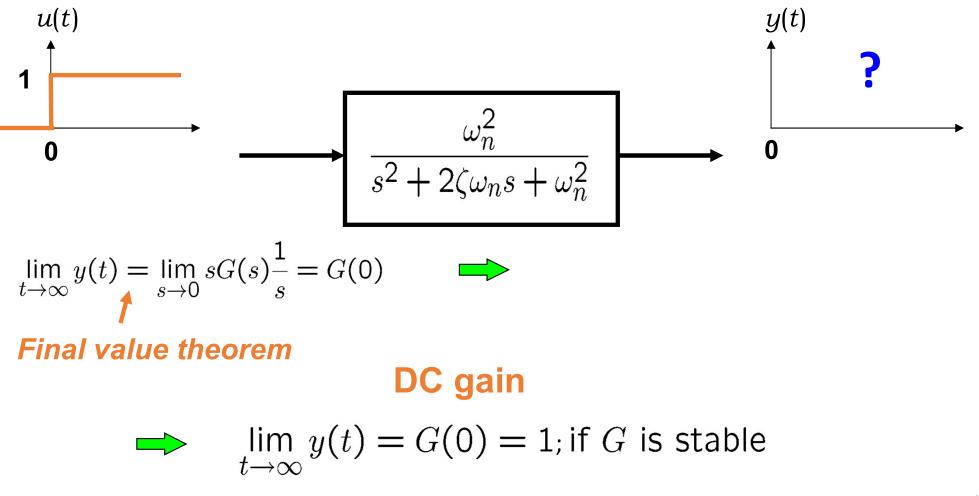


• Standard form of the second-order system:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad \Longrightarrow \qquad \omega_n = \sqrt{0.5K} \ ; \ \zeta = \frac{1}{\sqrt{0.5K}}$$

Step response of 2nd-order system

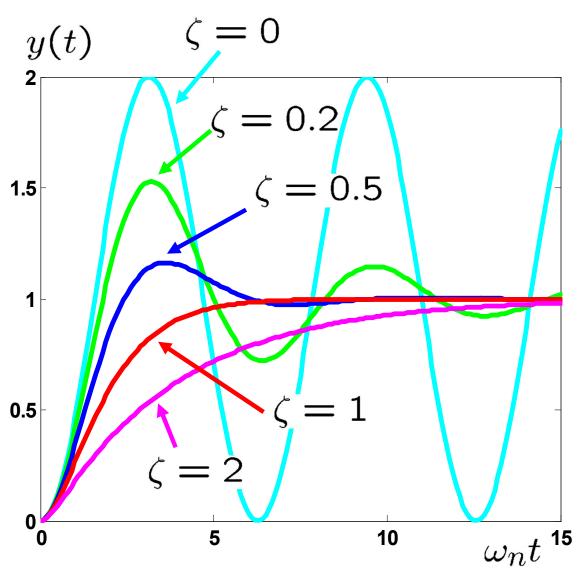
• Input a unit step function to a 2nd-order system. What is the output?



- Undamped
- Underdamped

 $\zeta = 0$

- $0 < \zeta < 1$
- Critically damped
 - $\zeta = 1$
- Overdamped
 - $\zeta > 1$



Step response of 2nd-order system: Underdamped case

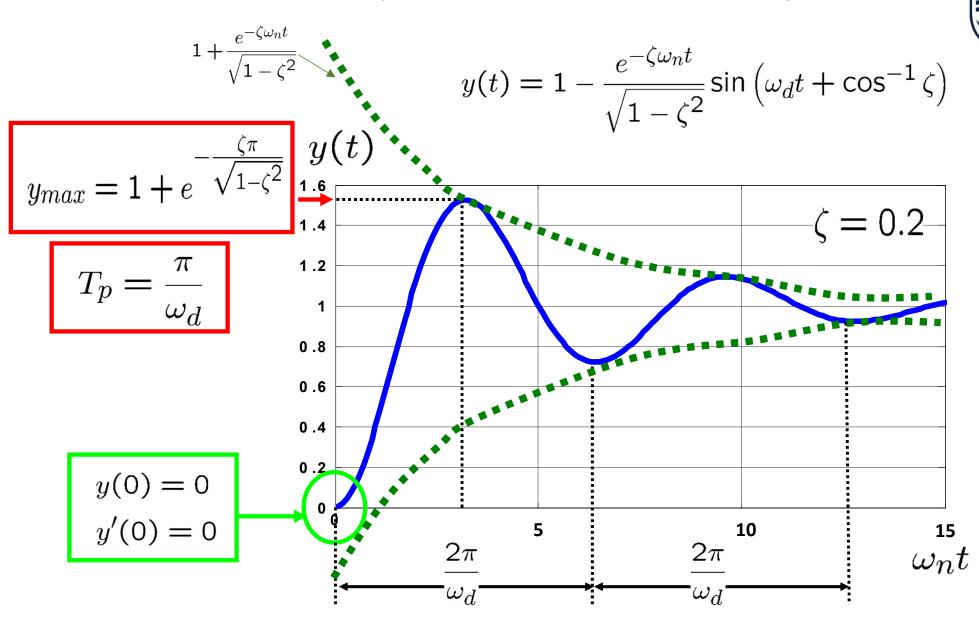
Math expression of y(t) for underdamped case, i.e.,
 for 0 < ζ < 1:

$$Y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \frac{1}{s}$$

$$\begin{array}{c} \mathcal{L}^{-1} \\ \searrow \end{array} \quad y(t) = 1 - \frac{e^{-\zeta\omega_n t}}{\sqrt{1 - \zeta^2}} \sin\left(\omega_d t + \cos^{-1}\zeta\right) \end{aligned}$$

Damped natural frequency $\longrightarrow \omega_d = \omega_n \sqrt{1 - \zeta^2}$

Peak value and peak time: Underdamped case



a place of mind

a place of mind Properties of underdamped 2nd-order system in terms of ζ and ω_{n} $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ $0 < \zeta < 1$ (5%) (2%) $\approx \frac{3}{\zeta \omega_n}$ or $\frac{4}{\zeta \omega_n}$ Time constant = $T = \frac{1}{\zeta \omega_n}$ Settling time, T_s Peak time, T_P $\frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1}}$ Peak value, y_{max} 1 + $e^{-\zeta \pi/\sqrt{1-\zeta^2}}$ $100e^{-\zeta \pi/\sqrt{1-\zeta^2}} |_{PO} = 100e^{-\pi/\tan\theta}$ Percent overshoot, *PO* or %*OS* Delay time = $T_d = \frac{1 + 0.7\zeta}{\omega}$

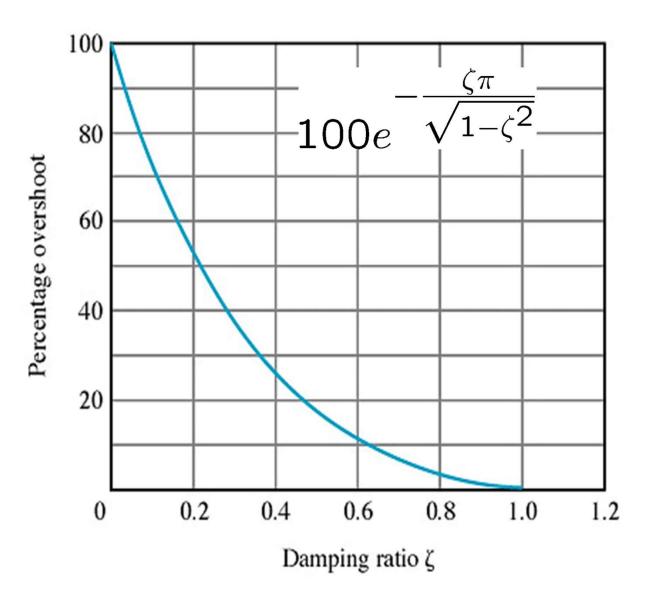
Remarks for underdamped case

- **Time constant** is $T = \frac{1}{\zeta \omega_n}$, indicating convergence speed.
- Percent overshoot depends on ζ , but NOT ω_n . (See the next slide.)
- For ζ > 1 (overdamped case), we cannot define peak time, peak value, and percent overshoot (*PO*).
- For the 2nd-order transfer function, we can use the following formula for the **rise time**:

$$T_r = \frac{1.76\zeta^3 - 0.417\zeta^2 + 1.039\zeta + 1}{\omega_n} \qquad \qquad 0 < \zeta < 1$$

• It has been shown that the rise time is mainly affected by the **dominant poles** (i.e., the poles closest to the imaginary axis).

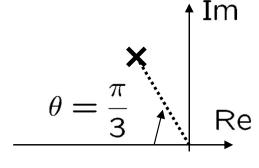
a place of mind



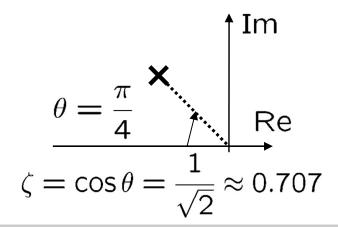
Step response properties of underdamped 2nd order system in terms of pole locations

• Poles (0 < ζ < 1)		Im∱	
$s = -\zeta \omega_n \pm j \omega_n$	$\sqrt{1-\zeta^2}$	Root	s-plane
$\zeta = \cos \theta$	ω_d	$\theta \omega_n _{\omega_0}$	$d_{l} = \omega_{n} \sqrt{1 - \zeta^{2}}$
$T = \text{Time Constant} = 1/\zeta \omega_n$ –		$+\zeta \omega_n \rightarrow 0$	Re
$5\%T_s = 3T = \frac{3}{\zeta\omega_n} ; \qquad 2\%$	$\omega T_s = 4T = \frac{4}{\zeta \omega_n}$		
Pole		Performance	
Real part $\zeta \omega_n$	determines	$T_s = \frac{3}{\zeta \omega_n}, \frac{4}{\zeta \omega_n}$	$=\frac{3}{ \mathrm{Re} },\frac{4}{ \mathrm{Re} }$
Imag. part ω_d	determines	$T_p = \frac{\pi}{\omega_d}$	$=\frac{\pi}{ \mathrm{Im} }$
Angle θ	determines	overshoot	
$\cos \theta = \frac{\zeta \omega_n}{\omega_n} = \zeta ; \text{tag}$	$n \theta = \frac{\omega_d}{\zeta \omega_n} = \frac{\sqrt{1-\zeta^2}}{\zeta}$	$\Rightarrow PO = 100e^{-\pi/\tan^2}$	θ

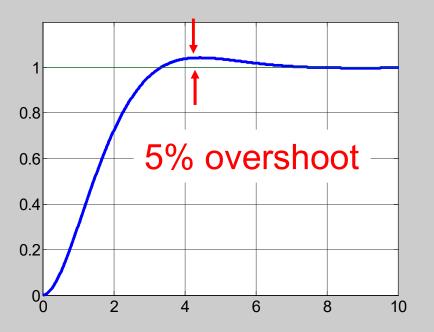
Angle θ and the overshoot



 $\zeta = \cos\theta = 0.5$

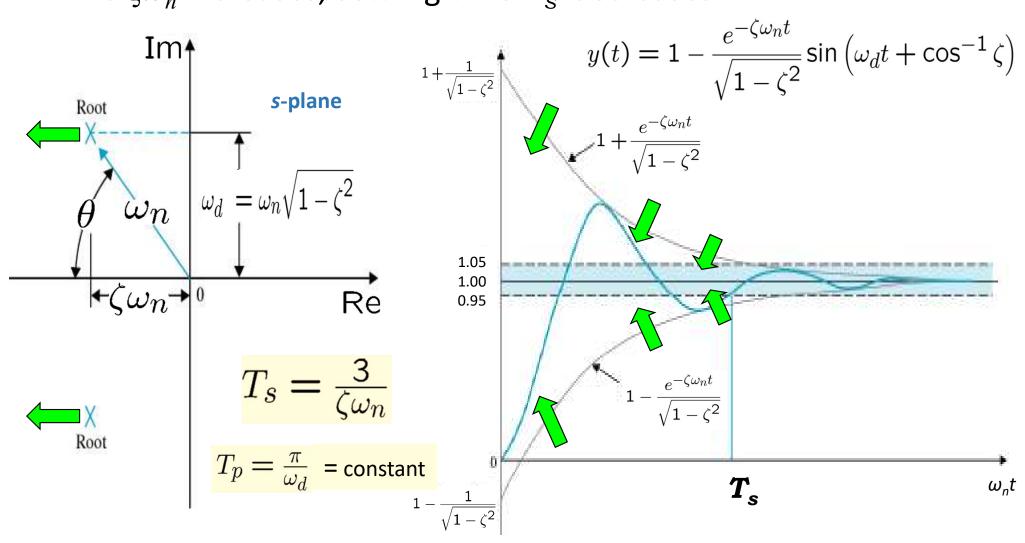






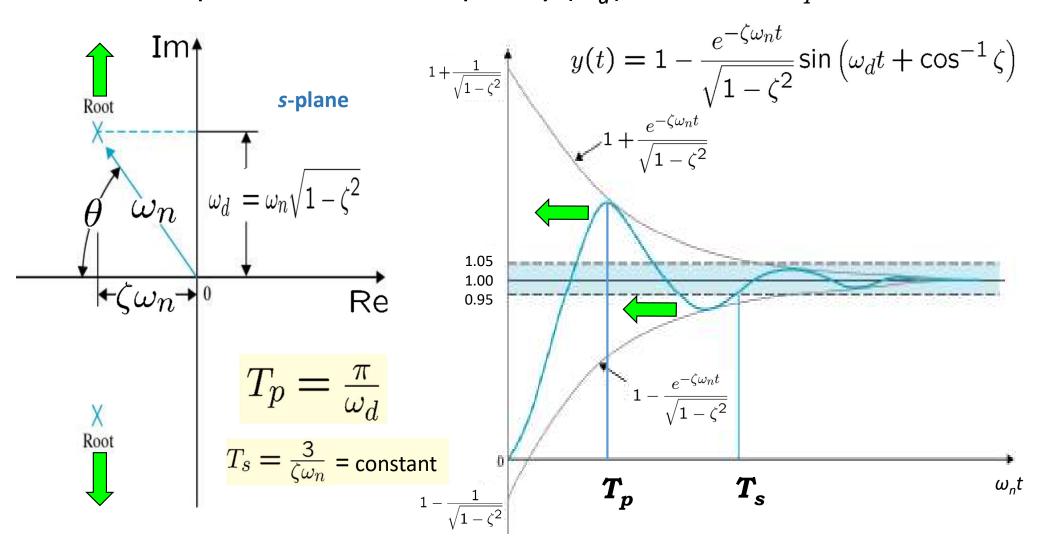
Influence of real part of poles

• As $\zeta \omega_n$ increases, settling time T_s decreases.



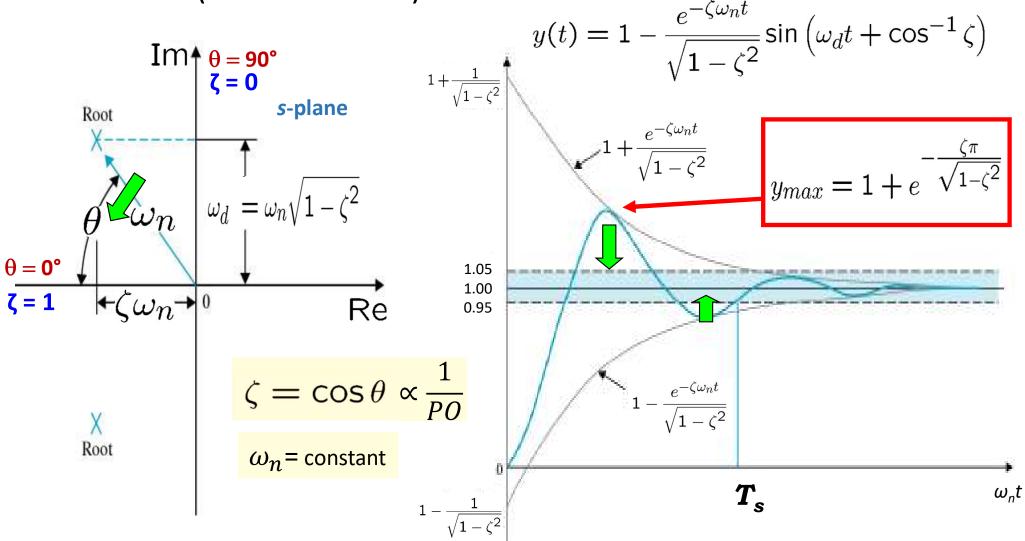
Influence of imag. part of poles

• As damped oscillation frequency (ω_d) increases, T_P decreases.

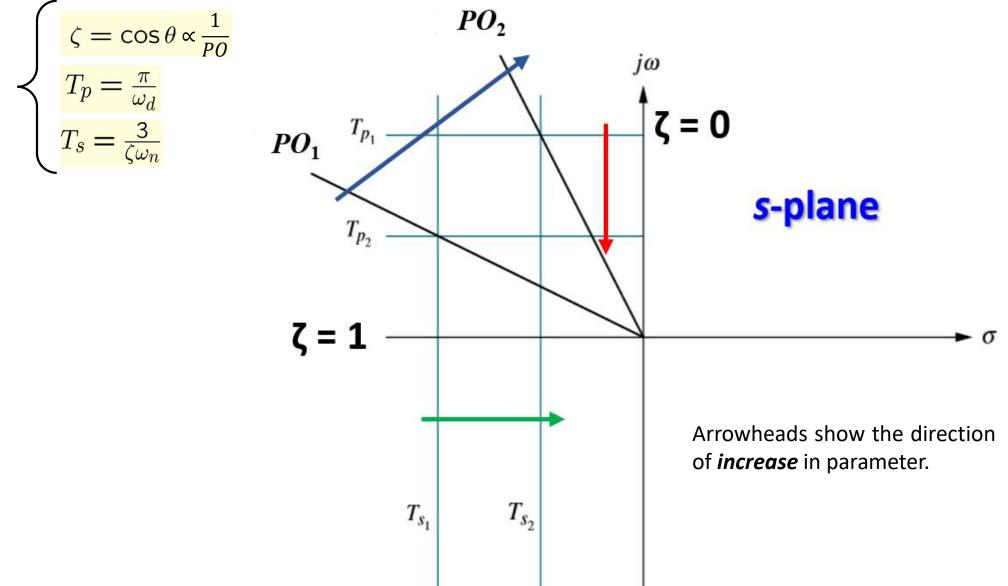


Influence of angle of poles

As θ decreases from 90° to 0°, ζ increases from 0 to 1 and overshoot (or undershoot) decreases.



a place of mind



Summary

- Step responses of
 - 1st-order system is characterized by:
 - Time constant (**T**) and DC gain (**K**)
 - Pole location
 - 2nd-order system is characterized by:
 - Damping ratio (ζ) and undamped natural frequency (ω_n)
 - Pole location
- Next
 - Time response examples

