

ELEC 341: Systems and Control

Lecture 10

Time response: Examples

Modeling

Laplace transform

Transfer function

Electrical

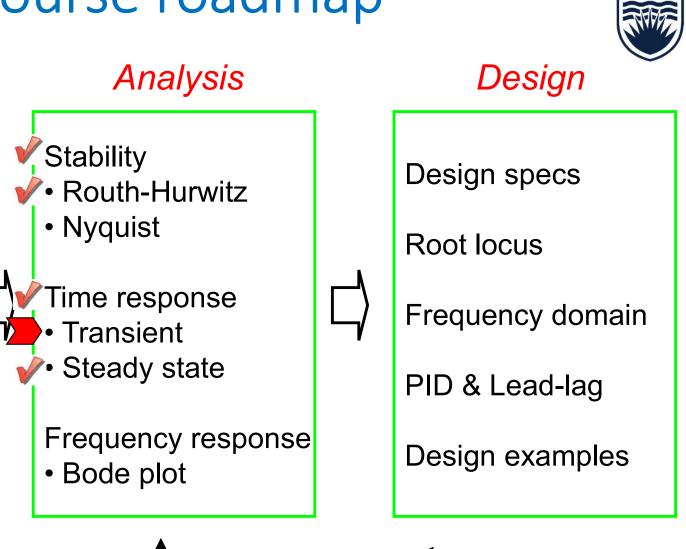
Mechanical

Models for systems

Electromechanical

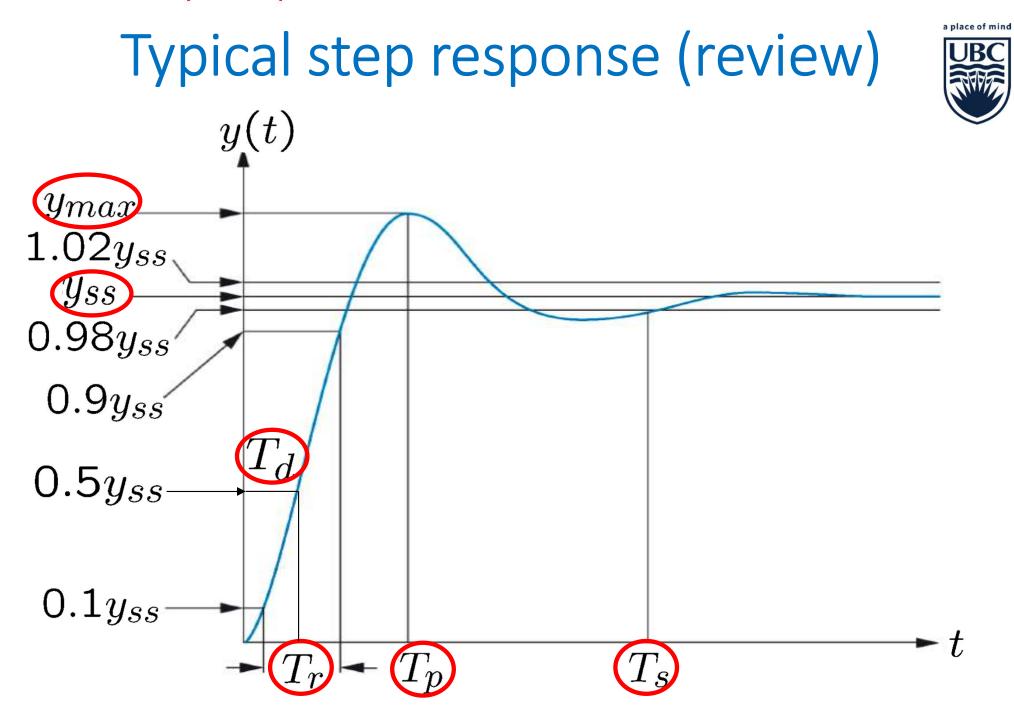
Linearization, delay

Course roadmap

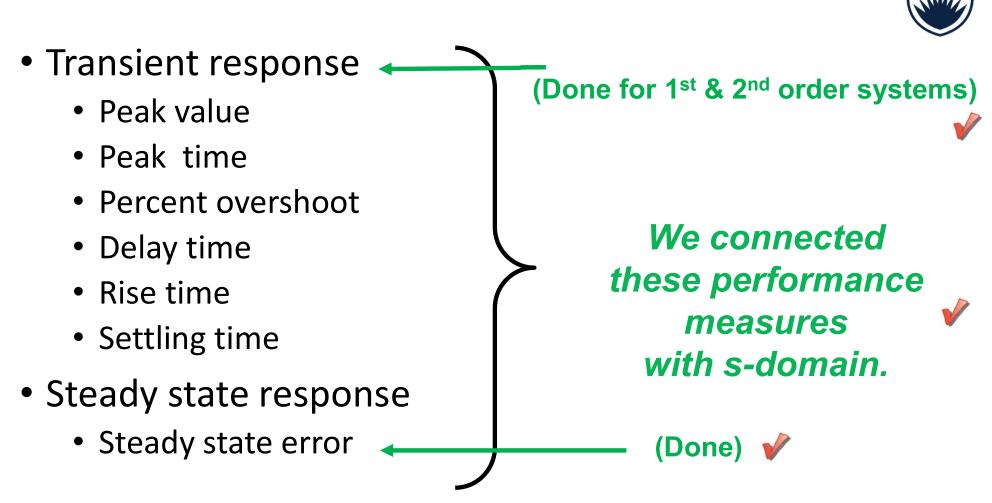


Matlab simulations

a place of mind

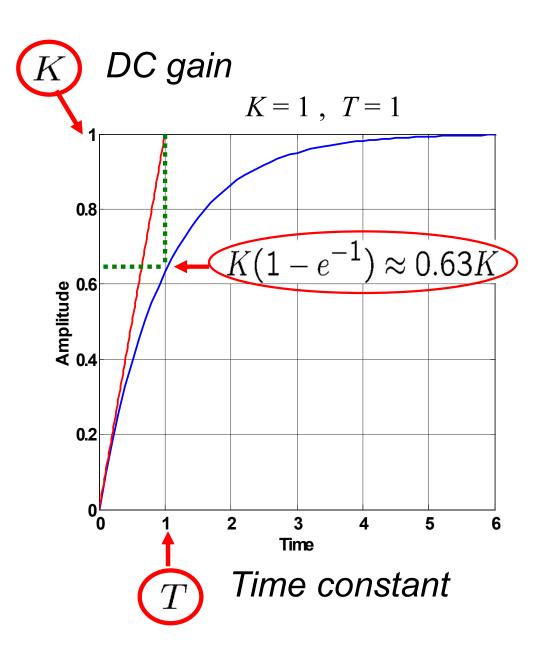


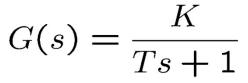
Performance measures

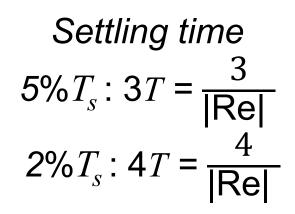


a place of mind

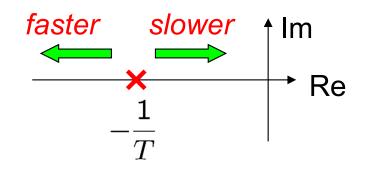
Step response for 1st-order system (review)







× is used to show poles



a place of mind

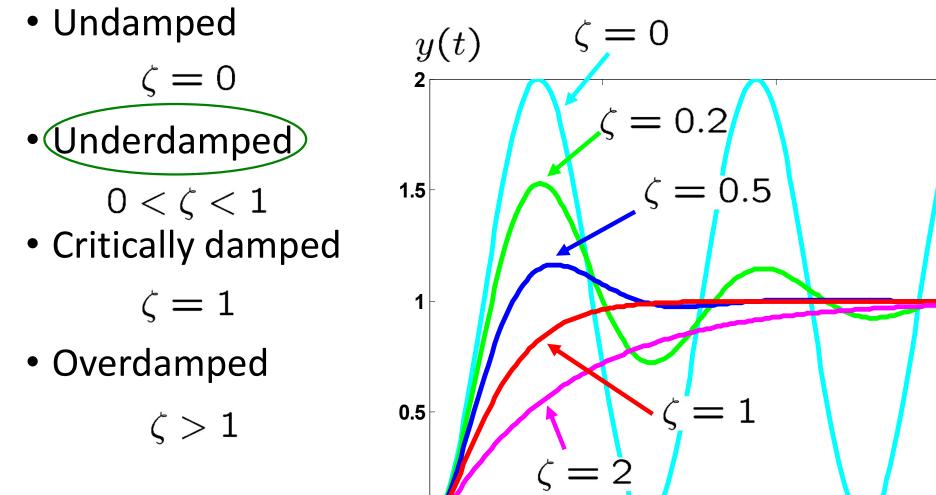
Lecture 10: Time response: Examples

ELEC 341: Systems and Control

10

5

Step response of 2nd-order system for various damping ratios (review)

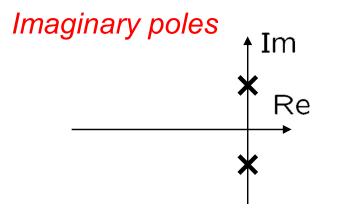


0

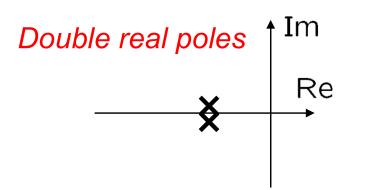
 $\omega_n t$ 15

a place of mind Pole locations & damping (2nd order Systems)

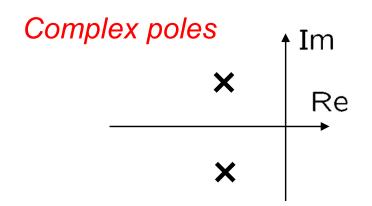
Undamped



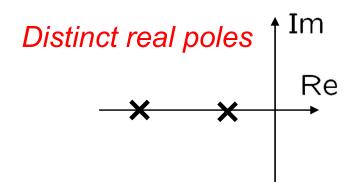
Critically damped

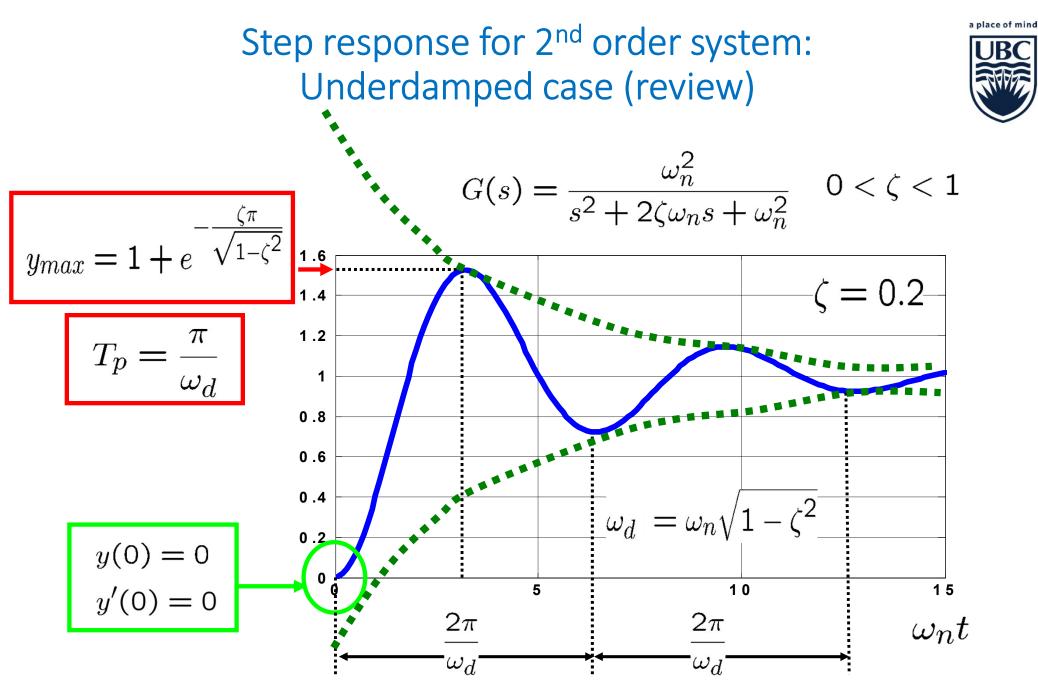


Underdamped



Overdamped





a place of mind Properties of underdamped 2nd order system in terms of ζ and ω_{n} (review) $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad 0 < \zeta < 1$ (5%) (2%) $\approx \frac{3}{\zeta \omega_n}$ or $\frac{4}{\zeta \omega_n}$ Time constant = $T = \frac{1}{\zeta \omega_n}$ Settling time, T_s Peak time, T_P $\frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1}}$ Peak value, y_{max} 1 + $e^{-\zeta \pi/\sqrt{1-\zeta^2}}$ $100e^{-\zeta \pi/\sqrt{1-\zeta^2}} |PO| = 100e^{-\pi/\tan\theta}$ Percent overshoot, **PO** or %*OS* Delay time = $T_d = \frac{1 + 0.7\zeta}{\omega}$

 $\omega_d = \omega_n \chi$

s-plane

Re

Im

 $+\zeta \omega_n \rightarrow 0$

Root

Lecture 10: Time response: Examples

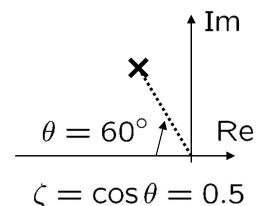
Step response properties of underdamped 2nd order system in terms of pole locations (review)

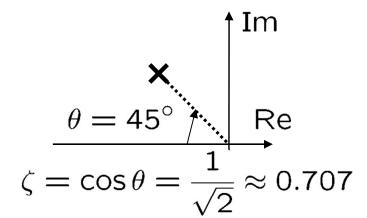
Poles (0 < ζ < 1)

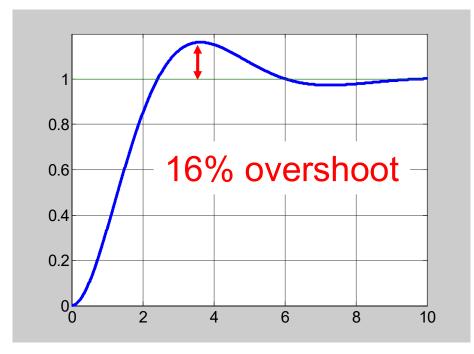
 $T = \text{Time Constant} = 1/\zeta \omega_n$

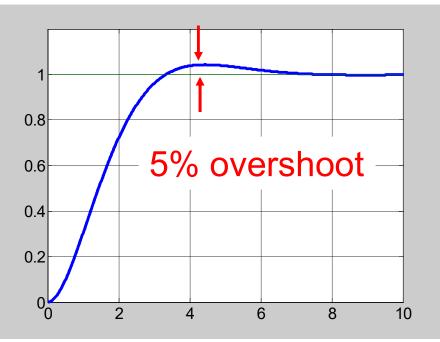
Pole			Performance	
Real part	$\zeta \omega_n$	determines	$T_s = \frac{3}{\zeta \omega_n}, \frac{4}{\zeta \omega_n}$	\mathbf{O}
		determines	$T_p = \frac{\pi}{\omega_n}$	$=$ $\frac{\pi}{}$
Angle	$\overset{\sim}{ heta}$	determines	overshoot	$ \mathrm{Im} $

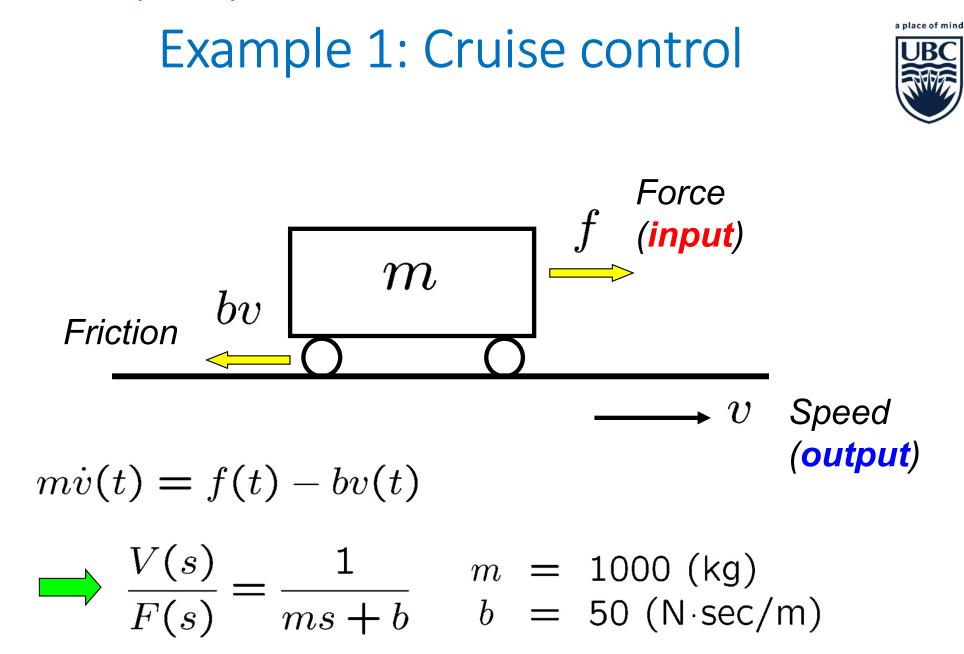
Angle θ and the overshoot (review)





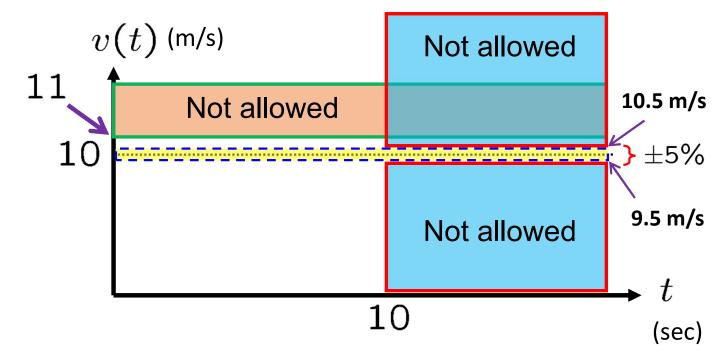






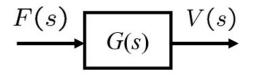
Example 1 (cont'd)

- Control goal: SS (steady-state) speed 10 m/s (= 36 km/h).
 - Stable
 - Zero steady-state error
 - Percent overshoot of 10 % or less
 - 5%*T*_s < 10 sec

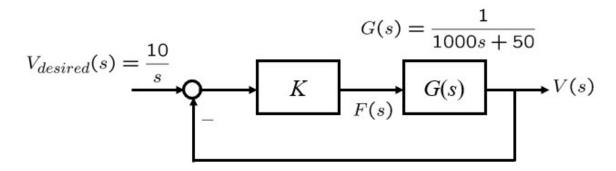


Example 1 (cont'd)

(a) The following open-loop control system is given. (a1) Obtain the amplitude of the step force (R) necessary to get the steady-state speed of 10 m/s. (a2) What is $5\% T_s$ for this system?



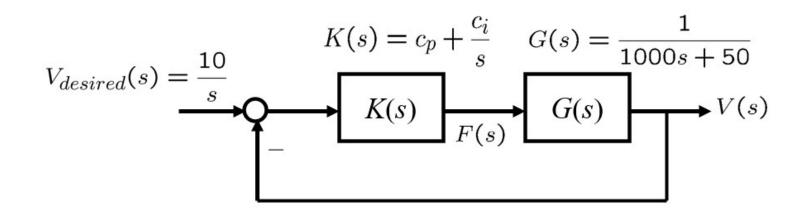
(b) If we decide to use a proportional controller and a negative feedback system, we will have the following block diagram:



Now apply the design requirement of $5\%T_s < 10$ sec to the above system. (b1) What will be the range of *K*? (b2) For the same block diagram, what will be the value of *K* if we want to satisfy the design requirement of zero steady-state error?

Example 1 (cont'd)

(c) If we decide to use a proportional-integral controller and a negative feedback system, we will have the following block diagram:



(c1) Is this system stable? (c2) What is the value of K_p (i.e., position error constant)? (c3) What is its steady-state error? (c4) Without finding c_p and c_i , discuss how one might compute the numerical values of these parameters?

Example 1: Open-loop control (cont'd)

Solution:

(a1)
$$G(s) = \frac{V(s)}{F(s)} = \frac{1}{1000s + 50} = \frac{1/50}{20s + 1} \longrightarrow T = 20$$

• Obtain the amplitude of the step force necessary to get the steady-state speed of 10 m/s. This is shown by *R*.

$$F(s) = \underbrace{R}_{s} \longrightarrow G(s) \xrightarrow{V(s)} \underbrace{V(s)}_{t} \longrightarrow t$$

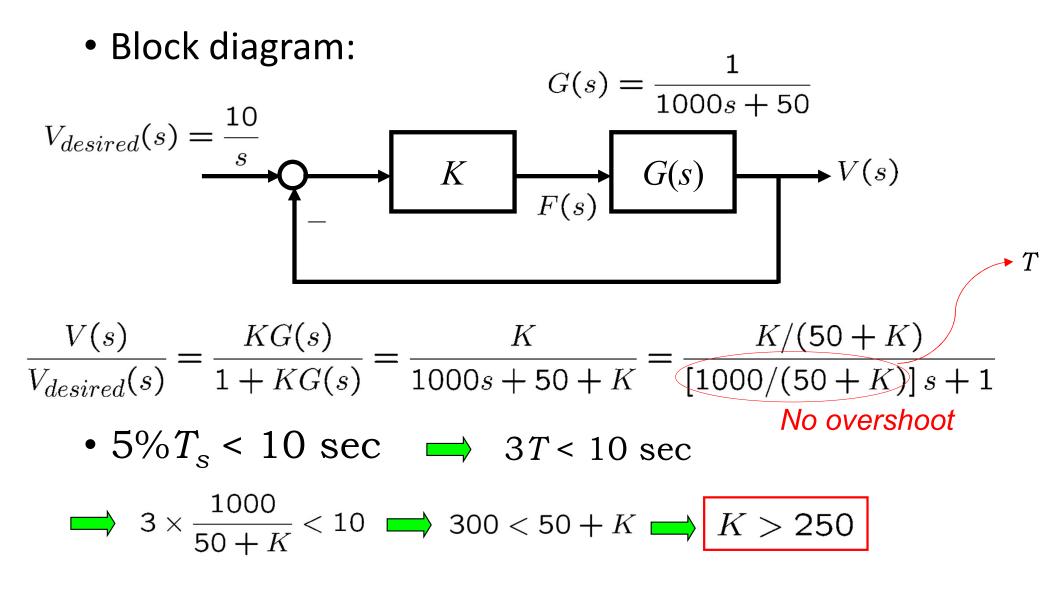
$$v_{ss} = RG(0) = 10 \implies R = \frac{10}{G(0)} = 500(N) \implies R = 500$$

(a2)

- Note that $5\%T_s = 3T$ or $3\times20 = 60$ sec. However, we need it to be less than 10 sec.
- So, by open-loop control, $5\%T_s = 60$ sec! and thus Too Slow!

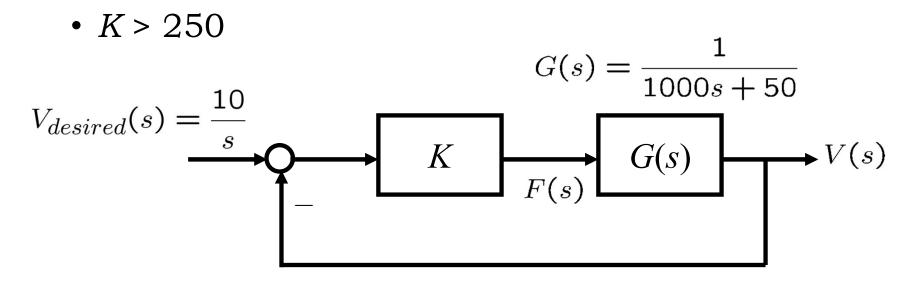
Example 1: P control (cont'd)

(b1)



Example 1: P control (cont'd)

(b2)



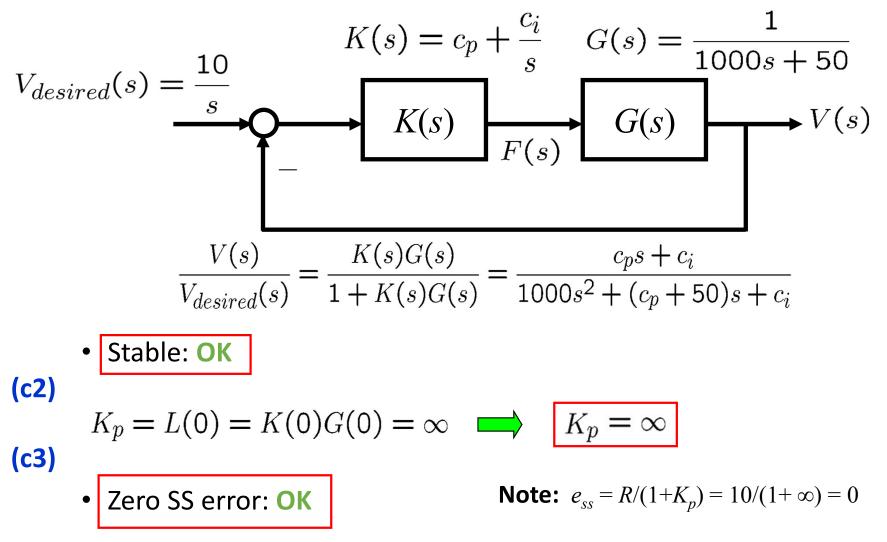
• To have zero SS error:

$$e_{ss} = \frac{10}{1+K_p} = \frac{10}{1+L(0)} = \frac{10}{1+KG(0)} = \frac{10}{1+K/50}$$
$$e_{ss} = 0 \quad \Longrightarrow \quad K = \infty$$

Example 1: PI control (cont'd)

(c1)

• Block diagram:



Example 1: PI control (cont'd)

(c4)

- How to satisfy transient requirements?
 - **Tune controller parameters** to place poles of the closed-loop transfer function at the "right places".

$$\frac{V(s)}{V_{desired}(s)} = \frac{c_p s + c_i}{1000s^2 + (c_p + 50)s + c_i}$$

- We will learn
 - where the "right places" are (today's lecture: Example 2)
 - how to tune controller parameters (from next lecture)
- We can show (by trial and error and computer simulation) that the following controller is one of the controllers that can satisfy all the required conditions (not the topic of this lecture):

$$K(s) = 1050 + \frac{274}{s}$$

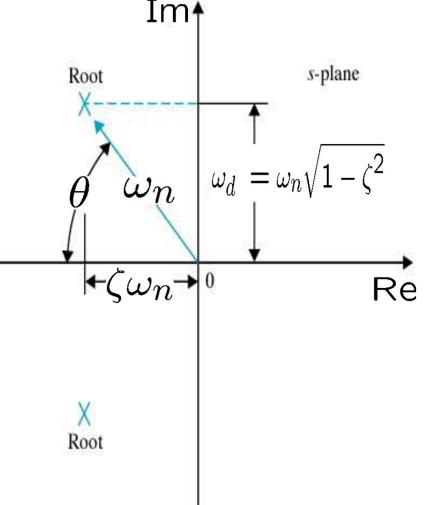
Example 2

• For the following **design specs**, find the allowable region of the second-order poles:

PO at most 5% and T_s (5%) at most 7 sec.

Note:

Design Specs (i.e., Design Specifications) is just another term for **Performance Measures**.

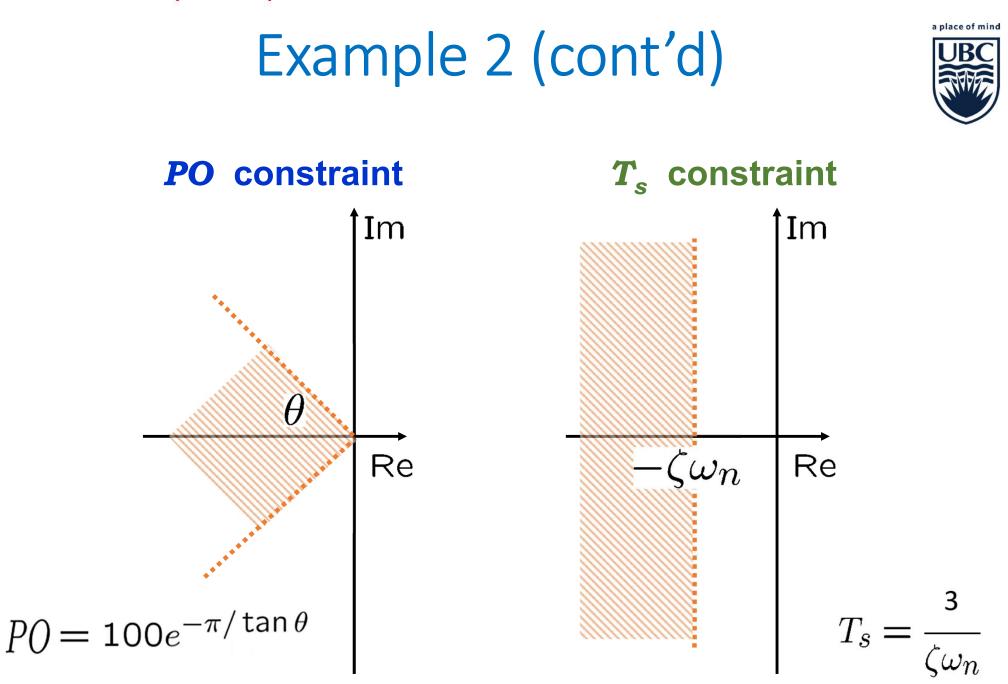


a place of mind

Example 2 (cont'd)

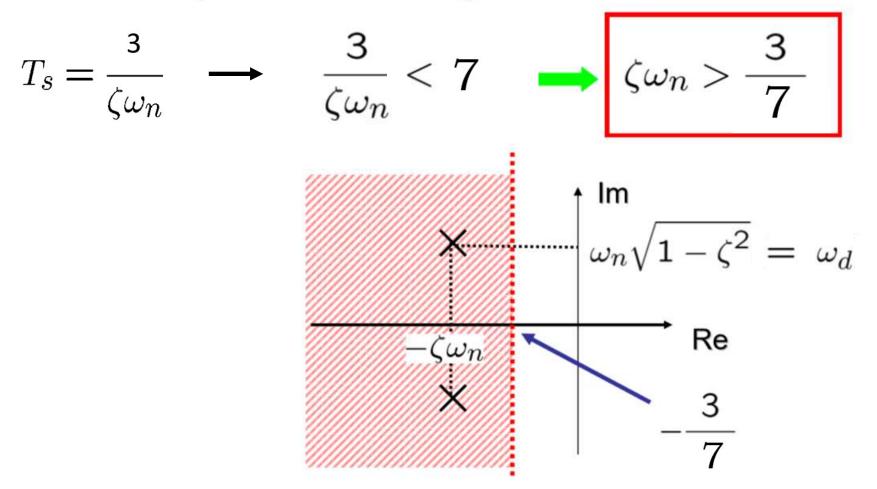
Solution:

- From the given percent overshoot constraint, PO constraint, we can obtain allowable angles θ .
- From the given settling time constraint, T_s constraint, we can obtain allowable real part of poles.

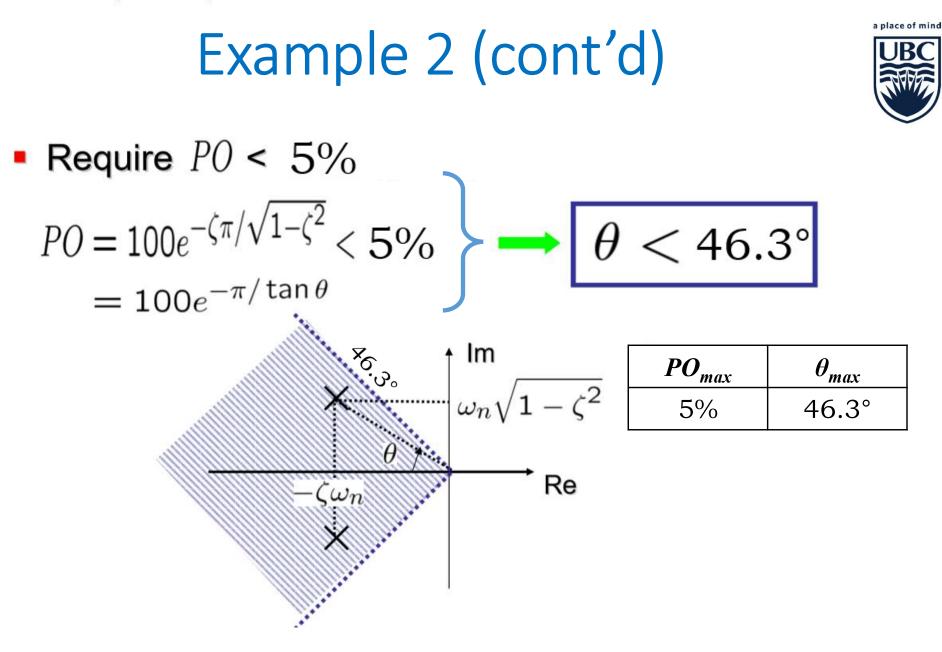


Example 2 (cont'd)

• Require 5% settling time $T_s < 7$



ELEC 341: Systems and Control

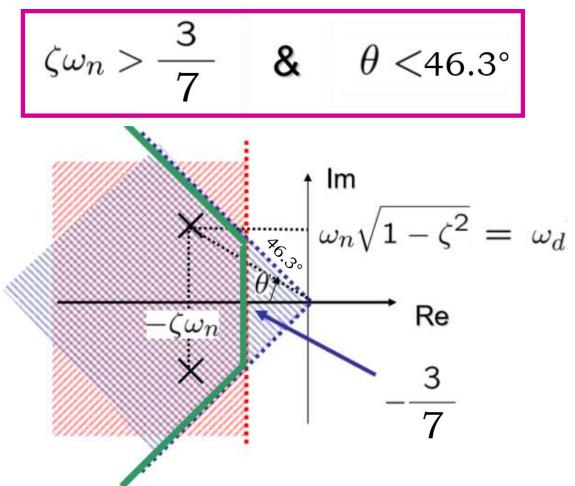


ELEC 341: Systems and Control

a place of mind

Example 2 (cont'd)

Combination of two requirements



R(s)

G(s)

Example 3

Y(s)

• Consider a 2nd order overdamped system

$$G(s) = \frac{10}{s^2 + 11s + 10} = \frac{10}{(s+1)(s+10)}$$

- For unit step input, obtain (or estimate)
 - steady state value,
 - percent overshoot, and
 - 2% settling time.

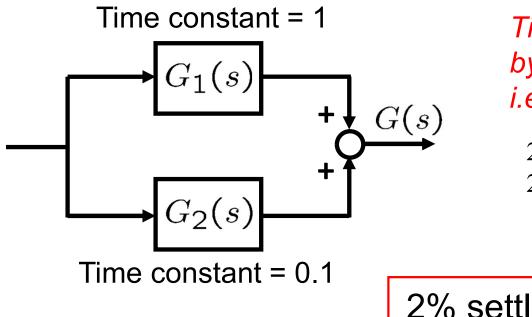
Important Note: The formulas for 2^{nd} order system that were summarized in a table can only be used when $0 < \zeta < 1$. That is, if ζ is greater than 1, we cannot use the formulas in the table.

- Solution:
 - Steady state value is the DC gain G(0) = 1.
 - No overshoot (overdamped!)

Example 3 (cont'd)

• Poles are -1 and -10.

$$G(s) = \frac{10}{s^2 + 11s + 10} = \frac{A}{s+1} + \frac{B}{s+10}$$
$$G_1(s) \qquad G_2(s)$$



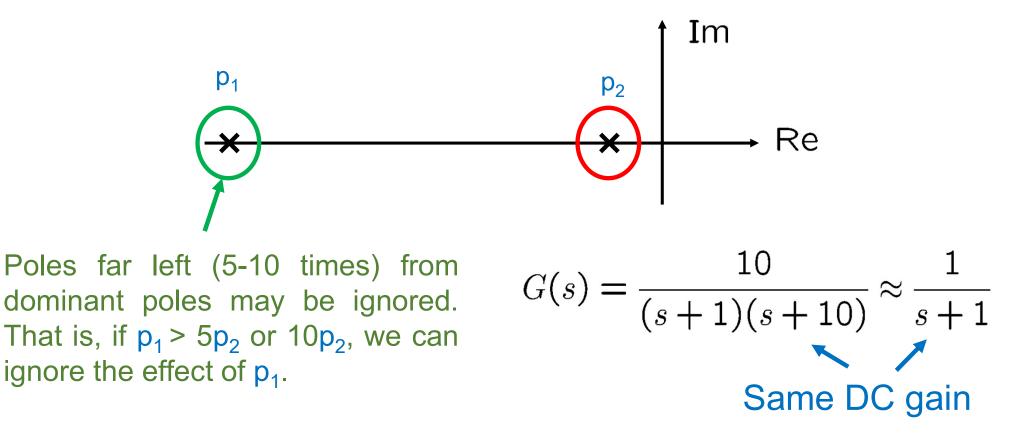
Time constant of G(s) is estimated by the slower subsystem $G_I(s)$, i.e., the **larger** *T*.

2% $T_s = 4T$. In this case (T = 1). So, 2% $T_s \approx 4 \times 1 \approx 4$ sec

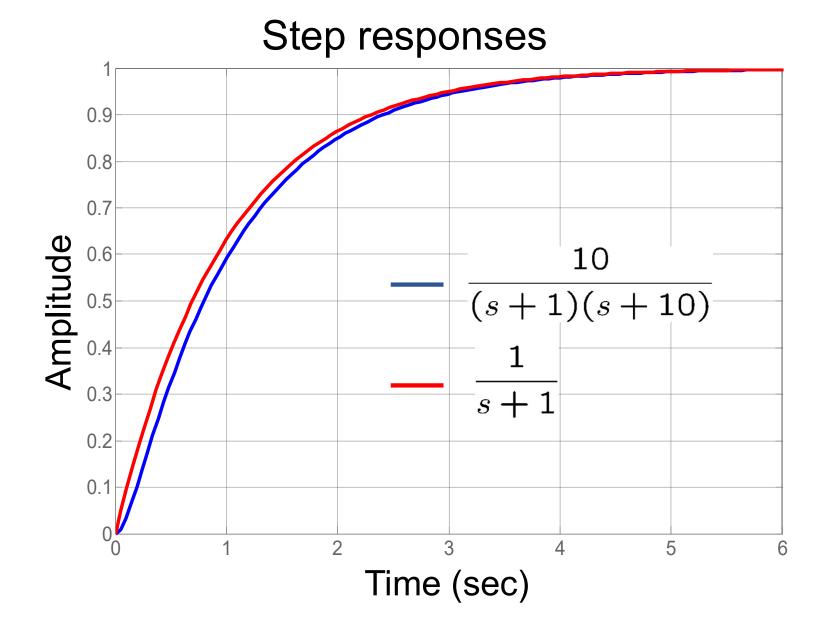
2% settling time: *about* 4 seconds

Example 3 (cont'd)

• Dominant poles: Poles closest to the imaginary axis and far away from remaining poles dominate the behavior of responses. We only compare the real parts of the roots when determining dominance because it is the real part that determines how fast the response decreases.



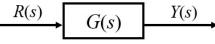
Example 3 (cont'd)



Example 4

• For the unit step response of a stable 3rd-order system,

$$G(s) = \frac{8}{(s+2.5)(s^2+2s+4)}$$



obtain (or estimate)

- steady state value,
- 2% settling time, and
- percent overshoot.

Solution:

• Steady state value is the DC gain G(0) = 0.8.

Example 4 (cont'd)

• Partial fraction expansion

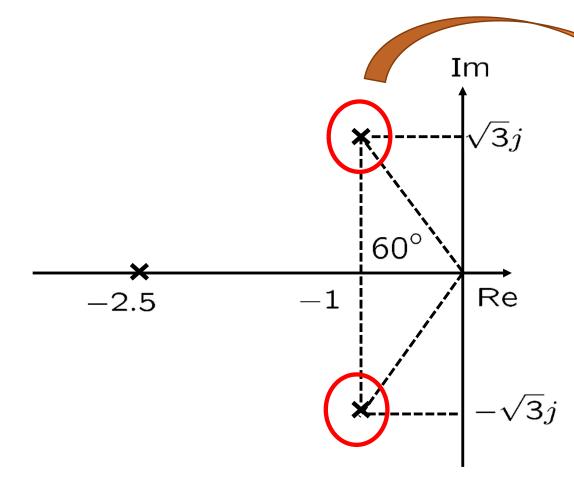
$$G(s) = \frac{8}{(s+2.5)(s^2+2s+4)} = \frac{A}{s+2.5} + \frac{Bs+C}{s^2+2s+4}$$

$$G_1(s) = \frac{Bs+C}{G_2(s)}$$

Time constant = 1/2.5 = 0.4 s $\omega_n = 2, \zeta = 0.5$ Time constant of G(s) is estimated by the slower subsystem $G_2(s)$, i.e., the larger T. 2% settling time: **about** 4 seconds $PO = 100e^{-\zeta\pi/\sqrt{1-\zeta^2}}$ $\zeta = 0.5$ PO = 16.3%

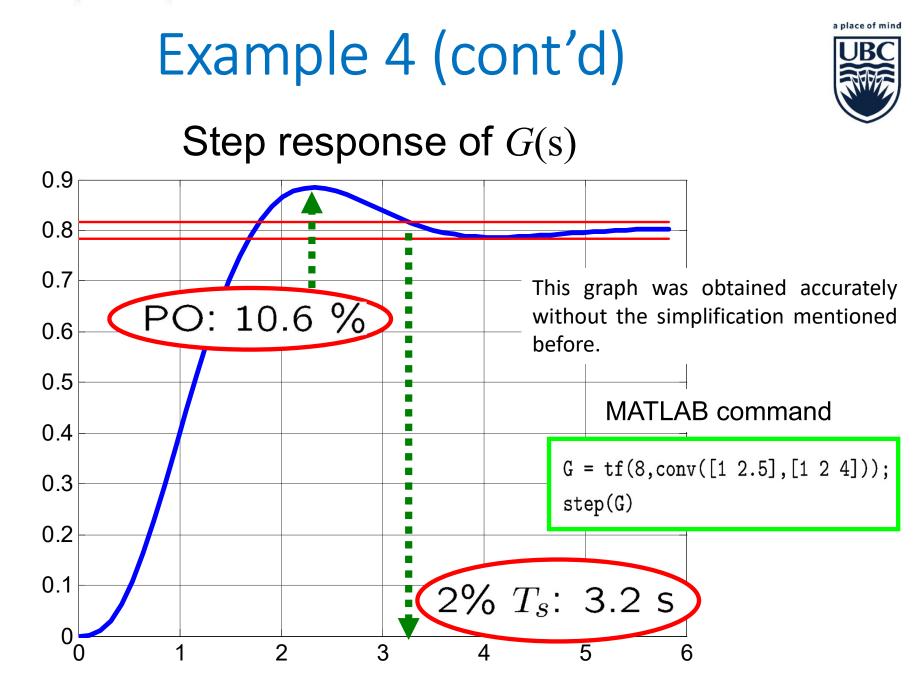
Example 4 (cont'd)

• Poles $s = -2.5, -1 \pm \sqrt{3}j$



These poles are not *"sufficiently dominant"*!

Estimation based on these poles may be inaccurate.

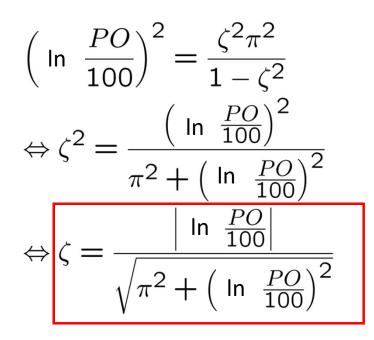


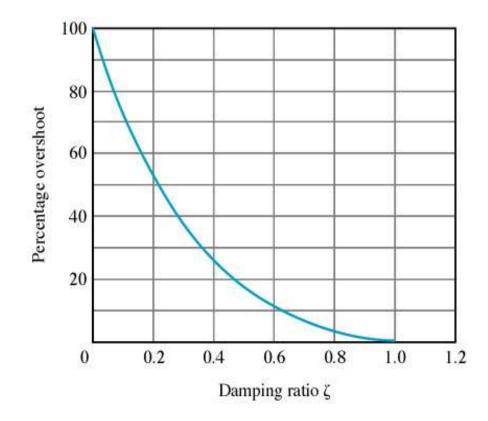
Example 5

• For the standard 2nd order systems, derive the relationship for damping ratio as a function of percent overshoot, from the following formula:

$$PO = 100e^{-\zeta \pi / \sqrt{1 - \zeta^2}}$$

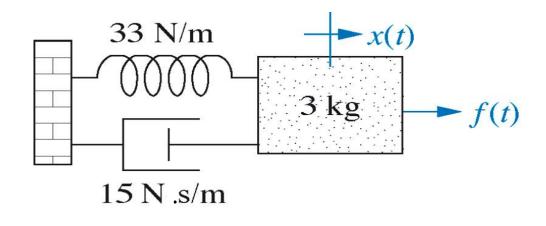
Solution:





Example 6

- For the system below,
 - Find the transfer function from *F*(*s*) to *X*(*s*), i.e., *F*(*s*) is the input and *X*(*s*) is the output.
 - Find DC gain, ζ , ω_n , ω_d , T_s (2%), T_p , and PO.



Solution:

$$G(s) = \frac{X(s)}{F(s)} = \frac{1}{3s^2 + 15s + 33}$$

a place of mind

• Find DC gain G(0), ζ , ω_n , ω_d , T_s (2%), T_p , and PO.

 $G(s) = \frac{1}{3s^2 + 15s + 33} = \frac{1}{33} \cdot \frac{11}{s^2 + 5s + 11} \qquad 2\zeta\omega_n = 5, \ \omega_n^2 = 11$

G(0) = 1/33 = 0.03

$$\omega_n = \sqrt{11} = 3.31$$
 ; $\zeta = \frac{5}{2\sqrt{11}} = 0.75$; $\omega_d = \omega_n \sqrt{1 - \zeta^2} = \frac{\sqrt{19}}{2} = 2.17$

Example 6 (cont'd)

$$T_s = \frac{4}{\zeta \omega_n} = 1.6$$
 ; $T_p = \frac{\pi}{\omega_d} = \frac{2\pi}{\sqrt{19}} = 1.44$; $PO = 100e^{-\zeta \pi/\sqrt{1-\zeta^2}} = 2.72\%$

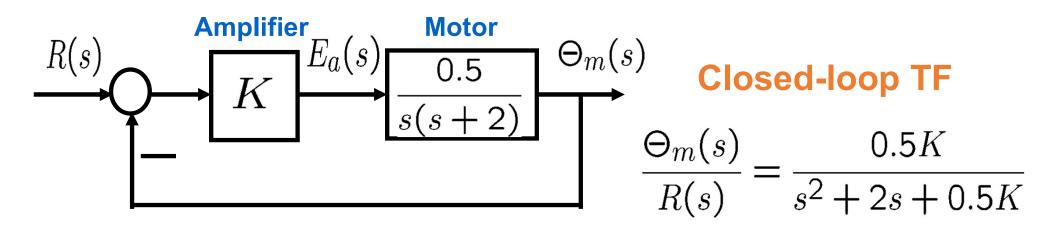
$$G(0) = 0.03$$

 $\zeta = 0.75$
 $\omega_n = 3.31$
 $\omega_d = 2.17$
 $T_s = 1.6$
 $T_p = 1.44$
 $PO = 2.72\%$

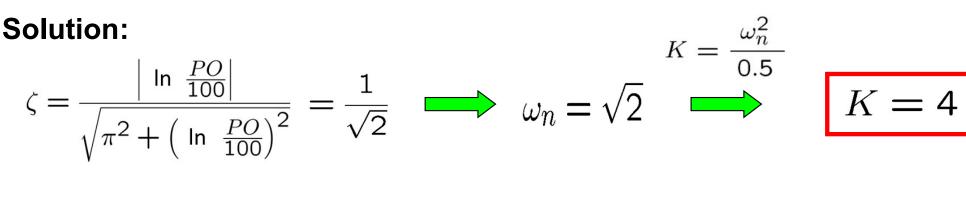
 $\begin{cases} 2\zeta\omega_n = 2\\ \omega_n^2 = 0.5K \end{cases}$

Example 7

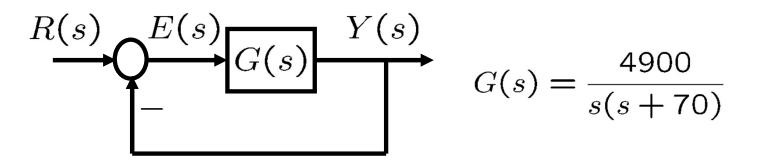
• DC motor position control



- Design the amplifier gain K so that
 - Percent overshoot is 5%.



For the unity feedback system, check and compute the followings:



- (a) Stability
- (b) 2% settling time for r(t) = u(t) (unit step input)
- (c) Steady-state errors:
 - (c1) For r(t) = 5u(t) (step input)
 - (c2) For r(t) = 5tu(t) (ramp input)
 - (c3) For $r(t) = 5t^2u(t)$ (parabolic input)

Example 8 (cont'd)

Solution:

- (a) Stability
 - Characteristic equation

$$1 + G(s) = 0 \Leftrightarrow s^2 + 70s + 4900 = 0$$
$$\zeta = \frac{1}{2}, \ \omega_n = 70$$

Since all the coefficients in the first column of Routh array have the same sign, the CL system is **stable**.

- (b) 2% settling time ($\zeta < 1$: underdamped case)
 - Time constant is $T = \frac{1}{|\text{Re(pole)}|} = \frac{1}{\zeta \omega_n} = \frac{1}{35}$

• 2% settling time is
$$4T = \frac{4}{35}$$
 \implies 2% settling time = 0.114

 $G(s) = \frac{4900}{s(s+70)}$

- Example 8 (cont'd)
- (c) Steady-state errors
 - (c1) For 5u(t) (step)

$$K_p = \lim_{s \to 0} G(s) = \infty \quad \Longrightarrow \quad e_{ss} = \frac{5}{1 + K_p} = 0 \quad \Longrightarrow \quad e_{ss} = 0$$

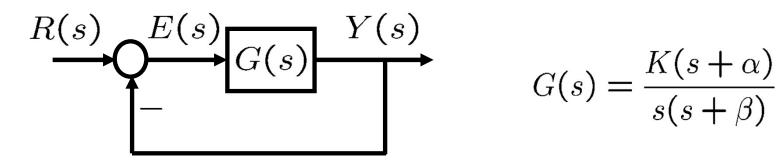
• (c2) For 5*tu*(*t*) (ramp)

$$K_v = \lim_{s \to 0} sG(s) = 70 \implies e_{ss} = \frac{5}{K_v} = \frac{1}{14} \implies e_{ss} = 0.071$$

• (c3) For
$$5t^2u(t)$$
 (parabolic)
 $K_a = \lim_{s \to 0} s^2 G(s) = 0 \implies e_{ss} = \frac{10}{K_a} = \infty \implies e_{ss} = \frac{10}{K_a} = \infty$

= ∞

Design the unity feedback system such that:



- (a) Steady-state error for unit ramp input is 1/10 and
- (b) Closed-loop poles are at $-1\pm j$

Solution:

Unit ramp input: $R \cdot t \cdot u(t)$, $1 \cdot t \cdot u(t) \Rightarrow R = 1$

$$egin{aligned} K_v &= \lim_{s o 0} sG(s) = \lim_{s o 0} rac{s\,K(s+lpha)}{s(s+eta)} = rac{Klpha}{eta} \qquad \Rightarrow \ K_v = \ rac{Klpha}{eta} \ e_{ss} &= rac{R}{K_v} = rac{1}{K_v} \stackrel{e_{ss} = rac{1}{10}}{\Rightarrow} \ rac{Klpha}{eta} = 10 \end{aligned}$$

Find ζ and ω_n :

Given pole locations:

 $s_{1,2}=-1\pm j$

Comparing with standard form:

$$s_{1,2}=-\zeta \omega_n\pm oldsymbol{j}\omega_n\sqrt{1-\zeta^2}$$

Equating real and imaginary parts:

$$-1 = -\zeta \omega_n \Rightarrow \omega_n = \frac{1}{\zeta}$$
$$\omega_n \sqrt{1-\zeta^2} = 1 \Rightarrow \frac{1}{\zeta} \sqrt{1-\zeta^2} = 1 \Rightarrow \zeta = \frac{1}{\sqrt{2}} \approx 0.707 \Rightarrow \omega_n = \frac{1}{\zeta} = \sqrt{2} \approx 1.414$$

Find α , β , and K:

From the closed-loop transfer function:

$$1 + G(s) = 1 + \frac{K(s + \alpha)}{s(s + \beta)} = 0 \Rightarrow s(s + \beta) + K(s + \alpha) = 0 \Rightarrow s^2 + (\beta + K)s + K\alpha = 0$$

Compare with the standard second-order form:

 $s^2+2\zeta\omega_ns+\omega_n^2=0$

Matching coefficients:

 $s = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$

Summary:

• (a)

$$K_{v} = \lim_{s \to 0} sG(s) = \frac{K\alpha}{\beta} \implies K_{v} = \frac{K\alpha}{\beta} ; e_{ss} = \frac{R}{K_{v}} \implies K_{v} = 10 \implies \frac{K\alpha}{\beta} = 10$$

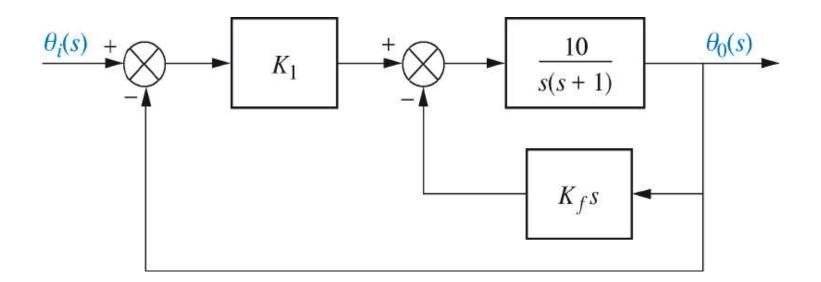
- (b) Closed-loop poles are at $-1\pm j$

characteristic polynomial = $s(s + \beta) + K(s + \alpha) = s^2 + 2\zeta\omega_n s + \omega_n^2$

$$\alpha = 1.111, \beta = 0.2, K = 1.8$$

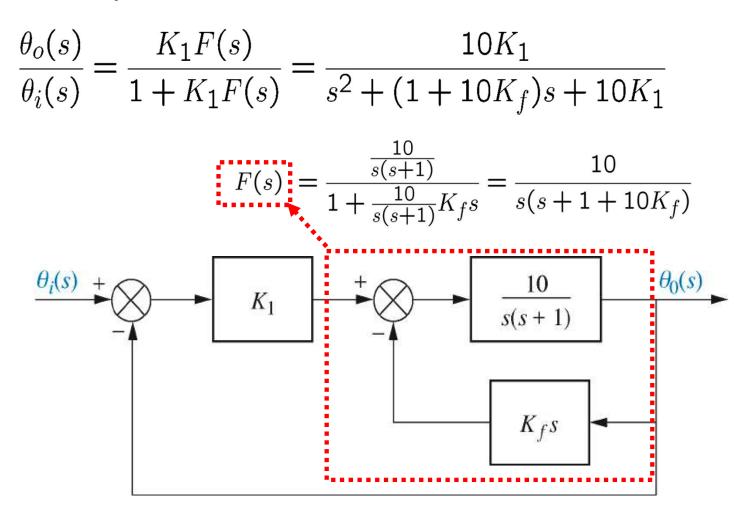
• Design the parameters $K_1 \& K_f$ so that:

 $K_v = 10, \ \zeta = 0.5$



Solution:

• Closed-loop transfer function:



Example 10 (cont'd)

• From the two requirements,

Summary

- Cruise control example
- Allowable pole locations
- Step responses
 - 2nd order overdamped systems
 - Higher order systems
- Design of some feedback systems
- Next
 - Root locus

