

ELEC 341: Systems and Control

Lecture 15

Root locus: PID controller design

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- **Electrical**
- Electromechanical
- Mechanical

Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

Time response

- **Transient**
 - Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

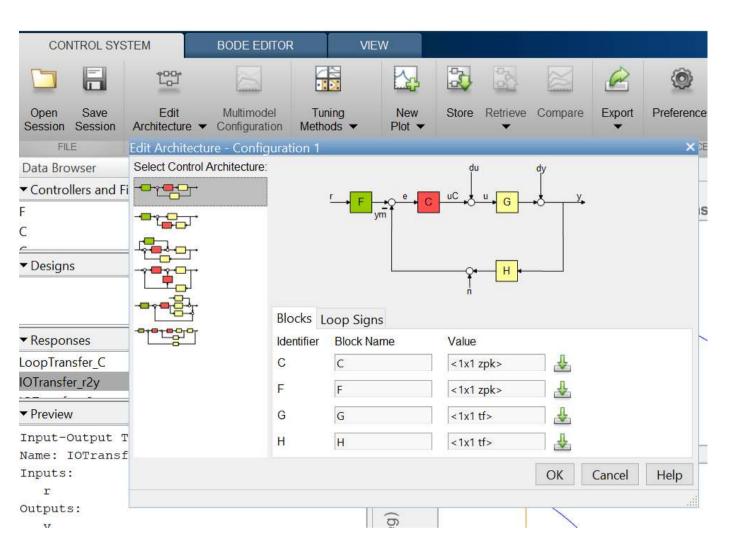
Important remarks on using MATLAB

- It is convenient to use *MATLAB Control System Toolbox* in practical controller design problems.
 - ☐ Hand-calculations are often impractical for real-life engineering problems.
- The topics in Control Theory that you have learned so far are still very important!
 - ☐ These include topics such as, Routh-Hurwitz, how to sketch RL, how to use RL for controller design, etc.
 - You have to detect errors, if any, in the results that MATLAB returns.
 - You have to interpret what MATLAB returns.
 - Using the control theory covered so far, we can take full advantage of MATLAB to design controllers more effectively.

SISO Design Tool in Matlab

- SISO (Single Input Single Output) design tool is the Graphical-User Interface (GUI) that allows you to design controllers/compensators.
- Type "sisotool (G)" in Matlab prompt:

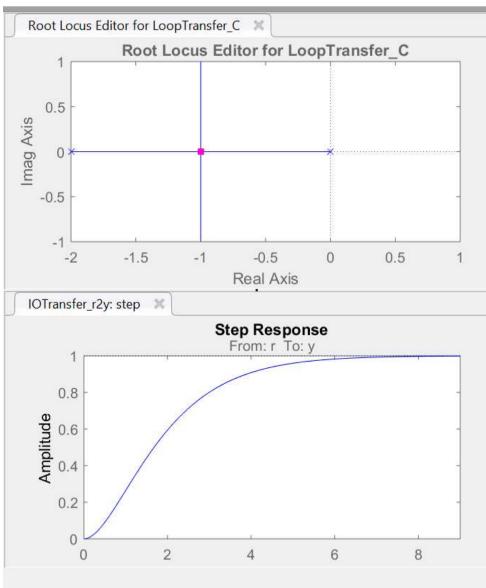
 \gg sisotool (G)


• In the above command, "G" is the name of the openloop transfer function that you have selected.

SISO Design Tool (Gain Compensator)

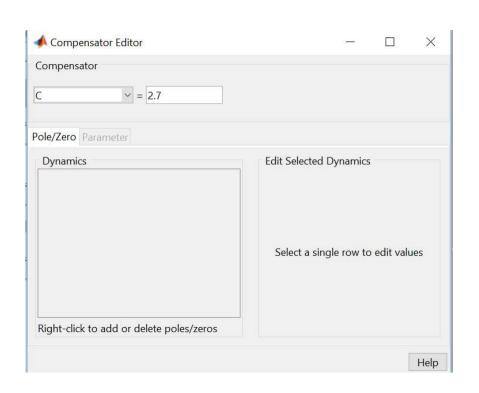
Input the plant

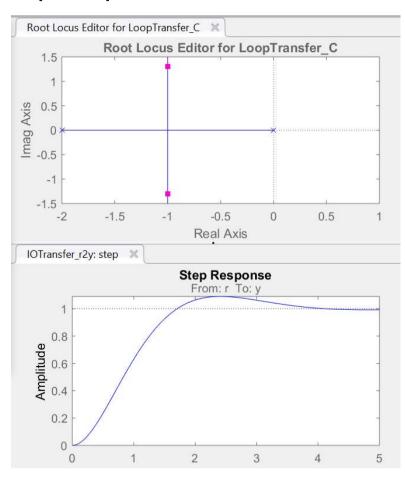
>> sisotool(sysG)


SISO Design Tool (Gain Compensator), (cont'd)

 You will see the root locus plot for

$$G(s) = \frac{1}{s(s+2)}$$

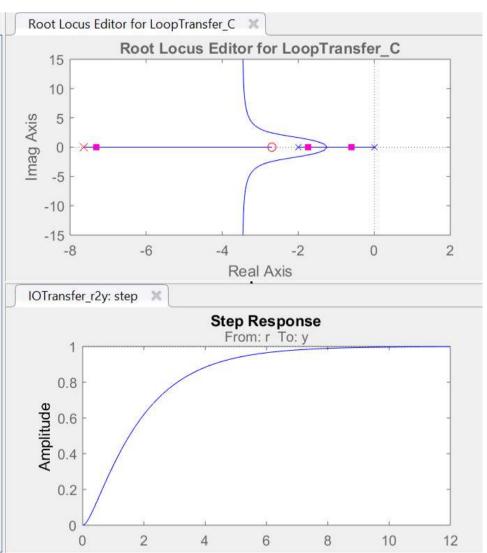

- The default setting is C(s) = 1.
- You can right-click on the plots to change the gain (among other things).



SISO Design Tool (Gain Compensator), (cont'd)

Modify the gain for "satisfactory" step response.

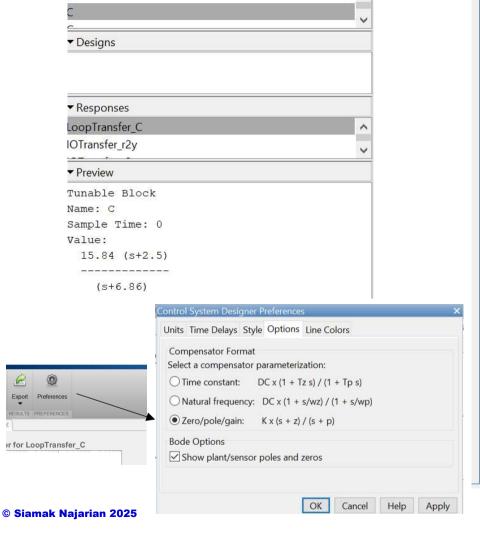
 By right-clicking on these figures, you can add various specs on the figures.


SISO Design Tool (Lead Compensator)

 Add a pole & a zero of a compensator, and adjust its gain:

$$C_{Lead}(s) = \frac{15.84(s+2.5)}{s+6.86}$$

- If necessary, move the pole and zero
 - by click-and-drag, or
 - Design → Edit Compensator...

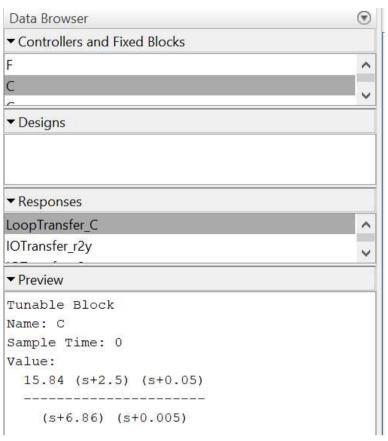

This is not with the gain we wanted (i.e., 15.84).

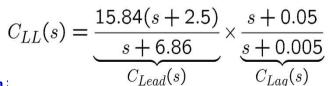
Data Browser

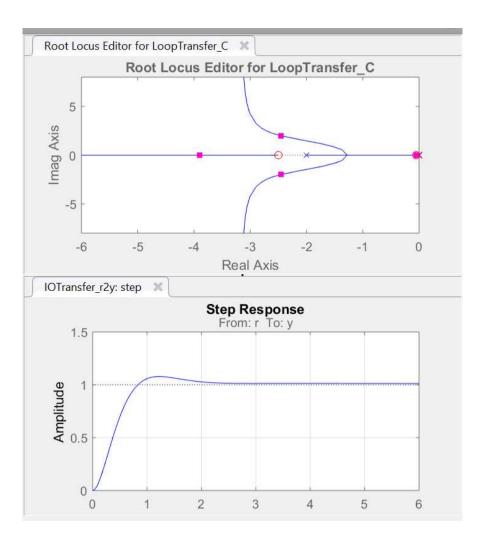
▼ Controllers and Fixed Blocks

SISO Design Tool (Lead Compensator), (cont'd)

 Adjust the gain to 15.84 in order to obtain the satisfactory step response.

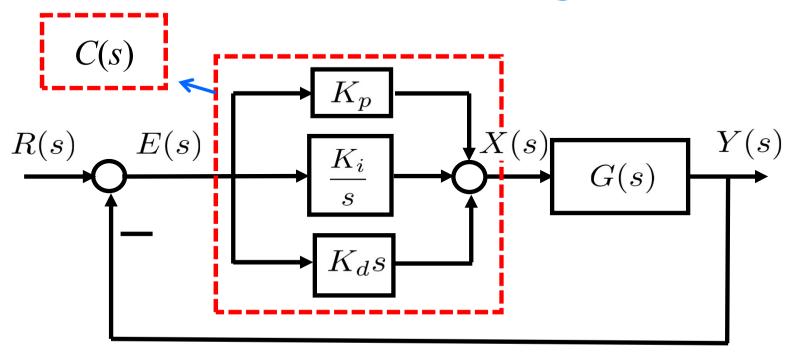



a place of mind


SISO Design Tool (Lead-Lag Compensator)

- Add a pole & a zero of $C_{Lag}(s) = \frac{s + 0.05}{s + 0.005}$
- Adjust controller gain to 15.84.

Useful MATLAB commands in Control System Toolbox



- sys=tf(num,den): Transfer function generation with numerator and denominator coefficient vector (num and den)
- pole(sys), zero(sys): Pole/zero calculations
- step(sys), impulse(sys): Step and impulse responses
- feedback(sys1,sys2): Calculation of closed-loop transfer function (Black's formula)
- rlocus(sys): Root locus drawing
- sisotool(sys): GUI for controller design

See the manual or help-command (e.g., >> help tf)

PID Controller Design

$$x(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

Proportional Integral

Derivative

s-domain: X(s) = C(s) E(s); $C(s) = K_p + \frac{K_i}{s} + K_d s = K_p \left(1 + \frac{1}{T_I s} + T_D s \right)$

$$T_D = \frac{K_d}{K_n}$$
; $T_I = \frac{K_p}{K_i}$

Parallel form

Standard form

 K_p = proportional gain

 $\mathbf{K}_{i}^{\mathbf{r}} = \text{integral gain}$

 K_d = derivative gain

Notes on PID Controller Design

- Most popular in various industries (such as, process and robotics industries)
 - Good performance
 - Functional simplicity (operators can easily tune it)
- To avoid high frequency noise amplification, derivative term is often implemented as:

$$K_d s pprox rac{K_d s}{ au_d s + 1}$$

with τ_a much smaller than plant time constant.

- PI controller $C(s) = K_p + K_i/s$
- PD controller $C(s) = K_p + K_d s$

Notes on PID Controller Design

Applications of PID Controllers in Various Industries:

- Automotive Industry
 - Cruise control: Maintains vehicle speed under varying load and terrain.
 - **Engine control**: Regulates air-fuel mixture, ignition timing, and idle speed.
 - Automatic transmission: Enables smooth gear shifting.
 - Active suspension: Enhances ride comfort and vehicle stability.
- Biomedical Engineering
 - Infusion pumps: Precisely administer medication doses over time.
 - Ventilators: Controls airflow, pressure, and respiration timing.
 - Artificial pancreas: Adjusts insulin delivery in real time for diabetic patients.
 - Neonatal incubators: Maintains controlled temperature and humidity.
- Wind Turbine Systems
 - Blade pitch control: Improves efficiency and protects against high winds.
 - Generator torque control: Regulates output power based on wind speed.
 - Yaw control: Keeps turbine facing optimal wind direction.
- Nuclear Reactor Control
 - Core temperature regulation: Ensures safe and stable reactor operation.
 - Steam generator control: Maintains pressure and heat exchange efficiency.
 - **Neutron flux control**: Adjusts fission rate via control rod mechanisms.

Notes on PID Controller Design

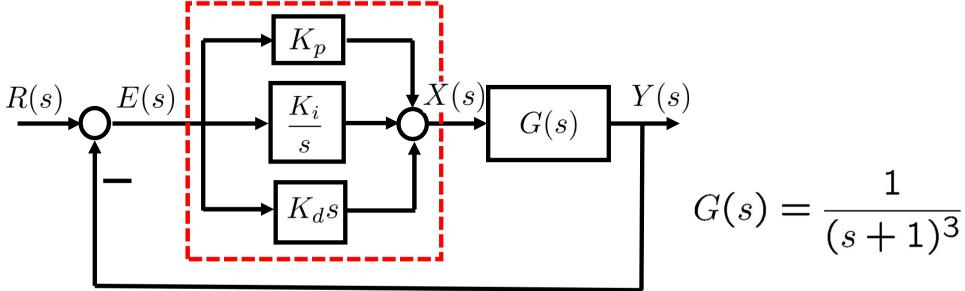
Solar Power Plants

- Solar tracking systems: Adjust panel orientation for maximum sunlight exposure.
- Inverter control: Stabilizes AC output despite DC input variation.
- Thermal regulation: Prevents overheating of photovoltaic modules.

Robotics

- **Robotic surgery**: Enhances precision and stability in minimally invasive procedures through real-time force and motion control.
- **Tactile sensing**: Enables robots to react to touch and grip objects delicately using pressure feedback.
- Haptics: Provides realistic force feedback in teleoperation and prosthetics.
- **Joint and limb control**: Ensures accurate, smooth movement of robotic arms and manipulators.

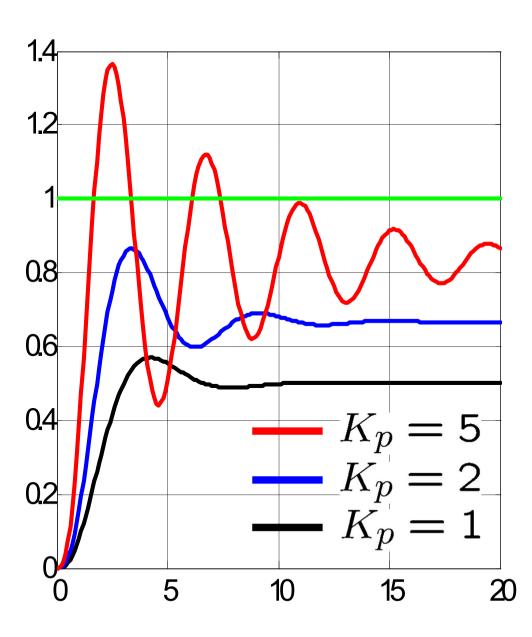
Manufacturing and Industrial Automation


- Conveyor systems: Controls belt speed and product spacing.
- **CNC machines**: Maintains exact tool path and cutting depth.
- Chemical process control: Adjusts flow, temperature, and pressure in real-time.

Aerospace and Aviation

- Autopilot systems: Maintains stable heading, altitude, and pitch.
- Flight control surfaces: Adjusts ailerons, elevators, and rudders accurately.
- Environmental systems: Regulates cabin pressure and temperature.

Example 1



- Plot y(t) for unit step input r(t) with
 - P controller
 - PI controller
 - PID controller

Example 1 (cont'd): P controller

$$C(s) = K_p$$

- Simple
- Steady state (SS) error
 - Higher gain gives smaller SS error
- Stability
 - Higher gain gives faster (shorter rise time) but more oscillatory response

Example 1 (cont'd) Interpretation: P controller

Root locus by increasing K_p

-1
We have 3 poles at the same location.

For root locus, K_p is the P controller gain. That is, it is a varying parameter.

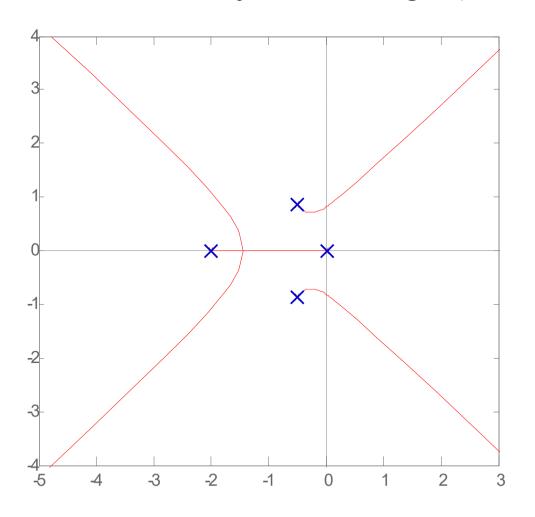
Steady state error for $K_p = 1$, the **black** curve in the previous slide:

$$e_{ss} = \frac{1}{1 + G(0)C(0)}$$

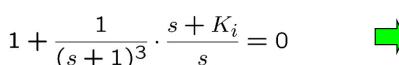
$$= \frac{1}{1 + K_p} = \frac{1}{1 + 1} \Rightarrow$$

$$e_{ss} = 0.5$$

Example 1 (cont'd): PI controller


$$C(s) = K_p + \frac{K_i}{s}$$

- Zero steady state error (provided that CL is stable.)
- Stability
 - Higher gain (K_i) gives faster (shorter rise time) but more oscillatory response

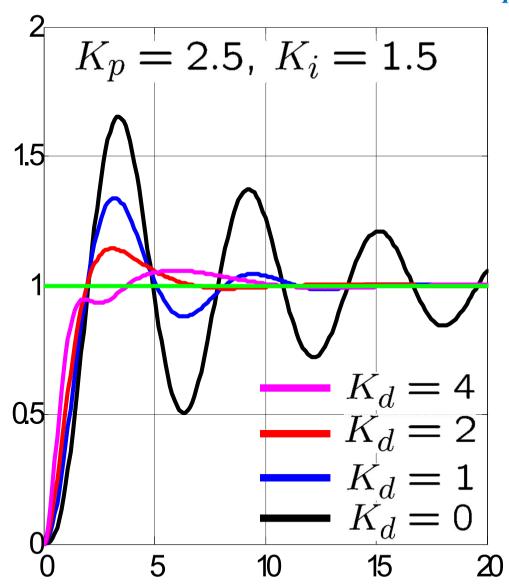

Example 1 (cont'd) Interpretation: PI controller (for $K_p = 1$)

Root locus by increasing K_i

$$C(s) = K_p + \frac{K_i}{s} = 1 + \frac{K_i}{s} = \frac{s + K_i}{s}$$

$$s\{1+(s+1)^3\}+K_i=0$$

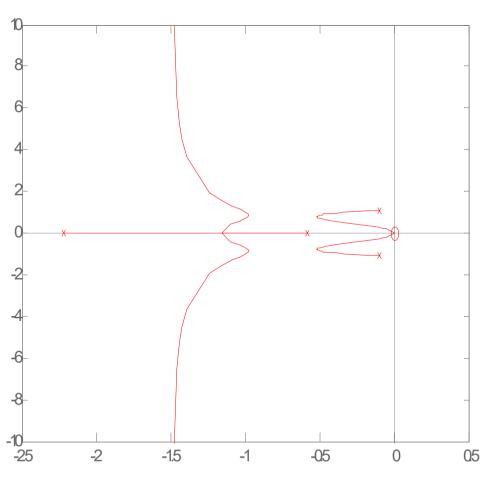
$$1 + K_i \frac{1}{s(s+2)(s^2+s+1)} = 0$$


Steady state error:

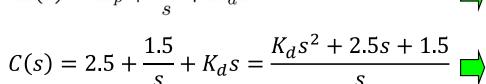
$$e_{ss} = \frac{1}{1 + G(0)C(0)} = 0$$

(due to an integrator in C(s))

Example 1 (cont'd) PID controller ($K_p = 2.5, K_i = 1.5$)


$$C(s) = K_p + \frac{K_i}{s} + K_d s$$

- Zero steady state error (due to integral control)
- Stability
 - Higher gain (K_d) gives more damped response.
- Too high gain (K_d) worsens performance.


Example 1 (cont'd) Interpretation: PID controller

Root locus by increasing K_d $C(s) = K_p + \frac{K_i}{s} + K_d s$

$$C(s) = K_p + \frac{K_i}{s} + K_d s$$

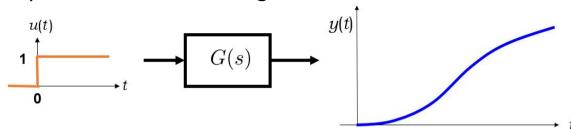
$$1 + \frac{1}{(s+1)^3} \cdot \frac{K_d s^2 + 2.5s + 1.5}{s} = 0$$

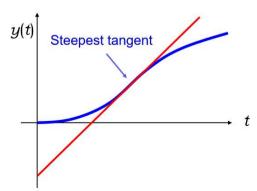
$$1 + K_d \frac{s^2}{s(s+1)^3 + 2.5s + 1.5} = 0$$

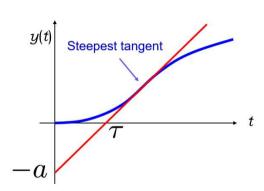
Steady state error:

$$e_{ss} = \frac{1}{1 + G(0)C(0)} = 0$$

(due to an integrator in C(s))


How to tune PID parameters

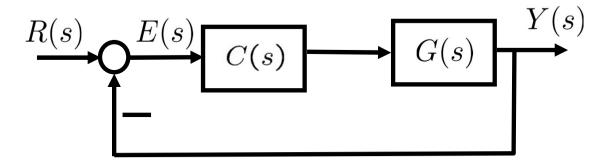

- Model-free (Empirical)
 - ❖ Trial and error
 - > Useful only when trial-and-error tuning is allowed.
- Model-based (Analytical)
 - * Root locus (RL)
 - Frequency response (FR) approach
 - ❖ Both RL and FR are useful only when a model is available.
- For both Model-free and Model-based systems, we can use a method called "Ziegler-Nichols tuning rule"
 - Useful even if a system is too complex to model.


- Open-loop Step response method (only for stable systems)
- Follow the below steps:
- **Step 1:** Apply a unit step input to the below arrangement:

Step 2: Find the steepest tangent for the output curve.

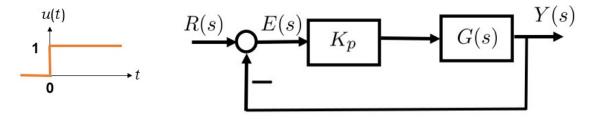
• **Step 3:** Find the values of τ and a.

To be continued

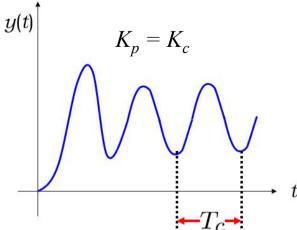

• **Step 4:** Use the following table to find the PID parameters:

PID parameters:

Type	K_p	T_I	T_D
Р	1/a		
ΡI	0.9/a	3 au	
PID	1.2/a	2τ	0.5τ


Standard form:

$$C(s) = K_p \left(1 + \frac{1}{T_I s} + T_D s \right)$$

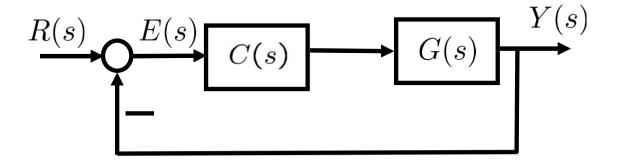


- Ultimate sensitivity method (closed-loop step response with a gain controller)
- Follow the below steps:
- Step 1: Apply a unit step input to the below arrangement:

• Step 2: Increase gain (K_p) until the output becomes oscillatory. Call this specific K_p , the K_c .

• Step 3: Find the value of T_c , which is basically the period of oscillation.

To be continued


• **Step 4:** Use the following table to find the PID parameters:

PID parameters

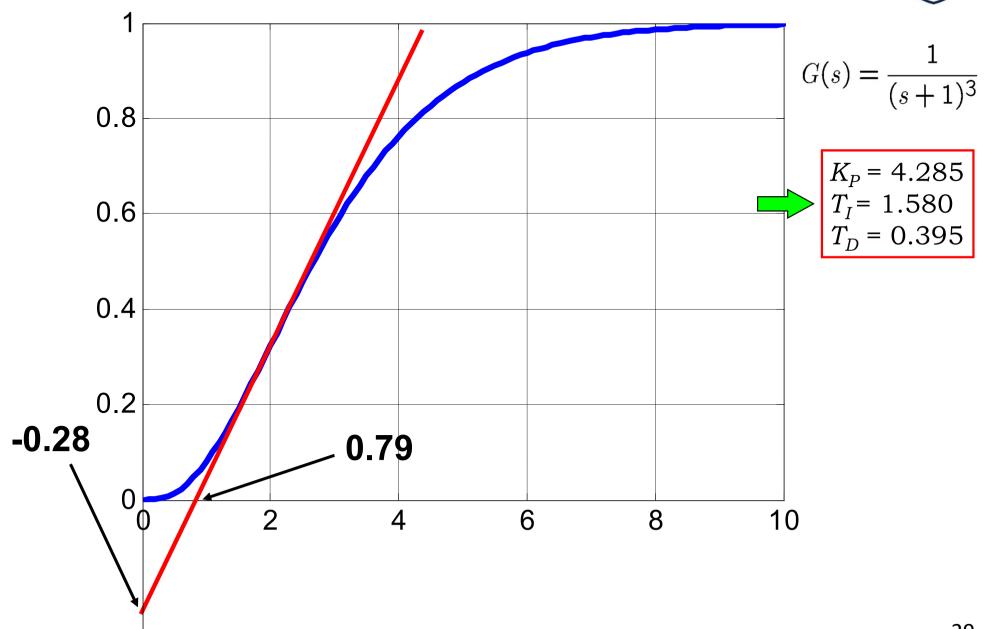
Туре	K_p	T_I	T_D
P	$0.5K_{c}$		
ΡI	$0.4K_c$	$0.8T_{c}$	
PID	$0.6K_{c}$	$0.5T_c$	$0.125T_{c}$

Standard form:

$$C(s) = K_p \left(1 + \frac{1}{T_I s} + T_D s \right)$$

Example 1: Open-loop Step Response Method

Design a suitable PID controller using **Open-loop Step Response Method** for the experimentally obtained response to a unit step input. The result of this experiment is presented in the next slide.


Note:

Although not necessary for the computation process of this design problem, the actual G(s) is:

$$G(s) = \frac{1}{(s+1)^3}$$

Example 1 (cont'd): Open-loop Step Response Method

Example 1 (cont'd): Open-loop Step Response Method

Details of Solution:

Step response method (PID):

$$\tau = 0.79$$
 $a = 0.28$

PID parameters:

$$K_p = \frac{1.2}{a} = \frac{1.2}{0.28} = 4.285$$
 $T_I = 2\tau = 2 \times 0.79 = 1.58$
 $T_D = 0.5\tau = 0.5 \times 0.79 = 0.395$

The PID controller transfer function C(s) is:

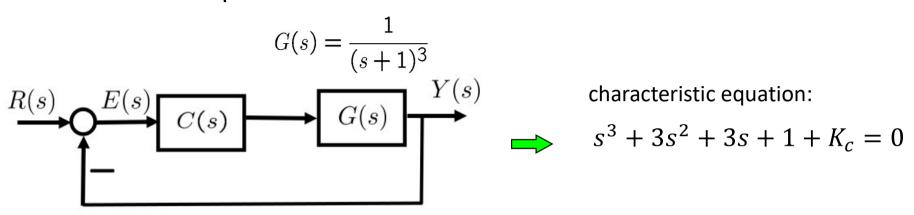
$$C(s) = K_p \left(1 + \frac{1}{T_I s} + T_D s \right)$$

Substituting the values:

$$C(s) = 4.285 \left(1 + \frac{1}{1.58s} + 0.395s \right)$$

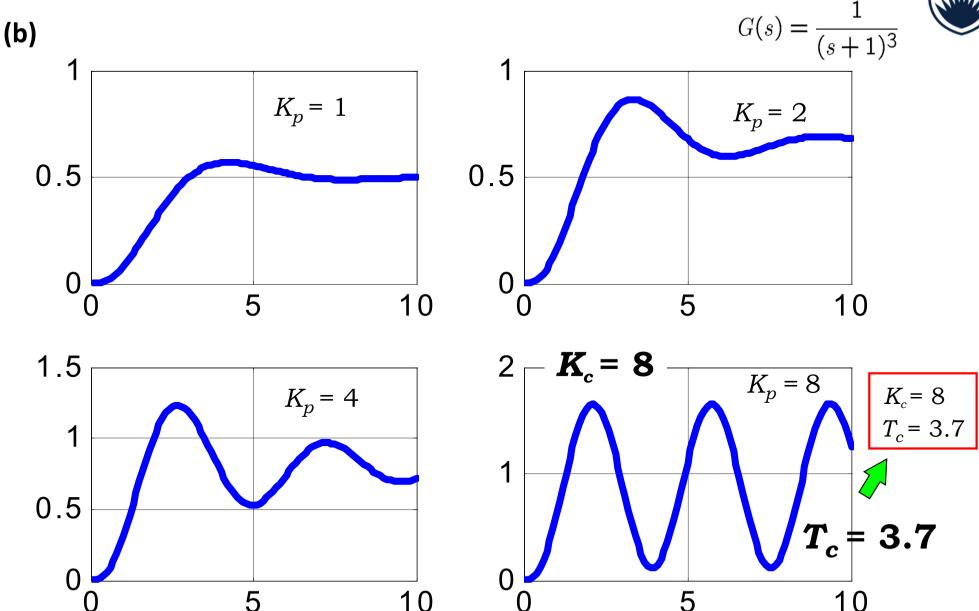
Example 2: Ultimate Sensitivity Method

- (a) Find the numerical values of the three parameters in a PID controller that is designed using Ultimate Sensitivity Method. Use analytical method.
- (b) Explain the experimental protocol for how to design a suitable PID controller using Ultimate Sensitivity Method for the given G(s).


$$G(s) = \frac{1}{(s+1)^3}$$

Example 2 (cont'd): Ultimate Sensitivity Method

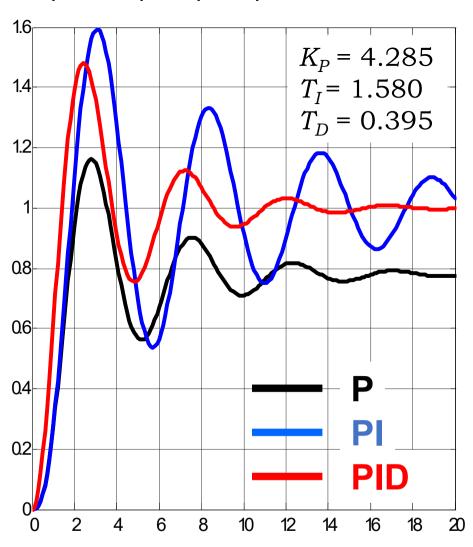
(a)


For the following closed-loop system, calculate the CLTF and then the characteristic equation:

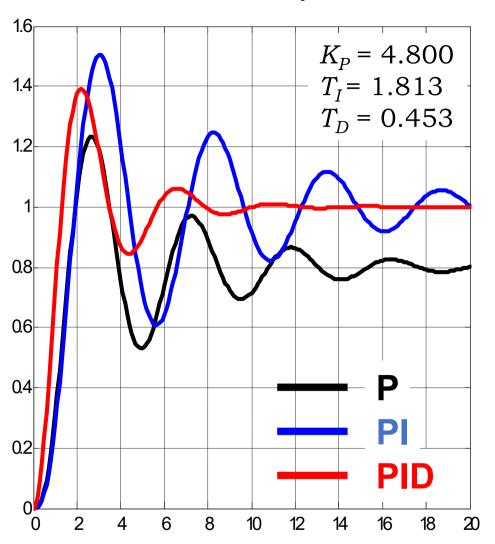
$$\omega = \frac{2\pi}{T_c}$$
= 1.732 $T_c = 3.7$ $T_c = 3.7$ $T_c = 3.7$ $T_c = 0.453$

Example 2 (cont'd): Ultimate Sensitivity Method

Note: In our experiment, we keep changing the value of gain (K_p) until we see continuous oscillations at the output (i.e., an oscillatory output). We show this particular value of gain by K_c . So, K_c is K_p when the output is oscillatory.


Example 3 (revisited): $G(s) = \frac{1}{(s+1)^3}$

$$G(s) = \frac{1}{(s+1)^3}$$



Make a comparison between Method 1 and Method 2.

Open-loop step response method

Ultimate sensitivity method

Summary

- Controller design based on root locus in MATLAB
- PID control
 - Most popular controller in various industries
 - Controller structure & controller tuning
- Next
 - Frequency response