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See very important examples below (to be continued on the next slide):
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Continuation from the previous slide:
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Great! You're pi

aclear g d rule set for phase angles manually — very helpful.

Let's apply those rules to compute the phase angle of

6(s +2)

3)(s +4)

G(s) = =

evaluated at s = jw, for three values of w: 1.01, 2.00, and 3.01.

& Step-by-step strategy:

Let's define:

o s=jw

« SoG(jw)=

6(jw+2)
Ge-3)0w+1)

We'll find the angle of each factor, apply your quadrant rules, and compute the net phase as:

£G(jw) = L(jw + 2) — £(jw — 3) — L(jw + 4)
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[ Evaluate each at:
1Lw=101
Term 1: j1.01 + 2 = (2,1.01) - Quadrant |

Z1 = +tan !(|1.01/2|) =~ tan !(0.505) =~ 26.74"
Term 2: j1.01 — 3 = (—3,1.01) — Quadrant Il
£ = +[180 — tan"*(|1.01/3[)] ~ 180 — tan"'(0.337) ~ 180 — 18.60 = 161.40
Term 3: j1.01 + 4 = (4,1.01) — Quadrant |

Zy = +tan 1(|1.01/4|) ~ tan"!(0.2525) ~ 14.13"

Total angle:

ZG(j1.01) = 26.74° — 161.40° — 14.13° =[—148.79°

2.0 =2.00
Term 1: j2 + 2 = (2,2) — Quadrant |

Zy = tan " }(1) = 45.00°
Term 2: j2 — 3 = (—3,2) — Quadrant Il

Z» =180 — tan (2/3) = 180 — 33.60 = 146.31°

Term 3: j2 + 4 = (4,2) — Quadrant |

Z3 = tan"1(0.5) ~ 2657
Total angle:

ZG(j2.00) = 45.00°

146.31° — 26,57 = [-127.88'|

3.w=23.01
Term 1: j3.01 + 2 = (2,3.01) — Quadrant |

£y = tan *(3.01/2) ~ tan (1.505) = 56.34°
Term 2: j3.01 — 3 = (-3, 3.01) — Quadrant Il
23 =180 — tan *(3.01/3) ~ 180 — tan '(1.003) = 180 — 45.04 = 134.96
Term 3: 3.01 + 4 = (4,3.01) — Quadrant |

Zy = tan }(3.01/4) ~ tan *(0.7525) ~ 36.97°
Total angle:

£G(j3.01) = 56.34

134.96° -~ 36.97° = [-115.59°]

Final Answers:
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Frequency response (review)

* Steady state output yss(t) = A|G(jw)|sin(wt + /G(jw))
* Frequency is same as the input frequency w
* Amplitude is that of input (A) multiplied by |G (jw)]|

* Phase shiftis /G(jw) \ Gain
r(1) y(t) yss(t)
Stable /’\ I"\
\N 7 N 7
Gs ||

r(t) = Asinwt

* Frequency response function (FRF): G(jw)
* Bode plot: Graphical representation of G(jw)
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amplification [amp-li-fi-kay-shen]
&3 Forw = 2.00

Numerator:
Great — let" k this out by plugging s = jw directly into:
reat — let's work this out by plugging s = jw directly into: 65(2.00) + 12 = 12 4 112 = 6, = arg(12 4+ 12) = tan 1 (12/12) = [5.00]
6s + 12

G(s) = ——— Denominator:
s245—-12
(72)* 4 j2 — 12 = 4+ j2 — 12 = —16 + j2 = 6, = arg(—16 + j2) ~ tan !(2/ — 16) = 172.87
We will evaluate the phase angle of G(jw) for three values: w = 1.01, 2.00, and 3.01, using:

Total Phase:
i s & Y . 5
ZG(jw) = arg(6jw + 12) — arg((jw)” + jw — 12) B A~ P =m
Step-by-step Calculations & Forw = 3.01
Numerator:

6(3.01) + 12 = 12 + j18.06 = 6, = tan~(18.06/12) ~ [56.20°)

Denominator:

& Forw = 1.01
(43.01)7 + j3.01 — 12 = —9.0601 + j3.01 — 12 = —21.0601 + j3.01 = §, = arg(—21.0601 + j3.01) = tan '(3.01/ — 21.0601) = 171.85
Numerator:
Total Phase:
65(1.01) + 12 = 12 + j6.06 = 6 = arg(12 + j6.06) = tan *(6.06/12) ~|26.39° LG(3.01) = 56.20° — 171.85° = [ 115,65
Denominator:
(71.01)% + 71.01 — 12 = —1.0201 + j1.01 — 12 = —13.0201 + j1.01 = > = arg(—13.0201 + j1.01)
This is in Quadrant 11, so: Final Answer Table
8, = tan *(1.01/ — 13.0201) == 175.56°
Total Phase: w £G(jw)

/G(j1.01) = 26.39° — 175.56° = [—149.17 =
Z£G(j1.01) = 26.39° — 175.56 NG YTV
2.00 —127.87"
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Phase shift (review)
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Bode plot of G(jw) (review) [z

* Bode diagram consists of gain plot & phase plot

2010919 |G(jw)| (dB) M(w) = |G ()|

10 \ ¢(w) = £6(jw)
_100 0.1 1 10\100\w (rad/s)
/G(jw) (deg) log-scale

0 /
0.1 N\L 10 100 w (rad/s)

—180
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See below for how to extract data point from Bode Plot:

[mag,phase,w]=bode(sys,w1);out2=[w1',20*log10(squeeze(mag)),squeeze(phase)]

S5 8ys = Bf° (1,[1,11)

Continuous-time transfer function.

>> wl=[0.01,0.1,1,2,3,5,10,100]

wl =

0.0100

0.1000 1.0000 2.0000 3.0000 5.0000 10.0000 100.0000

>> [mag, phase,w]=bode (sys,wl) ;out2=[wl',20*%1ogl0 (squeeze (mag) ), squeeze (phase) ]

out2 =

.0100
.1000
.0000
.0000
.0000
5.0000
10.0000
100.0000

W N © O

.0004 =0.5729
.0432 -5.7106
.0103 -45.0000
.9897 -63.4349
.0000 -71.5651
.1497 -78.6901
.0432 -84.2894
.0004 -89.4271



Explain this MATLAB code, its commands, and what it
does.[mag,phase,w]=bode(sys,w1);out2=[w1’',20*log10(squeeze(mag)),squeeze(phase)]

Great — let’s break down and explain this MATLAB code line by line. The code works with the Bode plot data of
a given system sys and processes it into a readable output format.
@ Line 1:
matlab
[mag, phase, w] = bode(sys, wi);
What it does:
*This computes the magnitude and phase response of a linear system sys at specific frequencies w1l.
Q Details:
*sys is a LTl system object — e.g., a transfer function (tf), state-space (ss), or zero-pole-gain (zpk) model.
*w1 is a vector of frequency values (in rad/sec) at which the Bode response is to be evaluated.
*bode(sys, wl) returns:
. mag: magnitude of the frequency response |G(jw)|
. phase: phase angle £G(jw), in degrees
. w: the frequency vector (same as wl)
’ Both mag and phase are returned as 3D arrays of size [1 x 1 x N] if sys is a single-input single-output (SISO)
system, where N is the number of frequency points in w1l.
@ Line 2:
matlab
out2 = [wl', 20*log10(squeeze(mag)), squeeze(phase)];
What it does:
This line processes the raw Bode data into a matrix that combines:
1.Frequency values
2.Magnitude in decibels (dB)
3.Phase in degrees
Q Breakdown:
*w1': Transposes the frequency vector to make it a column vector.
*squeeze(mag): Removes singleton dimensions from mag (i.e., turns a 1x1xN array into a Nx1 vector).
*20*log10(...): Converts the magnitude to decibels (standard for Bode magnitude plots).
*squeeze(phase): Also flattens the phase data to a column vector.
S out2 becomes an N x 3 matrix, where each row contains:

Summary of What the Code Does:

This MATLAB code:

*Evaluates the frequency response of an LTI system at custom frequencies wl

*Converts the results to magnitude (in dB) and phase (in degrees)

*Combines the frequency, magnitude, and phase into a single output matrix out2

This output can then be easily displayed, saved, or plotted using custom commands (instead of using the built-
in Bode plot).
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Sketching Bode plot s

* Basic functions:
* Constant gain
* Differentiator and integrator
* Double integrator
* First order system and its inverse
* Second order system
* Time delay

* Product of basic functions:
1. Sketch Bode plot of each factor, and
2. Add the Bode plots graphically.

© Siamak Najarian 2025 6
See below for a very important note on calculating phase plot:
In Matlab: ATAN2(y,x)
E)(O\W\P\Fﬁ.- 5 )
¥ Glo= Clsv2) 222 G ()= Sl w2
1 quadrant: justuse +tan~? (|;|) (s=3)s+1) 3w+ )
, : _ w—3)y_ [y~ +Y )
/G wy= (w2 L(j 3) J
2" quadrant:  + { 180 — tan™1( XI)} - ) . r o= 1
x - Yan (\%13—« \?o-tﬂ\/\(‘%’)}—‘fah (TY>
3¢ quadrant: - { 180 — tan~1( %l)} — 5 Y i) dan (b,ul) 96 + tan (%‘) an ("—3 )}
. <] (o} a
4" quadrant: justuse —tan~( Xl) €0 =3 lG(33) = 6315 -3CH —=
X '_C \/CV\Q\CJ *Mls \/\Sl\/\é

LG¢y3)= 1S S

& lab
Matlab Output: il
>> (atan2(3,2)-atan2(3,-3)-atan2(3,4))*180/pi
ans =
Nyquist Diagram
1 . ; - :
4dg  2dB __—6dB ¢+—<2dB -115.5600
08t 5 . -4dB |
S -6dB = ST T
06(6dB - B | -
J \\ s 10
0.4 1pdB \  -10dB | E]
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g 027
£ \ / |
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T— [ © -160} /
" ‘ : : . ol £ [IES
= 0.8 0.6 0.4 0.2 0 0.2 | 1807

Real Axis | o1 1 o

frequency



Bode plot of a constant gain
G(s) =K = |G(jw)| = K, /G(jw) =0° VYw
2010910[G(ji)| (dB) 1
21
1 LI (for al)
BESTL K 20l0ogig K
2 0910
ot \ 100 40 dB
o _ : : : 110 20 dB |
10 10 10 10 1
/G(jw) (deg) 2 ~6 dB
1 1 0dB
01 —-20dB
0 0.0l -40dB
© Siamak Najarian 2! 025 7

Intersection of line of K= 10 and the gain plot is 20 log 10 = 20x1 = 20.
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Sketching Bode plot

* Basic functions:
* Constant gain
* Differentiator and integrator
* Double integrator
* First order system and its inverse
* Second order system
* Time delay

* Product of basic functions:
1. Sketch Bode plot of each factor, and
2. Add the Bode plots graphically.

© Siamak Najarian 2025 8




“decade” here means “per 10 rad/s”.

Lecture 17: Bode plot

2010910 |G(jw)| (dB) 40

[G(jw) (deg)

Note: For y-intercept in gain plot, since log (o = 0) is not defined, in this course, we use another small value

Bode plot of a differentiator
G(s) = s= |G(jw)| = w, /G(jw) = /jw = 90°, Yw

ELEC 341 Systems and Control

el
20
T
0 TEEEEEw i
2 - +20dB/decadel}
= ad L LD L
10’2 101 100 10 102
9
905
%
89.5
K5 10" 10° 10’ 10°

for frequency to find y-intercept in gain plot (i.e, 10-2). Here, 20log (102) = -40. So, y-intercept = -40.

© Siamak Najarian 2025

aplace of mind
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Important note about y-intercept in gain plot:
Since log (w = 0) is not defined, we use another small value for frequency, such as, 1072 to find y-intercept in gain plot. Here, 20log
(0.01) = -40. So, y-intercept = -40.

See below:

J

2006y
0

- X= W

\6-(3~>

\: 20 laj\too oy
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Bode plot of an integrator g@_g

G(s) = L 5160w = 3, /G(w) = /i — —90°, Vv
S w

2010910 [G(jw)| (dB) 40

L T T
~[[[[-20dB/decade
Mirror image of the i s W
Bode plot of G(s) = s ~L
with respect to w-axis. -0l - ; ' e
10 10 10 10 10
/G(jw) (deg) -89
-89.5
-90
-90.5
-9110'2 10" 10° 10’ 100

10
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“Mirror image of the Bode plot of G(s) = s with respect to w-axis.” This actually means that you put the mirror at right
angle with respect to the gain of O (i.e., perpendicular to the plane of the page).

See below:

]G(JW)(:%\; —faZO\OS\G(Jw)’:)_Q]Oj% -

:20((05\« \Oﬁ"\))
— 20( C— ]OaW)

o\O w
F‘Ggw)\~«20‘00} W Jio

K,/O / & eCQ\A o),




Bode plot of a double integrator
G(s) = SiQ = |G(jw)| = é /G(jw) = /@ = ~180°, Vw
" L ) [T
[ -40dB/decade
11
See below:
Gresy= | =9 = o) |
5 S < (")N)Uw\)
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 Basic functions:
* Constant gain

* Double integrator

* Second order system
* Time delay

© Siamak Najarian 2025

Sketching Bode plot

* Differentiator and integrator

* First order system and its inverse

* Product of basic functions:
1. Sketch Bode plot of each factor, and
2. Add the Bode plots graphically.

ELEC 341: Systems and Control

12

Excellent link for plotting Bode diagram (especially, the straight-line approximation): See below:
https://www.bing.com/videos/search?q=how+to+graph+bode+asymptotes&&view=detail&mid=B28D905B293A2D860AB7B28D9

05B293A2D860AB7&&FORM=VDRVRV

Bode Plots

B —— 1 | —— I

Low frequency asymptote

® Furst order process
Bode Diagram
=

0

TN ' High frequency
ik e asymptote
o H s
5 20 Bandwidth i = %] =

40 P P “.. N Y
High frequency
£ X Phase shift
45 \
\\\ /

Frequency (radisec)

Bode Plots

el L
Filters
» Pass band is the range of frequencies where the signals pass
through the system at the same degree of amplification
> Low pass filter is a dynamical system with a pass band in the low
frequeny range
> High pass filter is a dynamical system with a pass band in the high
frequency range
» Band pass filter is a dynamical system with a pass band over a
certain range of frequencies

» Bandwidth is the width of the frequency interval over the pass
band of the filter



Bode plot of a 1st order system LJ.'LIS
Straight-line approximation =ss««« s Corner frequency
0 'A ‘ H[ ‘ | e T T T
G(S) — 1 Ao = H-HHH—— Sy 20dB deCade
Ts+1 WG (s) = - ™
30— S + 1 S
!
40
Glw) =
w — -2 -1 0 1 2
J joT + 1 10 10 1? 10 10
MYl ifleol . N
— <L w n ,
Jw T YT I A — I
45 \% . 45deg/decade
Note that the beginni d 80 ™ 23
ginning and  _ [T C T T F 31 "SR [ 0 A 6 11 S O O AR M 0 ey
the end of the 45-degree line -100 s
1 1 10° 10" 10” 10' 10
are always at 0.1T and 10 = 0 11 i 101
. o ! T 13

The above Bode plotis for T=1. The gain plot is approximated by two straight lines while the phase plot is approximated by three
straight lines. Note that the beginning and the end of the 45-degree line are always at 0. 1% and 10 %

For 1 >> wT, we have a constant gain. For 1 << wT, we have an integrator gain.

Note: Other names for corner frequency are break-point frequency and break frequency.
See below:

(W=, P=—yg)

Prove that for G(g)u

=), s\ ape LG/Ju)\As w s

f‘guo\ Yo —‘45/1 Aemée MQ S\O?CIG’J”)’V“‘) 5 2/ deade — S\ope A= ¢ :_;7
w Wil = l W= l ’
Gt |Gual= ) 7 = 2ologeymfaolog B =10, P= 37 )
_ 20(0—‘08m> =f 2olo®(\ﬁu—?:l) stope of line AR %291 _ _(;M—-‘—l?ﬁo
{ dz 9\ _ =-95
Xy - X\ (V' —10) | vod/g
—20 /1 decnd @ ‘ : °© ©
o) a0 s e
Z_(Y(JW LT&T ‘L\vLJL")fO o an i;/o«;/g 10 . 10 \m\l/s léecmée

e el T For w= ”LG(J‘“’)"[’S\ ~ =45
W} — Koo ggovw 10—y /G jw) ==tan 10)=- ?‘\2



Lecture 17: Bode plot

Bode plot of an inverse system g@g

Gls)=Ts+1= (Ts:—1>_1

20log1g|G(jw)| (dB) 50
Mirror image of the 2
original Bode plot with o A N cad
respect to w-axis. . e +20dB/decade
10 10" 10° 10’ 10?
/G(jw) (deg) 100
80
!
60 /4/
40
//
20 //
0
10 10" 10° 10’ 10?

14

See below:

what if we vead The slope vandomly 2

10\03\39“’)

cqg. - = = | = dope=!t2 . 10 _

I R /TV\Se’,:L\O F vuen 100
40 40

C | ) =

= | w=100 |0 x |Q:jgemleyﬁchec«cl,m
-
vun =100 1}:@4}’ 1 deosd

%ZO
/2 c‘cc@(le 1 JeCacJe

20
j Aec@éf

s\ope =< o
?C L ‘H\lg 1S H\e some &S whal
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Sketching Bode plot

* Basic functions:
* Constant gain
* Differentiator and integrator
* Double integrator
* First order system and its inverse
* Second order system
* Time delay

* Product of basic functions:
1. Sketch Bode plot of each factor, and
2. Add the Bode plots graphically.
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Bode plot of a 2nd order system
The following graph is for w, = 10° = 1. resonance
' =01
2 20 ( \ _/
G(s) = o R
2 4 2wns + w2 -40dB/decade
0<(¢<1 20 C:]_/ L
.
Resonant frequency: [
wr =WwWn\ 1 = 2(2 N Wn _6[1)071 10° 10"
if ¢ is small (0<¢<0.707) 0
Peak gain: 50
<1 —90
2C\/ 1- €2 2 -150 g
i is small 0<7<0707) — L8Qrrarrertannst ety qrae o fyene e oo eI
10" 10° 10’
© Siamtc Najarion 2025 16

See below for review of damping ratio effect. In the above graph, we assumed that w, = 10° = 1. Myself: For small , we have
Peak Gain (PG) « PO oc%

nd_
Step respanse of 2"order systerm Step response of 2™-order system: = [ e e S
for various damping ratios Underdamped case @ i ]\uﬁ owrg
* Undathped y(t) ¢=0 « Math expression of y(t) for underdamped case L\ : ' : \
=0 2 0< c< 1 5 Frequency | £ \ £
¢ = 0.2 V128 N N
. (@ )% 5 i Ty Ty T
0<(<1 15 a\ ¢=05 Y(s) = S —— n - 5= =
* Critically damped / X s24+2(wns+wi s
=1 1 Vd —~ " +o
o d< d ,/ F £t e—Cwnt ( 1 )
* Overdampe / — y(t)=1-— - sin (wqt + cos™ " ¢ o
¢>1 ost 4§ ¢i=: \/1 - (2 ¢ 44— uV1-7
¢=2 ' a o ok
% 5 10 ot Damped natural frequency — (@2=wn\/1 - ¢ \ "
wn

18 a > : by /
2y 3 dimensional view of Standard ) ¥
19 Origin pole 2ero diagram view | Pole o 5=0

https://electronics.stackexchange.com/questions/112521/resonant-frequency-from-bode-plot

Resonant Frequency from Bode plot

If we have a transfer function that shows no peaking in the magnitude bode plot (Starting from a flatline and then rolling off), does this
mean that there is no resonant frequency? Or do we consider the point at which the curve begins to roll off the resonant frequency? |
understand that resonant frequency is the location at which we have the maximum value so I'm assuming that there isn't a resonant
frequency in this case but | wanted to be sure. My answer applies to higher-than-1st-order systems. There will always be a resonant point
even if you can't see it. You need to understand how "poles" work. Even if there doesn't appear to be a resonance in the bode plot there
will be a "pole" that is present and this pole represents the resonant frequency even though the "dampening" is causing it not to appear
in the bode plot. See below:

0 ‘
y£¢mns\ oijiuiK QNN (sey, Far g=0.1)

e L0 _
§= 0| —peak gamli = —speok gain= S
— 10\06 S =139 on the Y-S N gpn p\o‘\ at
10 <% | we resd 139 o

?eak gan

Also, \GU"’" =S (gince Peak goin 1 Juffa gan M’f’)
o cC\‘F\C W, Ley, o W= Wy
= A“f: \G(Jwr\\ ‘TFm ap [hhde '4 guipw Sm{ﬁ

An 7 |is Fue Mt o the inp4
w \se.



A resonant frequency is the natural vibrating frequency of an object and denoted as ‘f’ with a
subscript zero (f,). When an object is in equilibrium with acting forces and could keep vibrating for a
long time under perfect conditions, this phenomenon is resonance. In our daily life example of a
resonant frequency is a pendulum.

In simple terms and from a practical engineering point of view, what does it mean and what is the
implications of a resonant frequency and the high amplitude we see at the resonant frequency?

Great question — and let’s keep it simple and practical from an engineering point of view.

@ What Is Resonant Frequency?

Imagine you’re pushing someone on a swing. If you time your pushes just right — matching the swing’s natural
rhythm — the swing goes higher and higher with little effort. That rhythm is like the resonant frequency.

In engineering terms:

*Resonant frequency is the frequency at which a system naturally wants to vibrate or oscillate.

*When an input (like a force, voltage, sound wave, etc.) hits that frequency, the system responds with a much
larger amplitude than at other frequencies.

What Causes the High Amplitude?

At resonance:

*Energy input adds up efficiently — you're “in sync” with the system.

*Very little energy is lost, so the system builds up a large response (vibration, voltage, current, etc.).

*This is why you often see a sharp peak in frequency response graphs at the resonant frequency.

@@ Practical Engineering Implications

Useful Applications

1.Tuning Circuits (like radios): Use resonance to select specific frequencies and filter out the rest.

2.MRI Machines: Use resonance in human tissues to produce clear images.

3.Vibration-based Sensors: Detect changes in mass or stiffness based on shifts in resonant frequency.

K Potential Problems

1.Mechanical Structures (e.g., bridges, buildings, aircraft): If exposed to vibrations at their resonant frequency,
they can shake violently or even collapse (like Tacoma Narrows Bridge).

2.Circuit Design: Resonance can lead to unwanted high voltages or currents, damaging components.

’ Bottom Line

Resonance is like hitting a system's "sweet spot" — it can supercharge its response.

That can be very useful or very dangerous, depending on the context.
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Bode plot of a time delay g@g
G(s) = e 1* = |G(jw)| = 1,Yw, LG(jw) = —wT(rad)
20l0g10|G(jw)| (dB)  *

0

-0.5

-1
10" 10° 10 10 1

/G(jw) (deg) ©

—
\
2000 \\‘ L
N
N\

-4000

6000 X

107 107 10° 10 10°

The phase lag can cause instability of the closed-loop
system, and thus, the difficulty in control.

2G(jw) = —wT X %00 (degrees)

© Siamak Najarian 2025 17

See below for the proof of the above results: The above Bode plot is for T= 1.047. “Huge phase lag!” because the angles are huge (order
of a few thousands). See below:

] = 5 -+ \X -\ o

Euler’s Formula: e)—Cos-xusmx 3 eJ = cos;c-J SinXx L';S T. w0 (in Aeﬁvces)
-3 - w1

Gsyze 333Y  Gguw-e s )= Cos(wT)-jsin(wT)

; : 5 __ (w >
\6’()‘”)‘__\ é)““'”\__ \ cos(W)—) Sm(w-”]:VCowa")-rSinz(wT) =l @ w=106 —= L e (“"'1'35"“) ¢

| G-w) A 000 = - L X\OO%\?O T= 1047
el — 6000 = - Tm0OXTEO
) | T
—sin(wT t - {. L -
k =tan |-tan(wi)z -l —
T [ e
L cw) Cos(wT)
—
Pade Approximation:
Root locus techniques assume a system has a set of (known) poles and zeros
G(s) = LP% Example: Find k' so that the following system has 20% overshoot for its step response: (A DC servo motor with
a 1/2 second delay)
Unfortunately, delays are not in this form
r_ 100 —0.5 r
Delay(T) = e™T Y= ((:(s+5)(:.10)) ‘e S) U

One way around this problem is to use the Pade approximation.

First, rewrite the delay as a numerator and denominator term: . &
Y Solution #1: Use a Pade approximation:

NDSU Root Locus for Systems with Delays o 1—(I)s+[ T\;r—\g s *(37;‘)3‘4+..
14(D)se(Z) 524 B) 3+ L5 ) s+

)

384

Plugging in T = 0.5 and using the first two terms results in
For the numerator and denominator, expand using a Taylors series i
e—O,SS ~ ( 170A255+0.03133~)

x 2.0, & 2
E=lx+S+h i 1+0.255+0.0313s2

This results in (5—4+j4)(s—4—j4)
. 05T w)
(H(ﬂlrlz) 2 oy} ot e, L ((5+4+j-l)(:+-l—j4)

31 4 5
l+(%]+r:7‘r s12) NG ) * ur‘\ L J

or

The more terms you add, the better the approximation.



Analysis and Design of Feedback Systems with Time Delays

When working with time delay systems it is advantageous to work with analysis and design tools that directly support time
delays so that performance and stability can be evaluated exactly. However, many control design techniques and
algorithms cannot directly handle time delays. A common workaround consists of replacing delays by their Pade
approximations (all-pass filters). Because this approximation is only valid at low frequencies, it is important to choose the
right approximation order and check the approximation validity. Control System Designer provides a variety of design and
analysis tools. Some of these tools support time delays exactly while others support time delays indirectly through
approximations. Use these tools to desigh compensators for your control system and visualize the compromises made
when using approximations.

Differences between root locus plot and Nyquist plot?

Both methods assess stability but with different means. The root locus plot is most often used when you are dealing with
one design-parameter (most time simple P-controller with gain K). It will show how the roots change when changing the
design-parameter. Hence, it is a direct way to assess stability (negative real part) and also to see for which parameter range
the system oscillates (has overshoot). The root locus plot cannot be used for systems with dead time. The Nyquist plot is an
indirect way to assess stability. We see from the Nyquist plot if the given open loop system is closed loop stable. It also
gives information about the stability margins like phase margin and gain margin. It can be used for systems with dead time.
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Sketching Bode plot

* Basic functions:
* Constant gain
* Differentiator and integrator
* Double integrator
* First order system and its inverse
* Second order system
* Time delay

* Product of basic functions:
1. Sketch Bode plot of each factor, and
2. Add the Bode plots graphically.

Main advantage of Bode plot!

© Siamak Najarian 2025 18

See below:

https://www.bing.com/videos/search?q=different+shapes+of+bode+plot&&view=detail&mid=717C4D3C935D4CBC9B98717C4
D3C935D4CBCI9B98&&FORM=VRDGAR

Robustness Robustness

» One solution relies on the fact that our systems
behave differently at different frequencies - This approach is also desirable because

* Therefore, we will attenuate noise at high models tend to be most uncertain at high
frequencies and disturbances at low frequencies
frequencies,

* Desired open-loop magnitude plot is thus

M(dB) M(dB)
TM\*
3

o

x w(rad/sec) w(rad/sec)
s wmal) j.‘\..
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An advantage of Bode plo

* Bode plot of a series connection G,(s)G,(s) is the
addition of each Bode plot of G,(s) and G,(s).

* Gain:
2010910 |G1(jw)Ga(jw)| = 2010910 |G1(jw)|+201091¢ |G2(jw)]

¢ Phase:

[G1(jw)Ga(jw) = LG1(jw) + LGo(jw)

19

© Siamak Najarian 2025

| deleted "Later, we use this property to design C(s) so that G(s)C(s) has a “desired” shape of Bode plot.”

bode /bohd/verb 1. to be an omen of (good or ill, esp of ill)

However, Bode plot is pronounced [boh-dee]. Some people pronounce it just [bohd].

Lecture 17: Bode plot ELEC 341: Systems and Control

See

)

|1

* Use polar representation

G1(jw) = |G1(jw)|ejzcl(j“’) Go(jw) = |G2(jw)|ejZG2(j“’)

|G1(jw)||Ga(jw) el C1(w)¢i/ Ga(j)
1G1 (jw) |G jw) e £ CLw)+L Galiw)}

Then, G1(jw)Gy(jw)

Therefore,
2010919|G1(jw)Ga(jw)| = 2010919 |G1(jw)|-|Ga(jw)| = 20l0g10|G1(jw)|+2010910 [Go(jw)]
[G1(jw)Ga(jw) = [G1(jw) + LGo(jw)

20



© sia

Lecture 17: Bode plot

Example 1 ¢ =12 [
S

é}:

* Sketch the Bode plot of the following transfer function:

B =2
S
Step 1: Decompose G{s) into a product form:
1
G(s) =10 -
S

Step 2: Sketch a Bode plot for each component on the
same graph.

Step 3: Add them all on both gain and phase plots.

20

imak Najarian 2025

decompose [dee-kem-pohz]
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) aplace of min
Example 1 (cont’d) UBC
; W
dB
G(s) =10
20
X O 1 1(\
G(S) — -20
deg
U 90
10 0
G(s) = — 102
S
—90
Note: These two horizontal lines coincide. But, to distinguish /
them visually, I have left a small space between them. )1

See below for proof: In the top graph, the red curve is the final gain plot and in the bottom graph, the purple (magenta) is the final
phase plot.

Important Note: The numbers in bold face (such as -20) are angles per 1 decade and are the slope of the lines (and not the angle of
the lines). They are the amount of gain (or phase shift) per one decade.

How to sketch Bode of a multiple function (such as in the above slide):

Step 1: Start with the far-left hand side point (i.e., w = 0) and add the values at w = 0. This should give us the starting point on the
final gain or phase plot.

Step 2: Start moving on the final gain/phase plot and add the values of the slopes. If one of them is a straight line it will have no
effect on the outcome. For the ones that are sloped lines (let us say we have only one sloped line), the final gain/phase plot will
follow its slope until there is a change in the sloped line. If there is a change in the slope of the other sloped line, the final gain/phase
plot will become steeper (with the new slope being increased by the sum of the slopes of the other sloped lines). The slope of each
point on the final plot is equal to the sum of the slopes of the other lines.

Bode plot of a constant gain

i(s) =K = |G(jw)| = K, /G(jw) =0°, VYw “e" \ :
il fur ERm e Giag.
' 0 d0% log| cyw)|=26log L
2¢l0 0 = . 7

y e J' , I

1 0dB ~

g = oleg - =

e | Sl e 200 5

=
(=
/o

For Red curve, G(9)=10 »
/aUL):O — 40+ 20V = 4Q)

Lram Brownh curve.
20|09)|G(j~)| =20

@ "—Ur Red Curve 4t =0 = Gan= 60

Bode plot of an integrator %

Mimor image of the 1 i
Bode plot of G(s)=5 *
with respect to w-axis TTTI




Lecture 17: Bode plot ELEC 341 Systems and Control

aplace of mind

Example 1 (cont’d)

How to the sketch Bode of product of basic functions (Slope Method):

» Step 1: Start with the far-left hand side point (i.e., ® = 102) and add the values at ® = 102,
This should give us the starting point on the final gain or phase plot.

» Step 2: Start moving on the final gain/phase plot and add the values of the slopes. If one
of them is a straight line it will have no effect on the outcome. For the ones that are sloped
lines (let us say we have only one sloped line), the final gain/phase plot will follow its
slope until there is a change in the sloped line. If there is a change in the slope of the other
sloped line, the final gain/phase plot will become steeper (with the new slope being
increased by the sum of the slopes of the other sloped lines). The slope of each point on
the final plot is equal to the sum of the slopes of the other lines.

© Siamak Najarian 2025 22

See below:

: ) .
(& = — |
For Blue curve, D=2

Bode plot of a constant gain % ; l | .
G(s) = K = |G(jw)| = K, /G(jw) =0, \?- 20 , 03 ' G;U w )' =16 08 _,:_) 2
[T nime Tiim T iime 1o (for all) - I

K 0930 K L\) = ' O == 20 ’ gy ==
5o 9o7C
10 20dB
2 ~6dB %

Loow Faor ReJ CUuvrve G($)
001 -40dB

@(A):O_"QO"\'Z‘O = €0

Lram Brownh curve.
20|09)|G(j~)| =20

@ or Red Curve aF W=0 - Gan= 60

Bode plot of an integrator

€5

Gls) = 1 = 1GG) = i (Glie) = 12 = ~90°, Ve

Mimor image of the )
Bode plot of G(s)=s *
with respect to @-axis. =

P .

=



See below:

magnitude (dE

phase (degrees)

Lecture 17: Bode plot

Example 2 a(s) =

dB

G(s) =0.1

G(s) =

S

—20

U

deg
90

G(s)

ems and Control

S

ol

g

frequency

amak Najar 23

2 dB

40 LTO —Zg -20

ul Zlf()"f'("213)1{;::;1//////}5’.--§~QJ

40+

”")“l U"'I l‘l 1 |‘ .l']l
100}
150
.:“:JI:N'] 0.01 ”‘l |‘ .“" .
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aplace of mind

1 e
Example 3 ¢ =575

dB
_ 1 -20
Gls) =501
» 0
—20
G(s) = —
deg
iy °
G(s) = —— | —a0
T W2+ 1)
~180

© Siamak Najarian 2025 24

See below for proof:
Note that the beginning and the end of the 45-degree line are always at 0. 1% and 10%.

=

Bode plot of a 1st order system Bode plot of an integrator

Straight-line approximation =sss=- A/Corner frequency G(s) = L = |G(jw)| = l, /G(jw) = /_i = —-90°, Vw
9 T s R s w Jw
__1 o L ESNG-000B /decade e
G(S) = 1 N Ry :
Ts+1 2-G(s) = e 20 e S
301 s+1 i 0 B
l PR D P N e
40 : ; i ; . . 2 3
. 1 50 i i ¥ i Mirror image of the | Bt
G(jw) = JoT +1 10 10 @ o' " Bode plot of G(s)=s " 0’ 0 o 10°
: with respect to @-axis.
{ 1 |f 1 > wT 9 ¥ e i AT 3 i p e
o 20| ™ " R R H 895
~ 1 P A
—= if 1 <K wT HE S 1 -90
T A0~
Jw _45_50-.‘:. R aA R eg/decade s
-80] 13313 it : N2 i iv . 0 1 2
_quo'"""7 s ..}. .?'.‘rm-.?m-.;- 10° 10 10 10 10
T0? 10" 10° 10' 10° T
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Example 4 at=224%2 @

(s+10)

dB
G(s) =s+1
20
N 0
1
&)= o111

deg
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See below for proof:
Bode plot of an inverse system S Bode plot of a 1st order system

1 -1 Straight-line approximation s=s==-- Corner frequency

G(8)=TS+1=(TS—_H) 5 .‘/ T

Gs) = — \f.‘;;.‘QOdB q?cade
| et
. . 1 i i i L0 fins
Mirror image of the T GUw) = T 10" @& 10' 10"
original Bode plot with {755 =, J‘j’T"' 1 :
respect to w-axis. _ LR g i
: o
o 10° 10 12“ 10' 10’
14 T 13
G( S) = Vo (S+1) - (5+\) — " Example4 c:<s>=1(f(1tol;’n
(S+\0) o ( S'\'\O) Gra DH ng Hhe red curfe
(£ d) :
_ 3 ram R —7
C'S(S)... Lt\.)_ " ;{{,lof:H'f
(Q-1Sk)) O —b' It w
Spme as +he broww one

Corner \ercahw:v\cy fange for Gm:c’.\\s-\\ .' Since H’\é SIOPC o? Ehe
AT A O.‘(‘_\—r \o(\_\ blue 15 zero
T‘ T boel o yema//ms -l -
SRR LI \OX-— hj//Zﬁma ) Ee eowvr roo
Speh gt e

m (_* L( (_ L] S ) - G}Bode plot of an inverse system Bode plot of a 1st or¢

Gy =Te+1=(=1-)




200 e 1) i
Example 5 ¢&=""157 =
G(s) =2 dB
X
20
G(s) =s+1 0
X
®) 1 —40
G(s)=— 73| de
3 g
(0.1s+1) o
ﬂ 45
200 1 0
Gi(s) = L;
(s+10)* [_gp
—180
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Remember that in all standard forms of 15t order systems, we have Ts+1. That s, T is multiplied by s and there is always a “+1”. See
below:

Bode plot of a constant gain & ' &  Bode plotof a 2nd order system
p gn S Bode plot of an inverse system @ p y “

200(s+1
C(s) =K = |6(w)| = K, [6(js) =0°, Y g 1l "Ul/ resonance G(s) = R _i(_slo)f)
! Gls)=Ts+1= (TS-H) 2 :5:: '. S R podeDiagism
s o=t TR T L —
T j 4 Ans +2 SR 40 decate & & N
104 I E) M- () R =0 s
e - S B -
11%0 282; L Resonantfreq. — dpwbersbebetbidiinte il N\
2 &6 Mirtor image of the — _ ST N - )
1 0 ariginal Bode plet with &7 ar=n|1-2ma O ¢ T e e ——
ol -20d8 fegpetto pads. (issndl ~ i
00l -400B : Peak gain . ' iy
11 é-as N 3
wh-¢ %X w0l ‘ I AR
102 107 10° 10! 102 10°
if ¢t small Frequency (rad/s)
u
o 1 100 o o
o e —'30-G_ 1%
.. tana= S\cpe= — =T
Groph of Gregyz - This .,-H\e. blue curve 1oo-1] oG
(01s+1) lh the above S\lée- o = =87 8
G-¢sy= _| 220 | \oo =1%o 72 1G x1G J«Jc(a&le“‘J"
Mty %015t ©015%0.25+) [ sZ 20654100 bluecuve - _\3g _ _9F

r:L . 3 - 2 ACK‘C jr’e o -
COMFO\YQ V\/I*’L\ G (%)= ZW S prove MA/C Qo?et_ig coce S cade S+\0)-
S+2 jon ST Wn <lope-~-90 3 decode =2(5+))

— w:-__\oo—» 5 2 a0 M@ A decad e 0-0l (S+%10)

13 e o o D

Important Note: The boldface numbers in the graphs are degrees per decade and the slope of the curves. Slope of a curve is a
number and not an angle. That is, slope = (-90°)/(1 decade) = tana. By solving this equation we will actually find the angle of alpha,
which will be the angle of the line. For example, in the bottom graph (phase plot), we have -90 degrees per one decade.

_2(s+\)
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Lecture 17: Bode plot

Remarks UBC

})

* ALWAYS check the correctness of the following:
* Low frequency gain (DC gain): G(0)
* High frequency gain: G/(00)

* Example

G(s) = 10(s+1)

s+5

2010g10|G(je)| (dB) —— G(00) = 10 ~ 20dB

G(0) =2 ~ 6dB
[

27

You can use MATLAB command “bode.m” to obtain precise shape. See below: The above G(s) is actually a lead compensator.

magnitude (dE

pha

- = = N
- TR -

frequency

Gs)- 1005+

For S=o° —gaindp) | =20 log |G oe
S= 00 0

Goy="00%D 9 _ cio)->

- S'\’S ot 5
Goo)= 16109V |y G910
ain (dR) =120 | | " -
9 =20 Oﬂl\G(jw’\:zo\og \GfS)\
0 IC

For 5= a— gaia (4\3)\5_:020103'()\@(0)\=2o\03\2\:&

10
kz0legliof20

\ —9 Cl\eck H’\ESQ V\\AMECVS 030\\'(\3'\' -\'\'\ose yow olsf’o(\)imcl

o _ e ond 'Pu\‘\' G yaur Bode P\O"’ Ho\oe ‘H\e7 YY\G*'CL\ /
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Remarks (cont’d

aplace of mind

* In Matlab, use “bode” command:

_10(s+1)

G(s) Py

>> s=tf('s') Bode Diagram
20 - . —
s =
o
s Si5¢ 1
Py
2
Continuous-time transfer function. 1é'
210+ 1
>> g=10%(s+1) / (+5) = )
g = 5 "
a0f T ]
10 s + 10

Continuous-time transfer function.

>> bode (g)
>>

10° 10
Frequency (rad/s)

28
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Lecture 17: Bode plot

reasons:

* Next

© Siamak Najarian 2025

Summary UBC

* Sketches of Bode plot
* Basic functions
* Products of basic functions

» Sketching Bode plot is useful for the following

* To get a rough idea of the characteristics of a system.
* To interpret the result obtained from computer.

* Nyquist stability criterion

ELEC 341 Systems and Control

aplace of mind

———
w

29

See below for more on resonance frequency:

Peaks in the frequency response can only exist in systems with conjugate complex
poles. For an underdamped ({ < 1 or @ > 0.5) second-order system, the peak appears
specifically for ¢ < 1/4/2 = 0.707.

w?
H(S) = ’—2
§° + 2lwys + o

where @, is the natural frequency (also called corner frequency when considering
assymptotes), the peak

M= ———
TN )

w, = W,/ 1 -2£2

Note on figure below: When varying the damping ratio {, the peak follows a specific
curve. In filter theory, that special value for { = 0.707 corresponds to a Butterworth
response. The magnitude curve is sais to be maximally flat (no peak). The meaning of
wy, for the Butterworth response is the same as for the first-order case, that is, w,
represents the -3 dB frequency, also called cuttoff frequency. Only in this case. Also,
Wa = Wp, causes an infinite response (undamped system - oscillator).

occurs at resonant frequency

Peak curve:

; .
— {'=0, No Damping ‘

For small & the curves are peaked sharply near the corner frequency. Exactly at the
corner frequency the curve must pass through the point

[H(j(on)|=% = —20log2& [dB] (1.35)

Note that this correction may be above the asymptote (positive) or below (negative)
depending on the value of the damping factor & .

N 28 dB

£ |HGo)| @,/0, [HG,)
0.02 +28dB ~1 +28 dB
0.05 +20dB  0.997 +20dB

0.1 +14dB  0.990 +14dB

0.2 +8dB 0.959 +8.1dB

0.4 +19dB 0.825 +2.7dB

0.5 0dB 0.707 +1.3dB
0.707 -3dB 0 0dB

1 -6 dB = =

Figure 1-9 — Behavior near the corner frequency for various values of the damping factor & .

Also note that the peak value is not necessarily centered exactly at the corner frequency; to
find the peak location we set the first derivative equal to zero, giving

$|H( jo)=0 = o=0,= o1-25% (low-pass) (1.36)
cw

This result tells us that there is a peak or maximum in the response only when 1— 2.:"2 >0, or
equivalently for 0 <& <1/ V2. In this range the peak amplitude is given by

. 1
ey =

> —201og(25 17;2) [dB] 1.37)



