

ELEC 341: Systems and Control

Lecture 16 Frequency response

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- **Electrical**
- Electromechanical
- Mechanical
- Linearization, delay

Analysis

Stability

- Routh-Hurwitz
 - Nyquist

Time response

- **Transient**
- Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

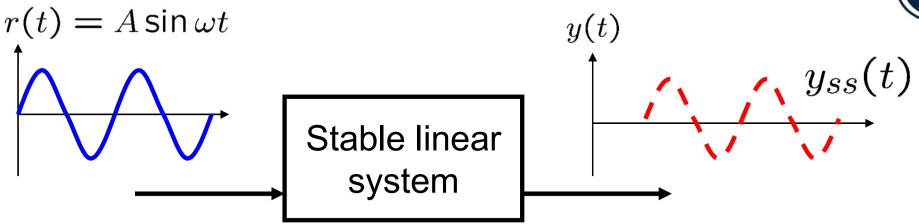
Design examples

Matlab simulations

Summary up to now & Topics from now on

- Modeling: How to represent systems with transfer functions (s-domain).
- Analysis: How to extract time-response information from s-domain.
 - Steady-state error depends on TF evaluated at s = 0.
 - Stability and transient depends on pole locations.
 - Frequency responses contain all this information.
- Design: How to obtain "satisfactory" closed-loop system.
 - Poles can be placed by the root-locus technique.
 - System's frequency responses can be shaped in Bode plot.

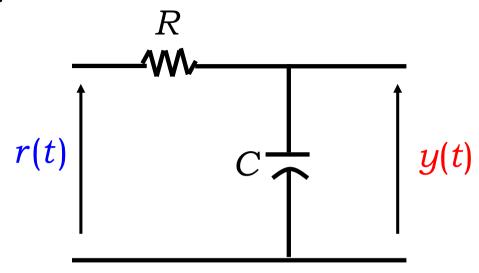
What is frequency response?



- We would like to analyze a system property by applying a sinusoidal input r(t) and observing a response y(t).
- Steady state response $y_{ss}(t)$ (after transient dies out) of a system to sinusoidal inputs is called *frequency response*.

Example 1

• RC circuit



- Input a sinusoidal voltage r(t)
- What is the output voltage y(t)?

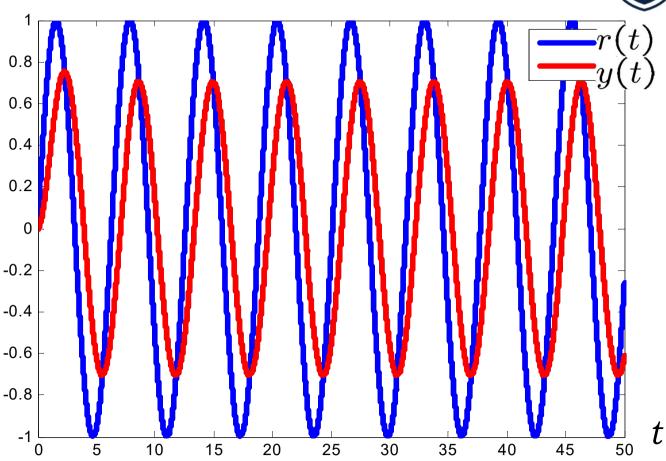
$$G(s) = \frac{Y(s)}{R(s)}$$
 \Longrightarrow $G(s) = \frac{1}{RCs + 1}$

Example 1 (cont'd)

• TF
$$(R = C = 1)$$

$$G(s) = \frac{1}{s+1}$$

• $r(t) = \sin(t)$



At steady-state, r(t) and y(t) have the same frequency, but different amplitude and phase!

Example 1 (cont'd)

• Derivation of y(t):

$$Y(s) = G(s)R(s) = \frac{1}{s+1} \cdot \frac{1}{s^2+1} = \frac{1}{2} \left(\frac{1}{s+1} + \frac{-s+1}{s^2+1} \right)$$

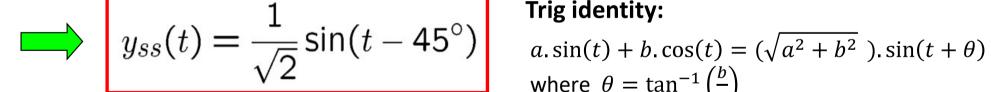
Inverse Laplace:

Partial fraction expansion

$$y(t) = \frac{1}{2} \left(e^{-t} - \cos t + \sin t \right)$$

Approaches 0 as t goes to infinity.

$$y_{ss}(t) = \frac{1}{2}(-\cos t + \sin t) = \frac{1}{\sqrt{2}}\sin(t - 45^{\circ})$$

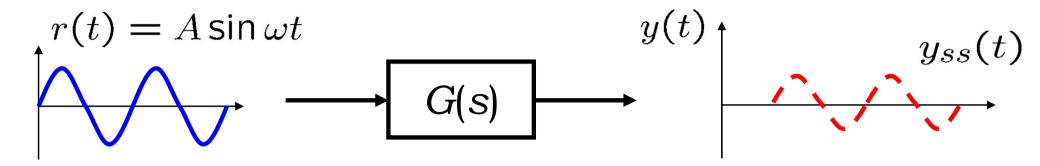


Trig identity:

where $\theta = \tan^{-1}\left(\frac{b}{a}\right)$

Response to sinusoidal input

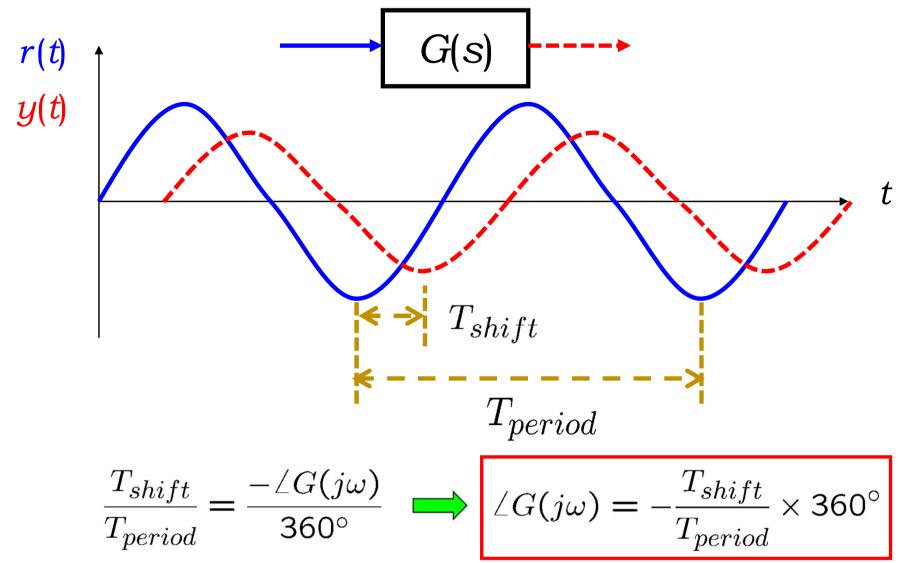
 What is the steady state output of a stable linear system when the input is sinusoidal?



- Steady state output is $y_{ss}(t) = A |G(j\omega)| \sin(\omega t + \angle G(j\omega))$
 - Frequency is the same as the input frequency ω
 - Amplitude is that of input (A) multiplied by $|G(j\omega)|$
 - Phase shift is $\angle G(j\omega)$

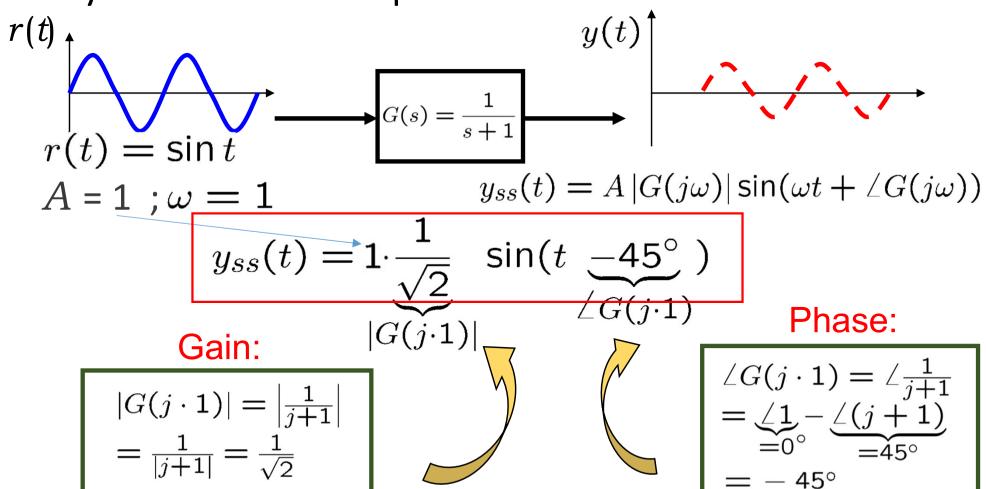
Gain

Phase shift



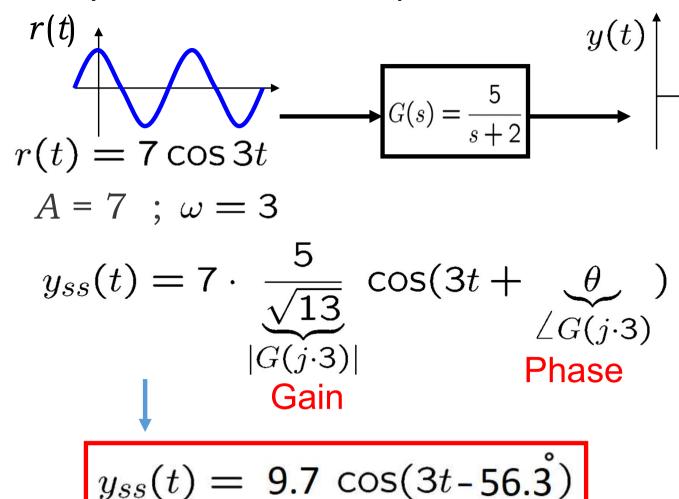
Example 2 (revisited)

 What is the steady state output of a stable linear system when the input is sinusoidal?



Example 3

 What is the steady state output of a stable linear system when the input is sinusoidal?



Phase:

$$\angle G(j \cdot 3) = \angle \frac{5}{3j+2}$$

$$= \angle 5 - \angle (3j+2)$$

$$= 0^{\circ} = \tan^{-1} \frac{3}{2}$$

$$\theta = -56.3^{\circ}$$

Example 4: Frequency response function

- For a stable system G(s), G(jw) (w is positive) is called *frequency response function* (*FRF*).
- For each w, FRF represents a complex number G(jw), which has a gain and a phase.
- First order example:

$$G(s) = \frac{1}{s+1} \implies G(j\omega) = \frac{1}{j\omega+1} = \mathbf{FRF}$$

$$\Rightarrow \begin{cases} |G(j\omega)| = \frac{1}{\sqrt{1+\omega^2}} \\ \angle G(j\omega) = \angle (1) - \angle (j\omega+1) = -\tan^{-1}\omega \end{cases}$$

Example 4: First order FRF (cont'd)

• FRF
$$G(j\omega) = \frac{1}{j\omega + 1}$$

frequency	gain	phase
ω	$ G(j\omega) $	$\angle G(j\omega)$
0	1	0°
0.5	0.894	−26.6°
1.0	0.707	-45°
ŧ	:	i i
∞	0	-90°

- Two ways to represent a complex number (either gainphase plot or real-imaginary parts plot), therefore, two different graphs can be used to represent FRF:
 - Bode diagram (Bode plot) (today's and next lecture)
 - Nyquist diagram (Nyquist plot) (in two lectures)

Example 5: Second order FRF

a place of mind

For the given G(s), find the **FRF** magnitude and phase equations?

Second order system (Method 1):

$$G(s) = \frac{2}{s^2 + 3s + 2}$$

$$G(j\omega) = \frac{2}{(j\omega)^2 + 3(j\omega) + 2} = \frac{2}{2 - \omega^2 + j \cdot 3\omega}$$

$$|G(j\omega)| = \frac{2}{\sqrt{(2-\omega^2)^2 + 9\omega^2}}$$

$$\angle G(j\omega) = \angle (2) - \angle (2-\omega^2 + j \cdot 3\omega)$$

$$= -\tan^{-1}\frac{3\omega}{2-\omega^2}$$

Example 5: Second order FRF

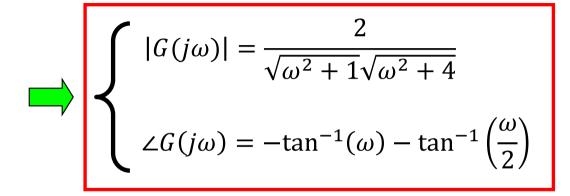
Second order system (Method 2):

$$G(s) = \frac{2}{s^2 + 3s + 2}$$
 $G(s) = \frac{2}{(s+1)(s+2)} \rightarrow G(j\omega) = \frac{2}{(j\omega + 1)(j\omega + 2)}$

$$|G(j\omega)| = \frac{2}{\sqrt{\omega^2 + 1}\sqrt{\omega^2 + 4}}$$

$$\angle G(j\omega) = \angle 2 - \angle (j\omega + 1) - \angle (j\omega + 2) = 0^{\circ} - \tan^{-1}\left(\frac{\omega}{1}\right) - \tan^{-1}\left(\frac{\omega}{2}\right) \quad \Longrightarrow$$

$$\angle G(j\omega) = -\tan^{-1}(\omega) - \tan^{-1}\left(\frac{\omega}{2}\right)$$



General Method for Computing Phase Angle

ا ءلا

• After converting G(s) to $G(j\omega)$, plug in the given value of omega and then compute the angles based on which quadrant the vector is located at. That is, you first need to *determine the quadrant in which the point lies*, and then use the appropriate equation to find the angle based on that.

1st quadrant: just use
$$+\tan^{-1}(\left|\frac{y}{x}\right|)$$

2nd quadrant: $+\left\{180 - \tan^{-1}(\left|\frac{y}{x}\right|)\right\}$

2nd quadrant: $+\left\{180 - \tan^{-1}(\left|\frac{y}{x}\right|)\right\}$

2nd quadrant: $-\left\{180 - \tan^{-1}(\left|\frac{y}{x}\right|)\right\}$

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- **Electrical**
- Electromechanical
- Mechanical
- Linearization, delay

Analysis

Stability

- Routh-Hurwitz
 - Nyquist

Time response

- **Transient**
- Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

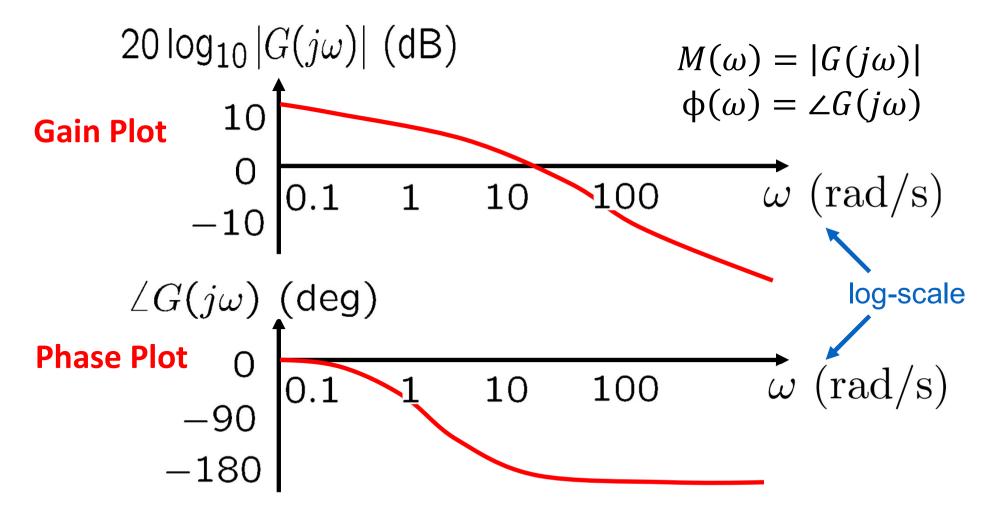
PID & Lead-lag

Design examples

Matlab simulations

Bode plot (Bode diagram) of G(jw)

Bode diagram consists of gain plot & phase plot

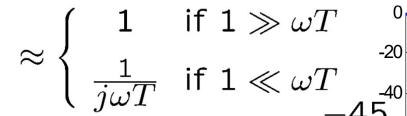


Bode plot of a 1st order system

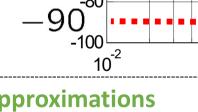
• TF

$$G(s) = \frac{1}{Ts+1}$$

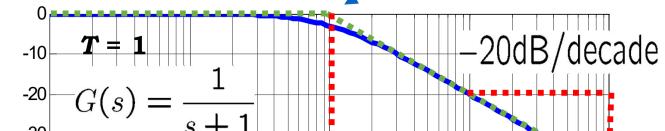
$$G(j\omega) = \frac{1}{j\omega T + 1}$$

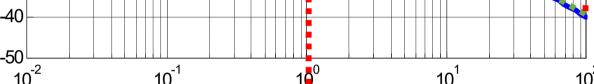


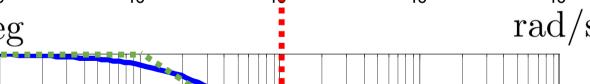
The shown Bode plot is for T = 1.

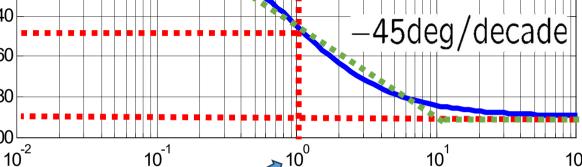


Corner frequency









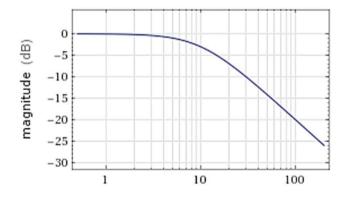
"----" are straight line approximations

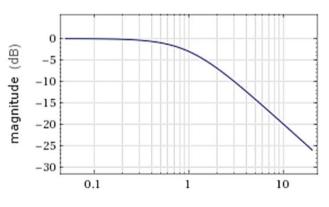
Effect of *T* on Bode plot (first order system)

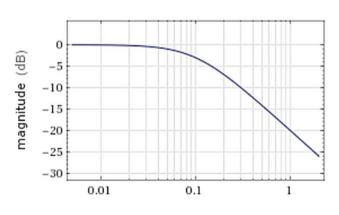
$$G(s) = \frac{1}{0.1s + 1}$$

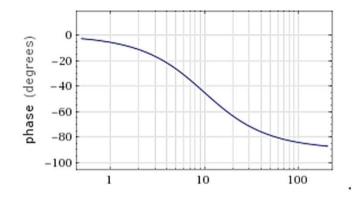
$$G(s) = \frac{1}{s+1}$$

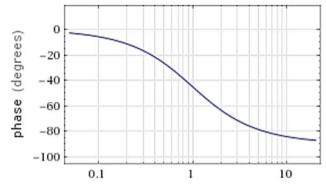
$$G(s) = \frac{1}{10s+1}$$

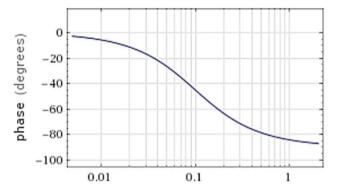










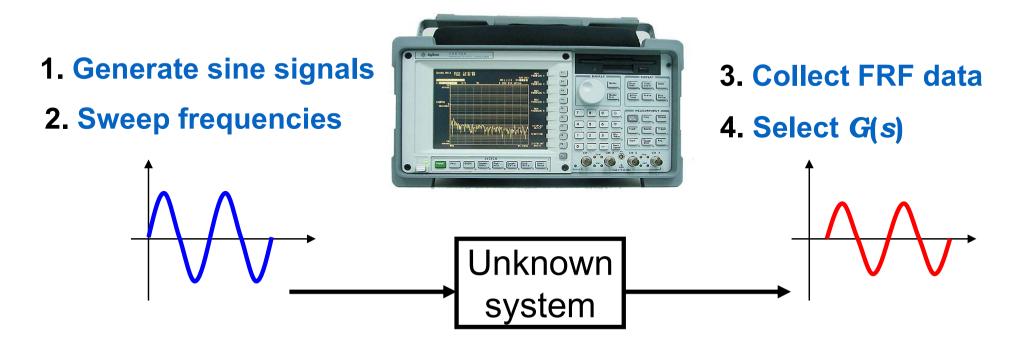


Remarks on Bode diagram

- A **Bode diagram** shows the **gain** and **phase shift** of a system's transfer function $G(j\omega)$ as a function of input frequency. It characterizes how the system modifies the amplitude and phase of sinusoidal inputs at different frequencies.
- Bode diagram is very useful and important in analysis and design of control systems.
- The shape of Bode plot contains information of CL stability, time responses, and much more!
- It can also be used for system identification.
 - Given FRF experimental data, we can obtain a transfer function that matches the data (see next slide).
- MATLAB command for bode plot is "bode(sys)".

System identification

- Sweep frequencies of sinusoidal signals and obtain FRF data (i.e., gain and phase).
- Select G(s) so that G(jw) fits the FRF data.



Why deg(den) \geq deg(num)?

• All the transfer functions we encountered so far have the property $\deg(\det) \geq \deg(\operatorname{num})$

Ex:
$$\frac{1}{Ms^2+Bs+K}$$
 ; $\frac{K}{Ts+1}$; $K\frac{s+z}{s+p}$

- What if deg(num) is larger than deg(den)?
 - Then, $|G(j\omega)| \to \infty \text{ as } \omega \to \infty$
 - However, there is no such system in reality that has increasing gain as input frequency increases to infinity.
- That is why all the transfer function needs to meet

$$deg(den) \ge deg(num)$$

Why deg(den) \geq deg(num)?

Strictly proper transfer function:

- In control theory, a **strictly proper transfer function** is a transfer function where the degree of the numerator is less than the degree of the denominator, i.e., **deg(den) > deg(num)**.
 - For instance, $K \frac{s+1}{s^2+1}$

Proper transfer function:

- In control theory, a **proper transfer function** is a transfer function in which the degree of the numerator does not exceed the degree of the denominator, i.e., deg(den) ≥ deg(num).
 - For instance, $K \frac{s+z}{s+p}$

Summary

- Frequency response
 - Steady state response to a sinusoidal input
 - For a linear stable system, a sinusoidal input generates a sinusoidal output with same frequency but different amplitude and phase.
- Bode plot is a graphical representation of frequency response function.
- Next
 - How to sketch Bode plots