ELEC 341: Systems and Control

Lecture 14

Root locus: Lead-lag compensator design

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- **Electrical**
- Electromechanical
- Mechanical
- Linearization, delay

Analysis

- Routh-Hurwitz
 - Nyquist



- **Transient**
 - Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

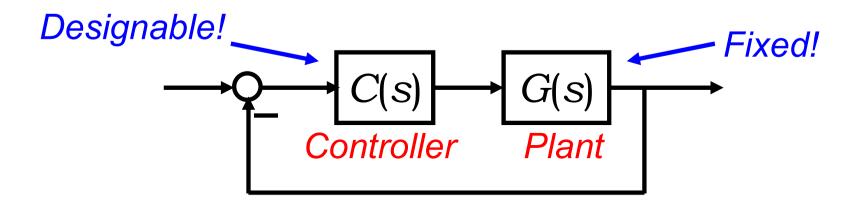
Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Controller design by root locus

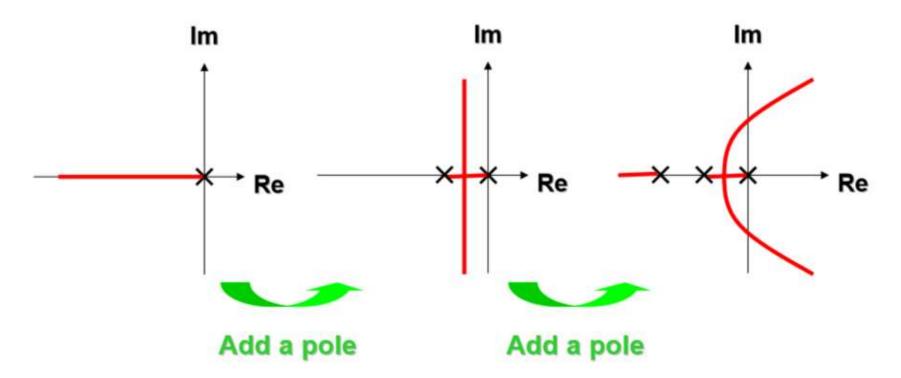


- Place closed-loop poles at desired locations...
 - by tuning the gain C(s) = K. (for time domain specs)
- If root locus does not pass through the desired location, then reshape the root locus...
 - by adding poles/zeros to C(s). How?

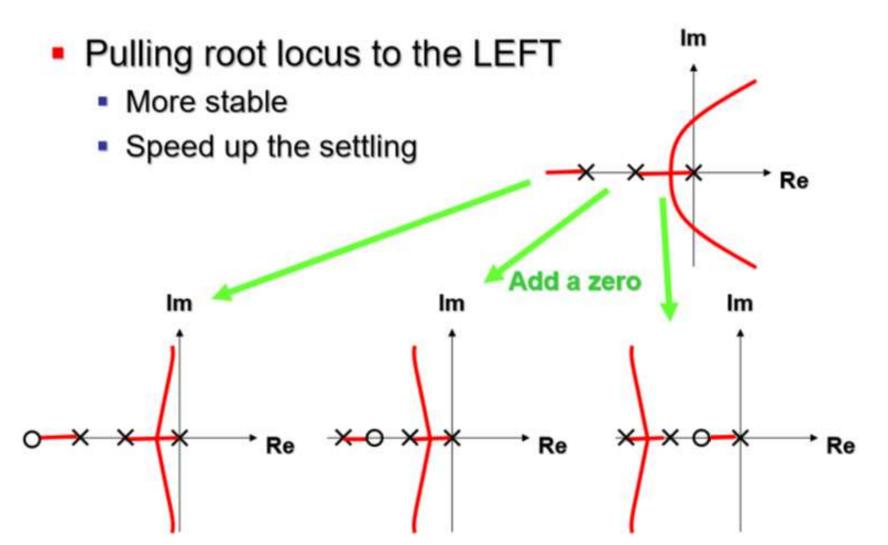
Compensation

General effect of addition of poles

- Pulling root locus to the RIGHT
 - Less stable
 - Slow down the settling

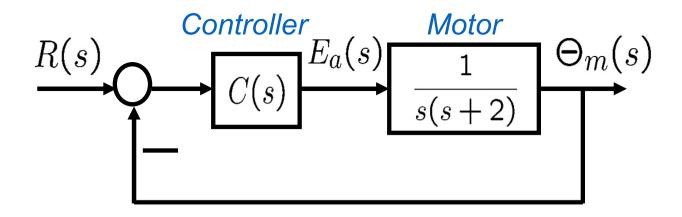


General effect of addition of zeros



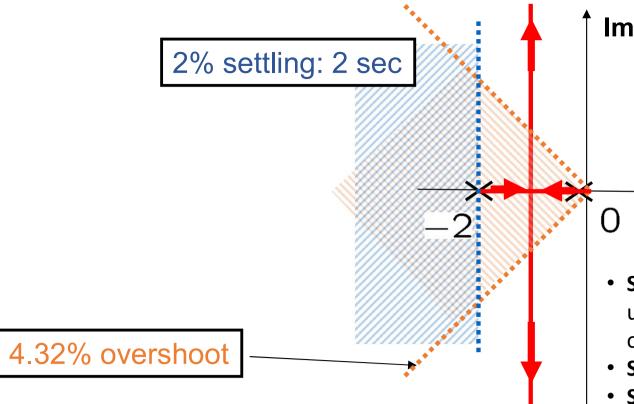
Example 1

A feedback system:



- Design specifications:
 - 2% settling time at most 2 seconds
 - Overshoot at most 4.32%
 - Steady state error:
 - Zero for unit step r(t) = u(t)
 - At most 0.05 for unit ramp r(t) = tu(t)

• Root locus for gain controller C(s) = K



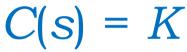
We cannot achieve the design specs with the gain feedback controller!

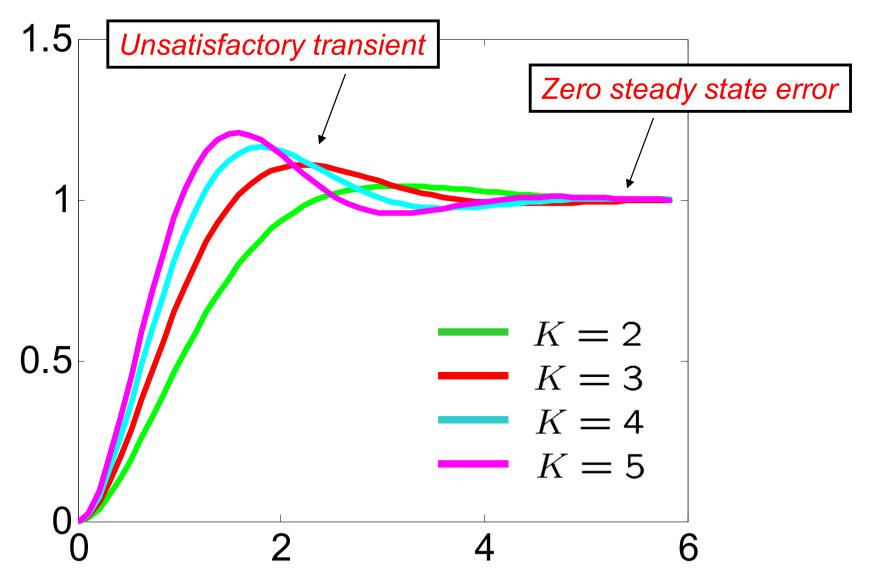
• **Step 1:** Draw the allowable region using both settling time and overshoot constraints.

Re

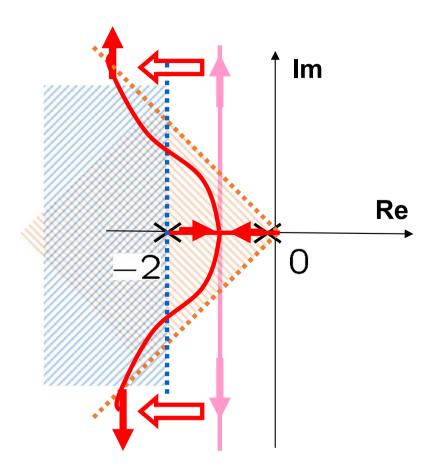
- Step 2: Draw the root locus diagram.
- Step 3: Find the overlap region of the root locus and the allowable region.

Example 1: Step responses for gain controllers



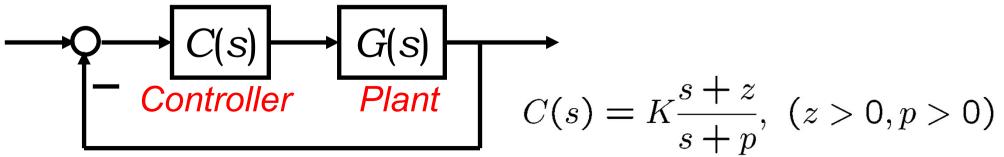


 We reshape the root locus so that it passes through the allowable region.

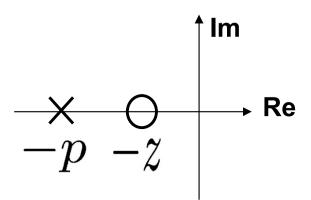


Pink ("Before" Design): Represents the original system design Red ("After" Design): Represents the improved system design

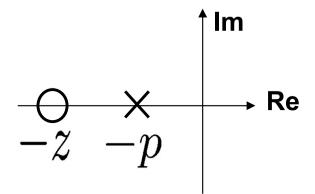
Lead and lag compensators



Lead compensator



Lag compensator



The reason why these are called "lead" and "lag" will be explained in frequency response approach (later in this course).

Reshaping root locus by lead compensators

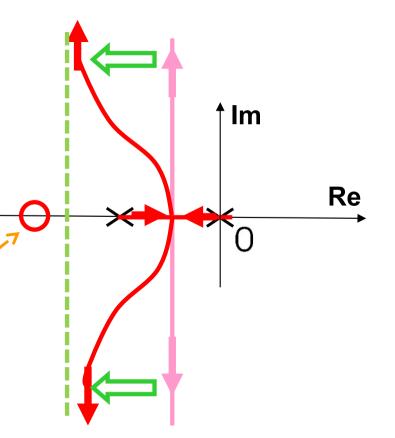
• Lead compensators move the intersection of asymptotes (the centroid) to the left.

• With C(s) = K only:

$$\frac{\sum \mathsf{pole} - \sum \mathsf{zero}}{r}$$

• With a lead *C*(*s*):

$$\frac{\sum \mathsf{pole} - \sum \mathsf{zero} + \mathsf{pole}_{lead} - \mathsf{zero}_{lead}}{r}$$



Reshaping root locus by lag compensators

- Lag compensators move the intersection of asymptotes (the centroid) to the right.
 - With C(s) = K only:

$$\frac{\sum \mathsf{pole} - \sum \mathsf{zero}}{r}$$

• With a lag C(s): $\frac{\sum \mathsf{pole} - \sum \mathsf{zero} + \mathsf{pole}_{lag} - \mathsf{zero}_{lag}}{r}$

Roles of lead & lag compensators

- Lead compensator
 - Improves transient response
 - Improves stability

$$C_{Lead}(s) = K \frac{s + z_{Lead}}{s + p_{Lead}}$$

- Lag compensator
 - Reduces steady state error

$$C_{Lag}(s) = \frac{s + z_{Lag}}{s + p_{Lag}}$$

- Lead-lag compensator
 - Takes into account both transient and steady state

$$C_{LL}(s) = C_{Lead}(s)C_{Lag}(s)$$

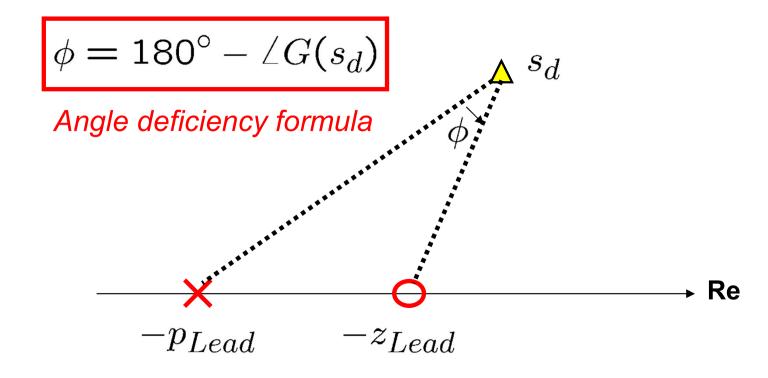
$$C_{LL}(s) = K \frac{s + z_{Lead}}{s + p_{Lead}} \frac{s + z_{Lag}}{s + p_{Lag}}$$

Lead compensator design

1. Select a desired pole in the allowable region (this is shown by s_d). We aim at reshaping RL to pass through this pole. In this course, s_d is given to you.

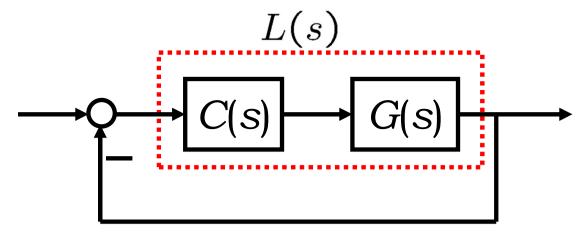
Lead compensator design

2. Select pole/zero in
$$C_{Lead}(s) = K \frac{s + z_{Lead}}{s + p_{Lead}}$$
 as



Angle and magnitude conditions

• For an open-loop transfer function L(s),



- A point s to be on root locus ←→ it satisfies
 - Angle condition

Odd number
$$\angle L(s) = 180^{\circ} \times (2k+1), \ k = 0, \pm 1, \pm 2, \dots$$

- For a point on root locus, gain K is obtained by
 - Magnitude condition

$$|G(s)| = \frac{1}{K}$$

or

$$K = \frac{1}{|G(s)|}$$

How to find ϕ analytically

Follow the steps presented below:

Step 1: Calculate S_d using the following equation (if it is not given explicitly):

$$s_d = -\zeta \omega_n + j\omega_n \sqrt{1 - \zeta^2}$$

Step 2: Calculate $G(s_d)$.

Step 3: Calculate $\angle G^*(s_d)$.

Step 4: Convert $\angle G^*(s_d)$ to an angle from +Re-axis in CCW direction. Call this angle $\angle G(s_d)$.

Step 5: Calculate ϕ using the angle deficiency formula:

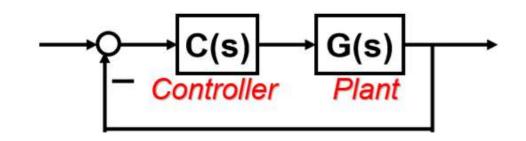
$$\phi = 180^{\circ} - \angle G(s_d)$$

Example 2

Lead compensator design

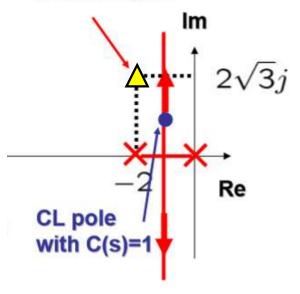
Consider the system:

$$G(s) = \frac{4}{s(s+2)}$$



 S_d : Desired pole

- Design specifications:
 - Damping ratio $\zeta = 0.5$
 - Undamped natural frequency $\omega_n = 4 \text{ rad/s}$



Lead compensator design (cont'd)

Evaluate G(s) at the desired pole.

$$s_d = -\zeta \omega_n + j\omega_n \sqrt{1 - \zeta^2}$$

$$s_d = -2 + 2\sqrt{3}j$$

$$G(-2+2\sqrt{3}j) = \frac{4}{(-2+2\sqrt{3}j)2\sqrt{3}j}$$

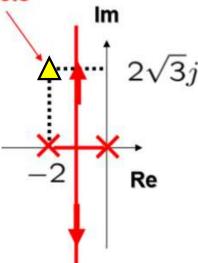
$$\angle G^*(s_d) = \angle 4 - \angle \left(-2 + 2\sqrt{3}j\right) - \angle 2\sqrt{3}j$$

$$= 0^{\circ} - \left(\tan^{-1}\left(\frac{2\sqrt{3}}{-2}\right)\right) - 90^{\circ}$$

$$= 0^{\circ} - (+120^{\circ}) - 90^{\circ} = -210^{\circ} \rightarrow$$

$$\angle G^*(s_d) = -210^{\circ}$$

Desired pole



Convert "-210°" to an angle from +Re-axis in CCW direction: $360^{\circ} - 210^{\circ} = +150^{\circ} \rightarrow \angle G(s_d) = = +150^{\circ}$

Now, use the **angle deficiency formula** to calculate ϕ :

$$\phi = 180^{\circ} - \angle G(s_d) \to \phi = 180^{\circ} - 150^{\circ} \to \phi = 30^{\circ}$$

Lead compensator design

How to select pole and zero?

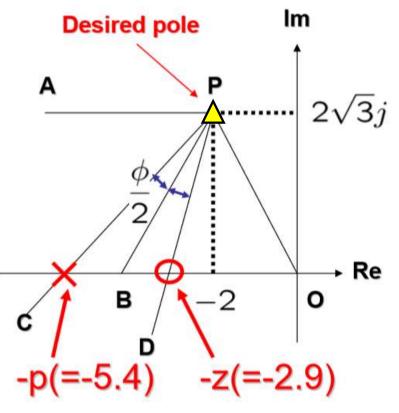
Method 1 (graphical):

- Draw horizontal line PA
- Draw line PO
- Draw bisector PB

$$\angle APB = \angle BPO = \frac{1}{2} \angle APO$$

Draw PC and PD

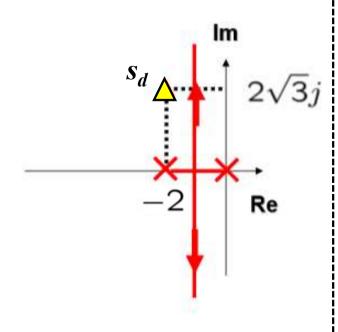
$$\angle CPB = \angle BPD = \frac{\phi}{2}$$



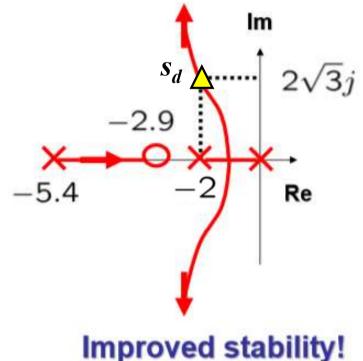
Pole and zero of C(s) are shown in the figure.

Comparison of root locus

$$C(s).G(s) = K.G(s)$$



$$C(s).G(s) = C_{Lead}.G(s) = K \frac{s + z_{Lead}}{s + p_{Lead}}G(s)$$



a place of mind

How to design the gain K?

Lead compensator

$$C(s) = K \frac{s + 2.9}{s + 5.4}$$

Open loop transfer function

$$G(s)C(s) = K \frac{4(s+2.9)}{s(s+2)(s+5.4)} = K \cdot \tilde{G}(s) = L(s)$$
Note: $|(s+2.9)|_{s_d} = |(-2+2\sqrt{3}j+2.9)|$

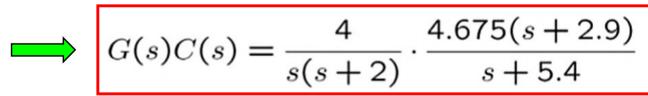
Magnitude condition $K = \frac{1}{|\tilde{G}(s_d)|}$

$$K = \frac{1}{\left|\tilde{G}(s_d)\right|}$$

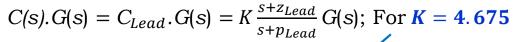
Note:
$$|(s + 2.9)|_{s_d} = |(-2 + 2\sqrt{3}j + 2.5)|_{s_d} = |(0.9 + 2\sqrt{3}j)| = \sqrt{(0.9)^2 + (2\sqrt{3})^2}|_{s_d} = 3.579$$

$$K = \frac{1}{\left| \frac{4(s+2.9)}{s(s+2)(s+5.4)} \right|_{s_d=-2+2\sqrt{3}j}}$$

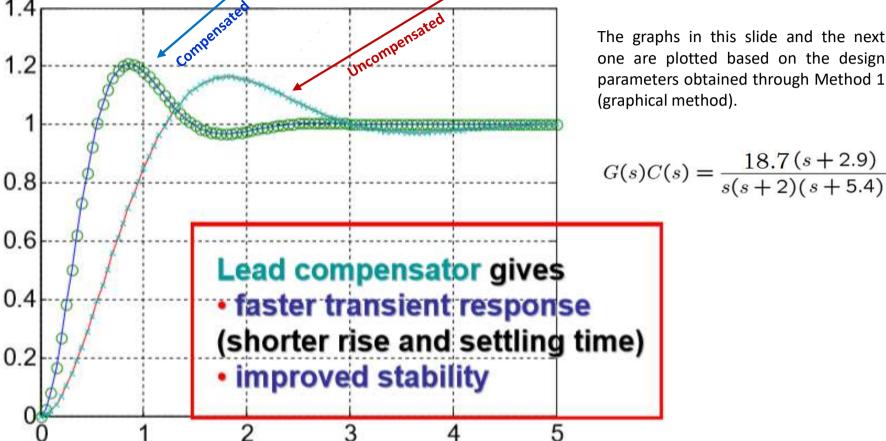
$$K = 4.675$$



Comparison of step responses



$$C(s).G(s) = K.G(s)$$
; For $K = 1$



parameters obtained through Method 1 (graphical method).

$$G(s)C(s) = \frac{18.7(s+2.9)}{s(s+2)(s+5.4)}$$

Error constants

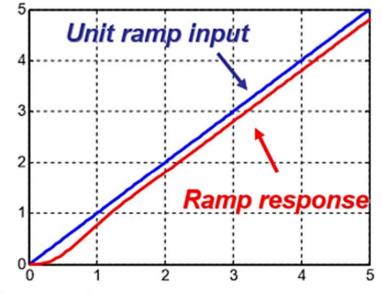
$$G(s)C(s) = \frac{4}{s(s+2)} \cdot \frac{4.675(s+2.9)}{s+5.4}$$

Step-error constant

$$K_p = \lim_{s \to 0} G(s)C(s) = \infty$$

Ramp-error constant

$$K_v = \lim_{s \to 0} sG(s)C(s) = 5.02$$



Lag compensator can be used to reduce steady-state error.

$$e_{ss} = \frac{1}{K_v} = \frac{1}{5.02} = 0.19$$

This will be shown soon.

Method 2 (analytical):

Important Note: Method 2 should be used in your tests and other class activities and not Method 1 (the graphical method). The graphical method was presented just for demonstration purposes. Below is a summary for **Method 2**:

Step 1: Take z_{lead} = |real part of s_d |.

Step 2: Find p_{lead} using the following relation (ϕ is assumed to be already calculated analytically using the angle deficiency formula):

$$\angle \frac{s_d + z_{lead}}{s_d + p_{lead}} = \phi$$

Step 3: Substitute for the parameters in the C_{lead} relation:

$$C_{lead} = K \frac{s + z_{lead}}{s + p_{lead}}$$

Step 4: Find *K* using the following relation:

$$K = \frac{1}{\left| \tilde{G}(s_d) \right|}$$

Method 2 (analytical):

Step 1:

$$s_d = -2 + 2\sqrt{3}j$$
 \rightarrow $z_{lead} = |\text{real part of } s_d| = 2$

Step 2:

$$\angle \frac{s_d + z_{lead}}{s_d + p_{lead}} = \phi \to \angle \frac{s_d + 2}{s_d + p_{lead}} = 30^\circ \to \angle \frac{-2 + 2\sqrt{3}j + 2}{-2 + 2\sqrt{3}j + p_{lead}} = 30^\circ \to p_{lead} = 4$$

Step 3:

$$C_{lead} = K \frac{s + z_{lead}}{s + p_{lead}} = K \frac{s + 2}{s + 4}$$

Step 4:

$$K = \frac{1}{|\tilde{G}(s_d)|} = 4.00$$

Details of the Solution:

Angle deficiency formula:

$$\angle \frac{s_d + z_{lead}}{s_d + p_{lead}} = \phi \implies \angle \left(\frac{s_d + 2}{s_d + p_{lead}}\right) = 30^\circ$$

Substitute $s_d = -2 + 2\sqrt{3}j$:

Let's compute the phase angle condition:

$$\angle(s_d+2) = \angle(0+2\sqrt{3}j) = 90^{\circ}$$

$$ngle (s_d + p_{lead}) = an^{-1} \left(rac{2\sqrt{3}}{-2 + p_{lead}}
ight)$$

So:

$$90^{\circ} - \tan^{-1} \left(\frac{2\sqrt{3}}{-2 + p_{lead}} \right) = 30^{\circ}$$

$$\Rightarrow \tan^{-1}\left(\frac{2\sqrt{3}}{-2+p_{lead}}\right) = 60^{\circ}$$

$$\Rightarrow \frac{2\sqrt{3}}{-2 + p_{lead}} = \tan 60^{\circ} = \sqrt{3} \approx 1.732$$

Solve for plead:

$$1.732 = \frac{2\sqrt{3}}{-2 + p_{lead}}$$

Multiply both sides:

$$1.732(-2 + p_{lead}) = 2\sqrt{3}$$
 $-3.464 + 1.732 \cdot p_{lead} = 2\sqrt{3}$
 $1.732 \cdot p_{lead} = 2\sqrt{3} + 3.464$
 $\Rightarrow p_{lead} = 4$

Now, we have:

$$L(s) = K.\tilde{G}(s) \Rightarrow L(s) = K\frac{4(s+2)}{s(s+2)(s+4)}$$

Now solve for gain K:

Given:

$$s_d = -2 + 2\sqrt{3}j$$

We are told:

$$|\widetilde{G}(s_d)| = \frac{4(-2+2\sqrt{3}j+2)}{(-2+2\sqrt{3}j)(-2+2\sqrt{3}j+2)(-2+2\sqrt{3}j+4)}$$

Simplify numerator:

$$|-2+2\sqrt{3}j+2| = |2\sqrt{3}j| = 2\sqrt{3}$$

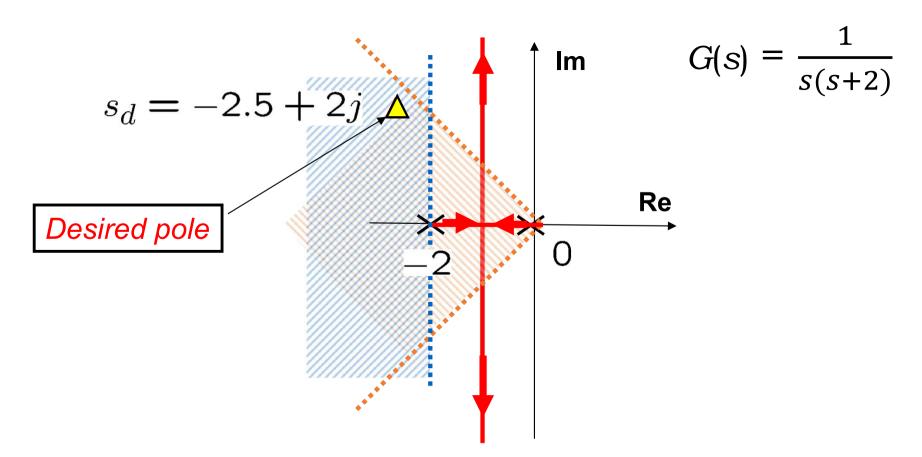
So:

$$|\widetilde{G}(s_d)| = \frac{4 \cdot 2\sqrt{3}}{4 \cdot 2\sqrt{3} \cdot 4} = \frac{8\sqrt{3}}{32\sqrt{3}} = \frac{1}{4}$$
 $K = \frac{1}{|\widetilde{G}(s_d)|} = \frac{1}{\frac{1}{4}} = \boxed{4.00}$

Example 3

a place of mind

Design a lead compensator controller by using the given desired pole in the allowable region.



We aim at reshaping RL to pass through the desired pole.

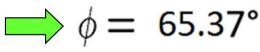
Example 3: One possible C_{Lead}

$$\angle G^*(s_d) = \angle \frac{1}{s_d(s_d+2)} = -245.37^\circ \Longrightarrow 360^\circ - 245.37^\circ = 114.63^\circ \Longrightarrow \angle G(s_d) = 114.63^\circ$$

-2.5

Angle deficiency

$$\phi = 180^{\circ} - \angle G(s_d)$$
 = 180° - 114.63°



$$-6.86$$

Using Method 2 for finding C_{Lead} :

$$C_{Lead}(s) = K \frac{s + 2.5}{s + 6.86}$$

$$s_d = -2.5 + 2j$$

Re

$$G(s) = \frac{1}{s(s+2)}$$

Example 3: Design of pole/zero in C_{Lead}

Lead compensator:

$$C_{Lead}(s) = K \frac{s + 2.5}{s + 6.86}$$

Open-loop transfer function:

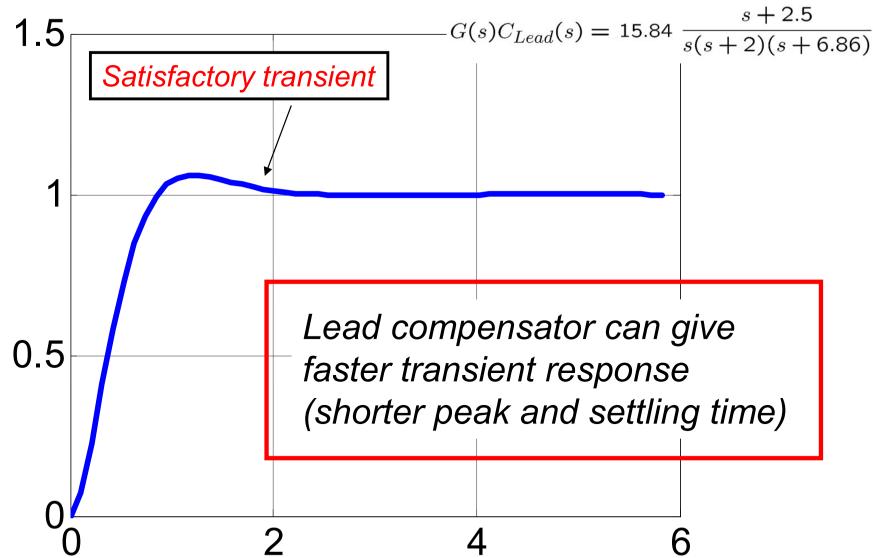
$$G(s)C_{Lead}(s) = K \frac{s + 2.5}{s(s + 2)(s + 6.86)} = L(s)$$

Gain computation:

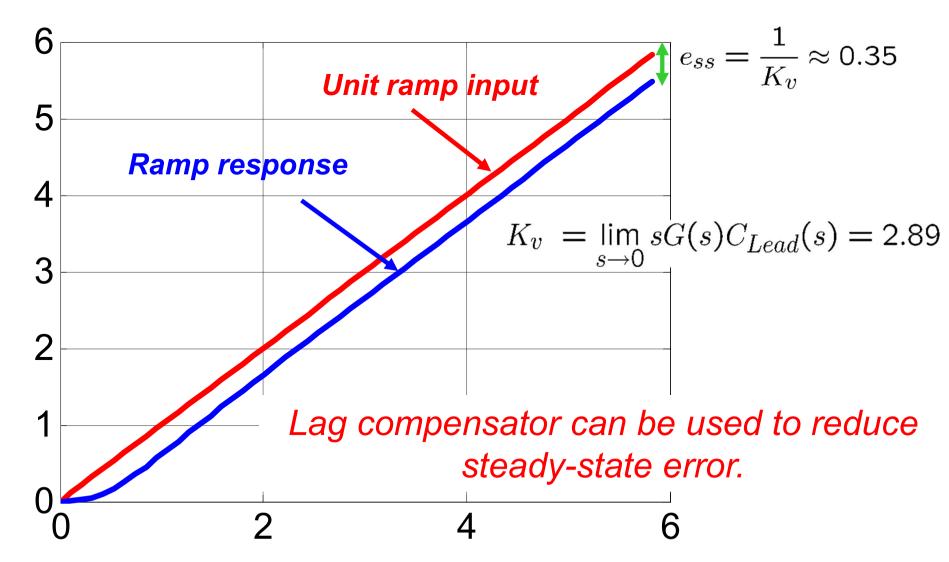
$$K = \frac{1}{|\tilde{G}(s_d)|} = 15.84 \Longrightarrow$$

$$G(s)C_{Lead}(s) = 15.84 \frac{s + 2.5}{s(s+2)(s+6.86)}$$

Example 3: Step response with C_{Lead}



Example 3: Steady state error for r(t) = tu(t)



Roles of lead & lag compensators

- Lead compensator
 - Improves transient response
 - Improves stability

$$C_{Lead}(s) = K \frac{s + z_{Lead}}{s + p_{Lead}}$$

- Lag compensator
 - Reduces steady state error

$$C_{Lag}(s) = \frac{s + z_{Lag}}{s + p_{Lag}}$$

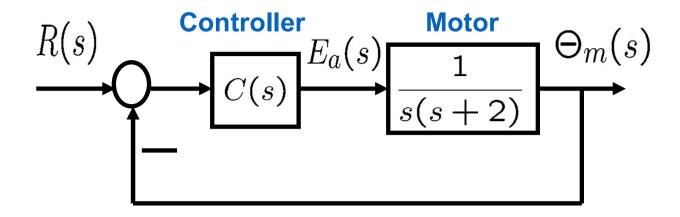
 $C_{LL}(s) = C_{Lead}(s)C_{Lag}(s)$

- Lead-lag compensator
 - Takes into account both transient and steady state.

$$C_{LL}(s) = K \frac{s + z_{Lead}}{s + p_{Lead}} \frac{s + z_{Lag}}{s + p_{Lag}}$$

Example 4 (revisited)

A feedback system is given as below:

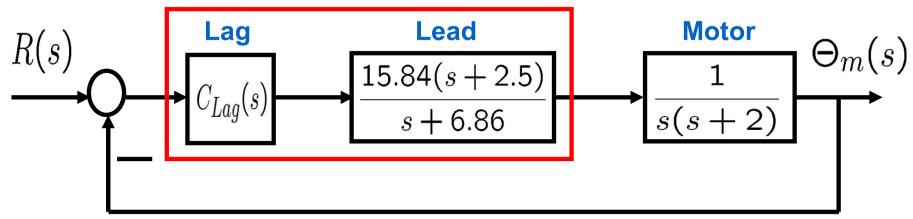


- Design specifications:
 - 2% settling time at most 2 seconds
 - Overshoot at most 4.32%
 - Assume that we have already designed a lead compensator with the following TF:

$$C_{Lead}(s) = 15.84 \frac{s + 2.5}{s(s+2)(s+6.86)}$$

- Steady state error:
 - Zero for unit step r(t) = u(t)
 - At most 0.05 for unit ramp r(t) = tu(t)

Example 4: After C_{Lead} design



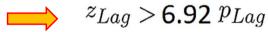
- ullet For a designed $C_{{\scriptscriptstyle Lead}}$, we need to design $C_{{\scriptscriptstyle Laq}}$ so that
 - Steady state error for unit ramp r(t) is reduced (e_{ss} should be less than 0.05). Here, p_{Lag} is given as 0.005.
 - Transient is maintained. That is, we do not want to lose the satisfactory transient property achieved by the lead compensator.

$$e_{SS} < 0.05; \ e_{SS} = \frac{R}{K_v} \to \frac{1}{K_v} < 0.05 \to K_v > 20$$

Example 4: Design of $C_{Lag}(s) = \frac{s + z_{Lag}}{s + p_{Lag}}$

• We would like to reduce the steady state error, i.e., to increase ramp-error constant:

$$K_v = \lim_{s \to 0} sG(s)C_{Lead}(s)C_{Lag}(s) = 2.89 \times \frac{z_{Lag}}{p_{Lag}} \xrightarrow{K_v > 20} 2.89 \times \frac{z_{Lag}}{p_{Lag}} > 20 \implies \frac{z_{Lag}}{p_{Lag}} > 6.92$$



Take, for example,

$$z_{Lag} = 10p_{Lag}$$

In your tests, just round up 6.92 (or any other similar number) to its next nearest integer number (here, 7) and take z_{Laq} = (integer number) p_{Laq} .

Also, we want to maintain the transient property,

$$|p_{Lag}|$$
 : small

In your tests, I will give you $p_{\it Lag}$ and it is considered a known parameter.

• We still want our RL to pass through s_d , despite modifying our L(s).

$$\left.\begin{array}{c}
1 + G(s_d)C_{Lead}(s_d) = 0 \\
C_{Lag}(s_d) \approx 1
\end{array}\right\} \Longrightarrow 1 + G(s_d)C_{Lead}(s_d)C_{Lag}(s_d) \approx 0$$

Why should p_{Lag} be small?

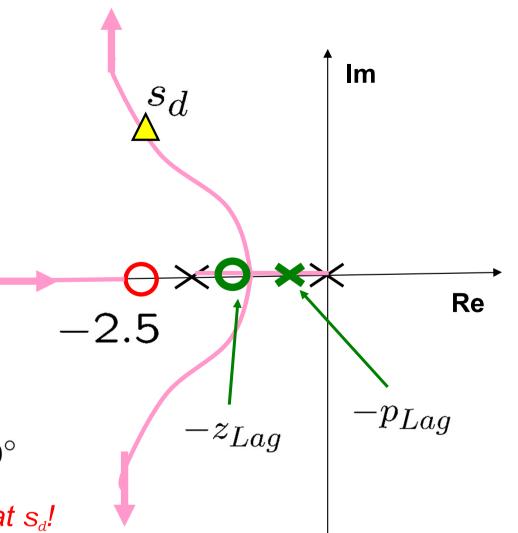
$$p_{Lag}$$
 : small

$$z_{Lag} = 10p_{Lag}$$

$$C_{Lag}(s_d) = \frac{s_d + z_{Lag}}{s_d + p_{Lag}} \approx 1$$

$$\angle G(s_d)C_{Lead}(s_d)C_{Lag}(s_d) \approx 180^{\circ}$$

Angle condition: almost satisfied at $s_a!$



Example 4: C_{Lag} design

• In design projects, we assume a small $p_{\rm Lag}$ and use trial-and-error! Here, $p_{\rm Lag}$ will be given to you.

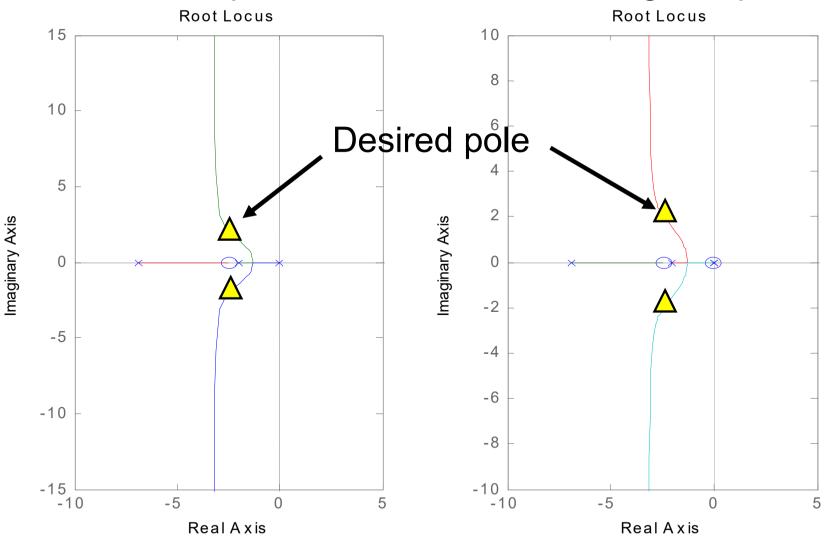
$$p_{Lag} = 0.005 \implies z_{Lag} = 0.05$$

$$C_{LL}(s) = \underbrace{\frac{15.84(s+2.5)}{s+6.86}}_{C_{Lead}(s)} \times \underbrace{\frac{s+0.05}{s+0.005}}_{C_{Lag}(s)}$$

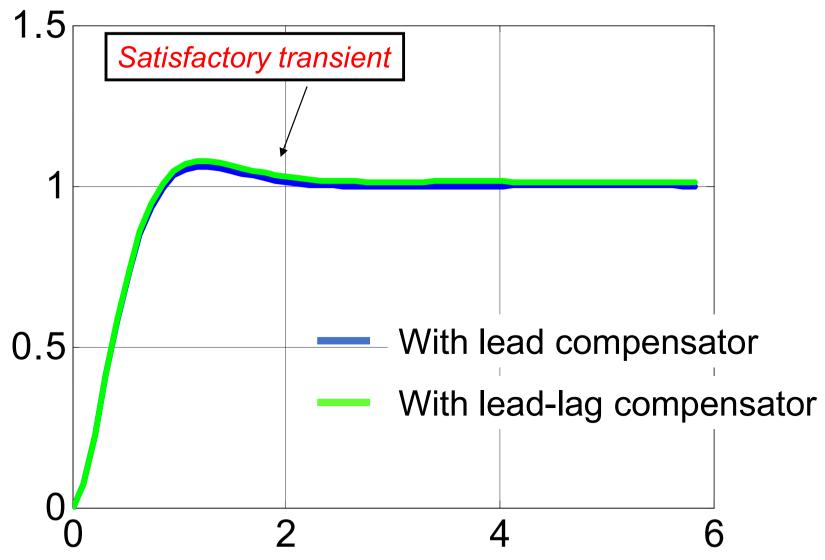
Example 4: Root locus

With lead compensator

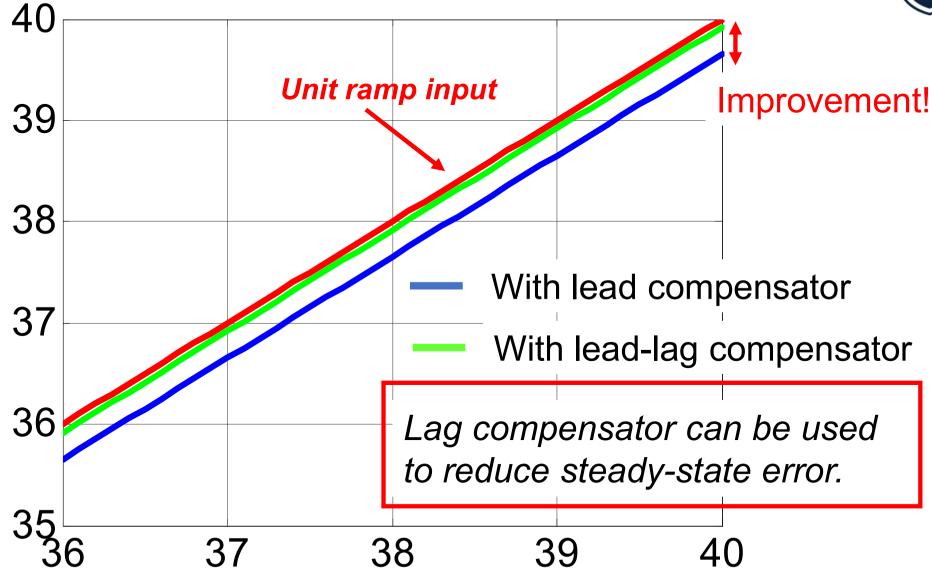
With lead-lag compensator



Example 4: Comparison of step responses



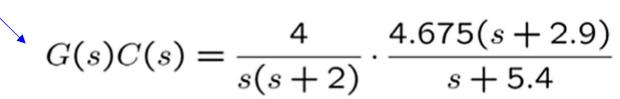
Example 4: Comparison of ramp responses



Example 5 (Example 2, revisited)

If we only use a lead compensator.

Error constants

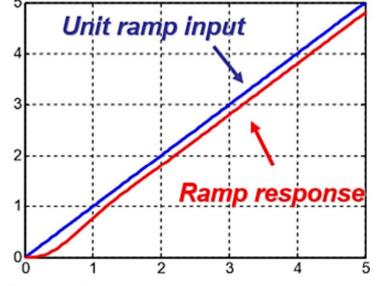


Step-error constant

$$K_p = \lim_{s \to 0} G(s)C(s) = \infty$$

Ramp-error constant

$$K_v = \lim_{s \to 0} sG(s)C(s) = 5.02$$



Lag compensator can be used to reduce steady-state error.

$$e_{ss} = \frac{1}{K_v} = \frac{1}{5.02} = 0.19$$

• Let us design a lead-lag compensator so that we can have a lower steady-state error when the input is a unit ramp function. We would like $e_{\rm ss}$ to be less than 0.02.

$$e_{SS} < 0.02;$$
 $e_{SS} = \frac{R}{K_v} \rightarrow \frac{1}{K_v} < 0.02 \rightarrow K_v > 50$

$$K_{v} = \lim_{s \to 0} sG(s)C_{Lead}(s)C_{Lag}(s) = 5.02 \cdot \frac{z_{Lag}}{p_{Lag}} \xrightarrow{K_{v} > 50} \frac{z_{Lag}}{p_{Lag}} > 9.96$$

$$\rightarrow z_{Lag} = \mathbf{10}p_{Lag}$$

• We still want our RL to pass through s_d , despite modifying our L(s).

$$\left.\begin{array}{c}
1 + G(s_d)C_{Lead}(s_d) = 0 \\
C_{Lag}(s_d) \approx 1
\end{array}\right\} \implies 1 + G(s_d)C_{Lead}(s_d)C_{Lag}(s_d) \approx 0$$

a place of mind

Let us say $\,p_{Laq}^{}$ is given as 0.025:

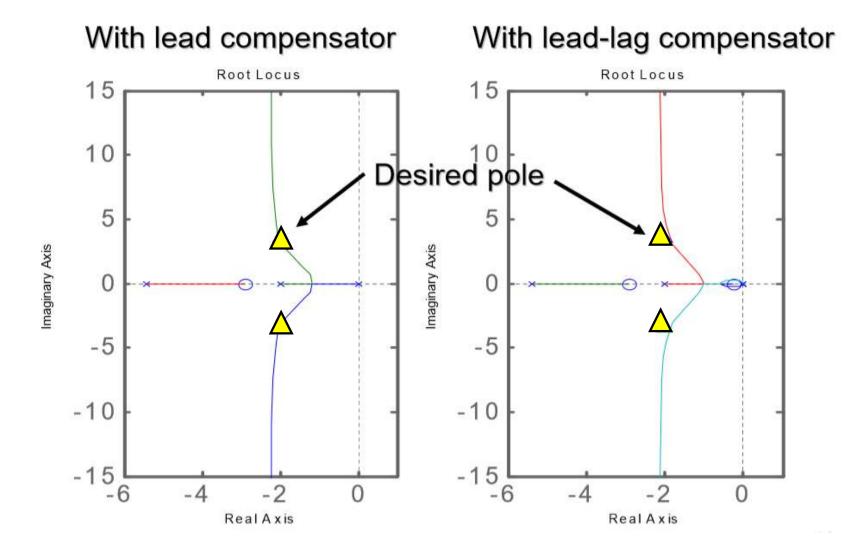
$$z_{Lag} = 10p_{Lag} = (10)(0.025) = 0.25$$
 \Longrightarrow $z_{Lag} = 0.25$

$$z_{Laa} = 0.25$$

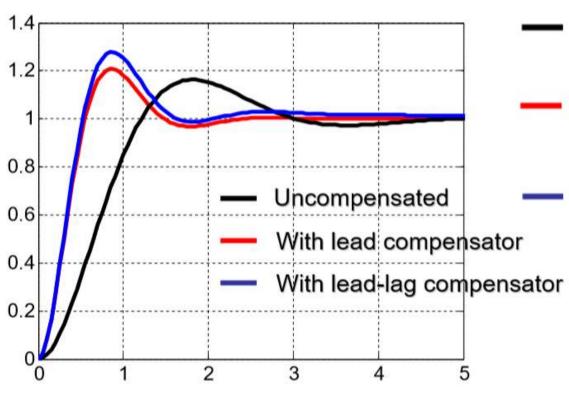
Lead-lag controller

$$C_{LL}(s) = 4.675 \frac{s+2.9}{s+5.4} \cdot \frac{s+0.25}{s+0.025}$$

Root locus



Comparison of step responses

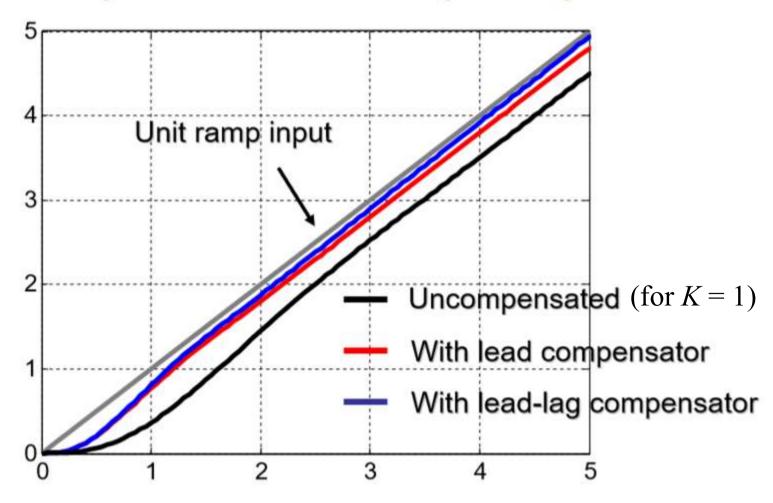


$$G(s)C(s) = \frac{4}{s(s+2)} \cdot K = \frac{4}{s(s+2)} \cdot 1$$

$$G(s)C(s) = \frac{4}{s(s+2)} \cdot \frac{4.675(s+2.9)}{s+5.4}$$

$$G(s)C(s) = \frac{4}{s(s+2)} \cdot \frac{4.675(s+2.9)}{s+5.4} \cdot \frac{s+0.25}{s+0.025}$$

Comparison of ramp responses



Remarks on controller design

- Existence of a satisfactory controller is generally unknown before the design.
- When a satisfactory controller exists, such controller is not unique.
- Controller design methods are not unique either.
 - Different references explain controller design in a different way.
 - Different control engineers design controllers in a different way.

Summary

- Controller design based on root locus
 - Lead compensator to improve transient response.
 - Lag compensator to improve steady state error.
 - Lead-lag compensator to improve both transient and steady state responses.
- Next
 - Lead-lag compensator in Matlab and PID Controller design