ELEC 341: Systems and Control

Lecture 18

Nyquist stability criterion: Introduction

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- **Electrical**
- Electromechanical
- Mechanical
- Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

Time response

- **Transient**
- Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

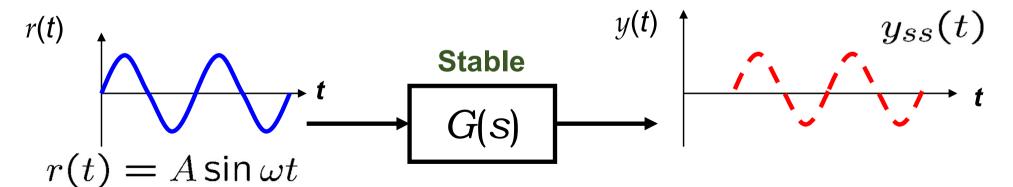
Design examples

Matlab simulations

Frequency response (review)

- Steady state output $y_{ss}(t) = A |G(j\omega)| \sin(\omega t + \angle G(j\omega))$
 - ullet Frequency is same as the input frequency $\,\omega\,$
 - Amplitude is that of input (A) multiplied by $|G(j\omega)|$
 - Phase shift is $\angle G(j\omega)$

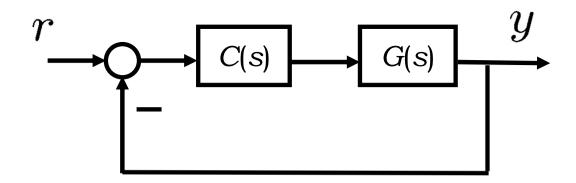
\\Gain



- Frequency response function (FRF): G(jw)
- Bode plot: Graphical representation of G(jw)

Stability of feedback system

Consider the feedback system:



- Fundamental questions:
 - If G(s) and C(s) are stable, is the closed-loop system always stable?
 - If G(s) and C(s) are unstable, is the closed-loop system always unstable?

Closed-loop stability criterion

 Closed-loop stability can be determined by the roots of the characteristic equation:

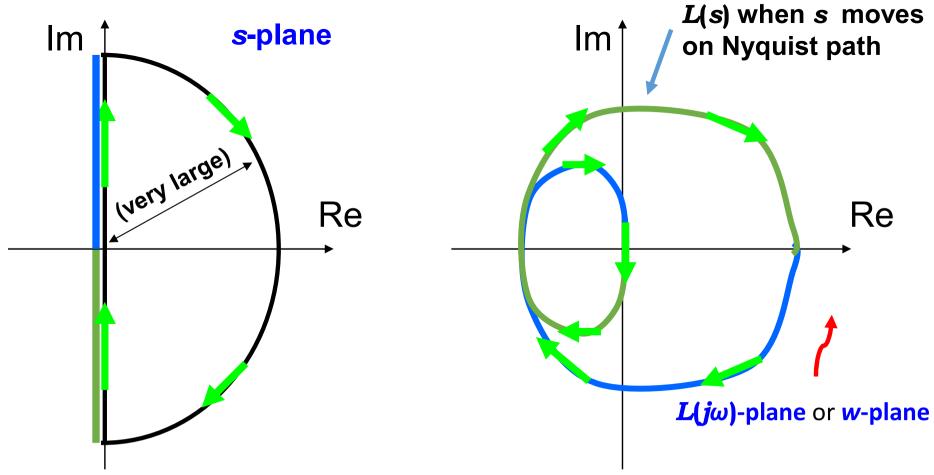
$$1 + L(s) = 0$$
, $L(s) = G(s)C(s)$

- Closed-loop system is stable if the Ch. Eq. has all roots in the open left half plane.
- How to check the closed-loop stability?
 - Computation of all the roots
 - Routh-Hurwitz stability criterion
 - Nyquist stability criterion: Open-loop FRF L(jw) contains information of closed-loop stability.

Nyquist plot

Nyquist path

Nyquist plot



Note: We pick an s on the Nyquist path and then plug it into the OLTF, i.e., L(s). This will give us a point which is located in another environment (w-plane). This new plot is called Nyquist plot. **Nyquist path** is in s-plane while **Nyquist plot** is in w-plane.

Nyquist Plot (or Polar Plot)

- Nyquist plots were invented by Nyquist who worked at Bell Laboratories, the premiere technical organization in the U.S. at the time.
- Nyquist plots are a way of showing frequency responses of linear systems.
- There are several ways of displaying frequency response data, including Bode plots and Nyquist plots.
- Bode plots use frequency as the horizontal axis and use two separate plots to display gain and phase of the frequency response. This was covered earlier.
- Nyquist plots display both gain and phase angle on a single plot, using frequency as a parameter in the plot. This will be covered in this lecture.
- Nyquist plots have properties that allow you to see whether a system is stable or unstable. They can also be used for designing various types of controllers.

Nyquist Plot

- Simply put, a **Nyquist plot** is basically a **polar plot** of the frequency response function of a linear system.
- That means a Nyquist plot is a plot of the transfer function, G(s) with $s = j\omega$ (i.e., the **FRF**). Here, you will be plotting $G(j\omega)$.
- $G(j\omega)$ is a complex number for any angular frequency, ω . So, the plot is a plot of complex numbers.
- The complex number, $G(j\omega)$, depends upon frequency, so frequency will be a **parameter** if you plot the imaginary part of $G(j\omega)$ against the real part of $G(j\omega)$. Therefore, **Nyquist plot** is a graph of $\text{Im}\{G(j\omega)\}$ vs. $\text{Re}\{G(j\omega)\}$ in which ω is the varying parameter.

How to sketch the Nyquist Plot of Frequency Response Function

- To sketch the Nyquist plot of $G(j\omega)$ for the entire range of frequency ω , i.e., from 0^+ to positive infinity, there are four key points that usually need to be known (sometimes you will need more points!):
 - **Key Point 1:** The start of plot where $\omega = 0$.
 - **Key Point 2:** The end of plot where $\omega = \infty$.
 - **Key Point 3:** Where the plot crosses the real axis, i.e., $\text{Im}(G(j\omega)) = 0$.
 - **Key Point 4:** Where the plot crosses the imaginary axis, i.e., $Re(G(j\omega)) = 0$.
- Note for tests/exams/assignments: In practice, using the above method sometimes does not provide you with enough number of key points to sketch more complicated FRF. For tests/exams/assignments (unless you are specifically tasked with finding the above key points), you can set up a table and plug in suitable number of arbitrary numerical values for ω and find the corresponding gain and phase values. Then, sketch the **trend** of the Nyquist plot.

Example 1: Nyquist Plot of First Order System

Consider a first order system $G(s) = \frac{1}{1+sT}$ where T is the time constant.

By representing G(s) in the form of frequency response function $G(j\omega)$ and by replacing $s = j\omega$:

$$G(j\omega) = \frac{1}{1+j\omega T} = \frac{1}{1+\omega^2 T^2} - j\frac{\omega T}{1+\omega^2 T^2}$$

The **magnitude** of $G(j\omega)$, i.e., $|G(j\omega)|$, is obtained as:

$$|G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2 T^2}}$$

The phase of $G(j\omega)$, denoted by, $\angle G(j\omega)$, is obtained as:

$$\angle G(j\omega) = \tan^{-1}\left(\frac{-\frac{\omega T}{1+\omega^2 T^2}}{\frac{1}{1+\omega^2 T^2}}\right) \implies \angle G(j\omega) = -\arctan(\omega T) = -\tan(\omega T)$$

Example 1 (cont'd): Nyquist Plot of First Order System

The start of plot where $\omega = 0^+$

$$|G(j\omega)| = \frac{1}{\sqrt{1+0}} = 1$$

$$|G(j\omega)| = \frac{1}{\sqrt{1+0}} = 1$$
, For $\omega = 0^+$: $\angle G(j, 0^+) = -\tan^{-1}(0^+, T) = 0^\circ$

The end of plot where $\omega = +\infty$

$$|G(j\omega)| = \frac{1}{\sqrt{1+\infty}} = 0,$$

$$|G(j\omega)| = \frac{1}{\sqrt{1+\infty}} = 0$$
, For $\omega = +\infty$: $\angle G(j.(+\infty)) = -\tan^{-1}(+\infty.T) = -90^\circ$

The mid part of plot where $\omega = 1/T$

$$|G(j\omega)| = \frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}}$$

$$|G(j\omega)| = \frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}}$$
, For $\omega = \frac{1}{T}$: $\angle G(j, \frac{1}{T}) = -\tan^{-1}(\frac{1}{T}, T) = -\tan^{-1}(1) = -45^{\circ}$

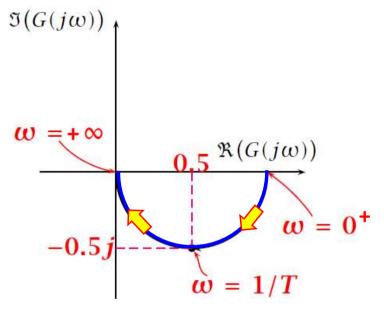
Example 1 (cont'd): Nyquist Plot of First Order System

w	$ G(j\omega) $	$\angle G(j\omega)$
$\omega = 0^+$	1	0°
$\omega = \frac{1}{T}$	$\frac{1}{\sqrt{2}}$	-45°
$\omega = + \infty$	0	-90°

ω	Re + Im.j
0.0100	0.9999 - 0.0100 j
0.1000	0.9901 - 0.0990 j
1.0000	0.5000 - 0.5000 j
2.0000	0.2000 - 0.4000 j
3.0000	0.1000 - 0.3000 j
5.0000	0.0385 - 0.1923 j
10.0000	0.0099 - 0.0990 j
100.0000	0.0001 - 0.0100 j

For T = 1

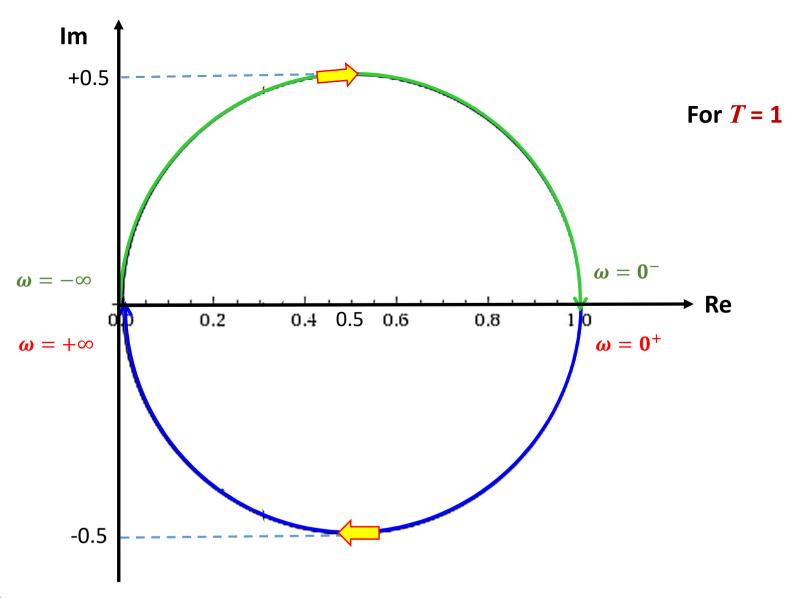
Nyquist Plot



Note: You can use either *i* or *j*.

Example 1 (cont'd): Nyquist Plot of First Order System

Nyquist Plot:



Example 2: Nyquist Plot of Integrator

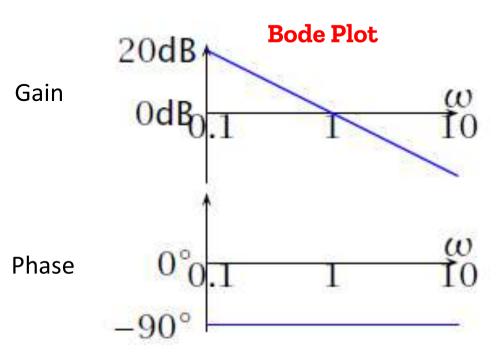
Consider an integrator system, $G(s) = \frac{1}{s}$

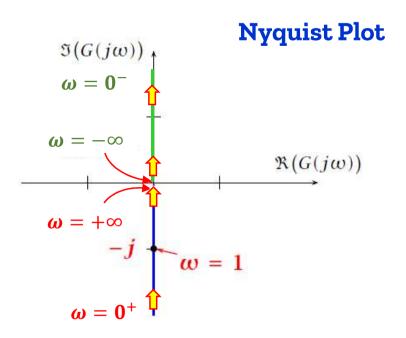
By representing G(s) in the form of frequency response function $G(j\omega)$ and by replacing $s = j\omega$:

 $G(j\omega) = \frac{1}{j\omega} = \frac{-J}{\omega}$

The magnitude of $G(j\omega)$, i.e., $|G(j\omega)|$, is obtained as: $|G(j\omega)| = 1/\omega$

The phase of $G(j\omega)$, denoted by, $\angle G(j\omega)$, is obtained as: $\angle G(j\omega) = -90^{\circ}$





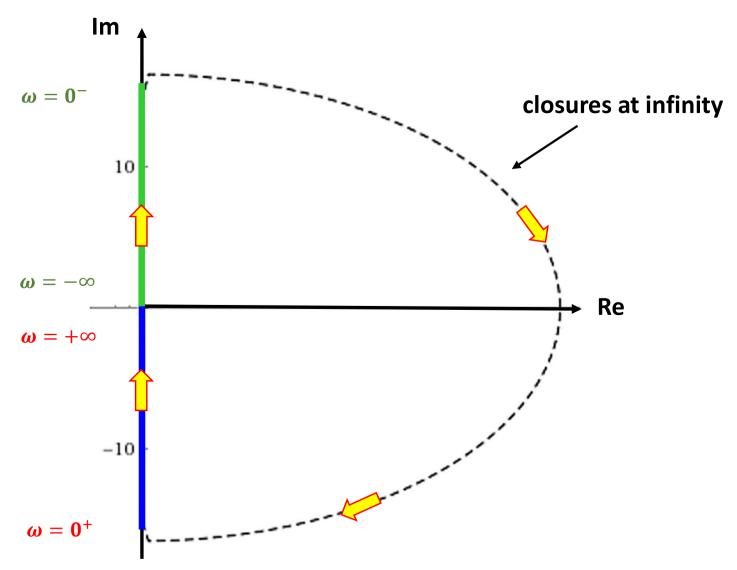
Example 2 (cont'd): Nyquist Plot of Integrator

$$G(s) = \frac{1}{s}$$

a place of mind

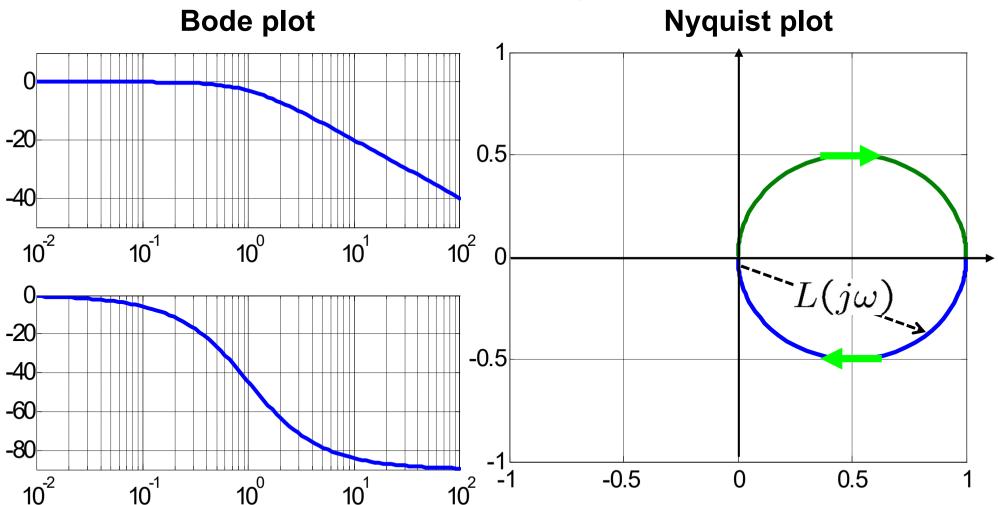
Nyquist Plot:

If the points of $\omega = 0^-$ and $\omega = 0^+$ are not at the same point, then connect them with a curve with an arbitrary large radius that lies in the 1st and 4th quadrant. That is, in order to obtain a complete Nyquist plot, we use closures at infinity. It means you connect the aforementioned points with an *infinite radius*. By so doing, we generate a *closed Nyquist plot*.



Example 3: (Bode & Nyquist plots)

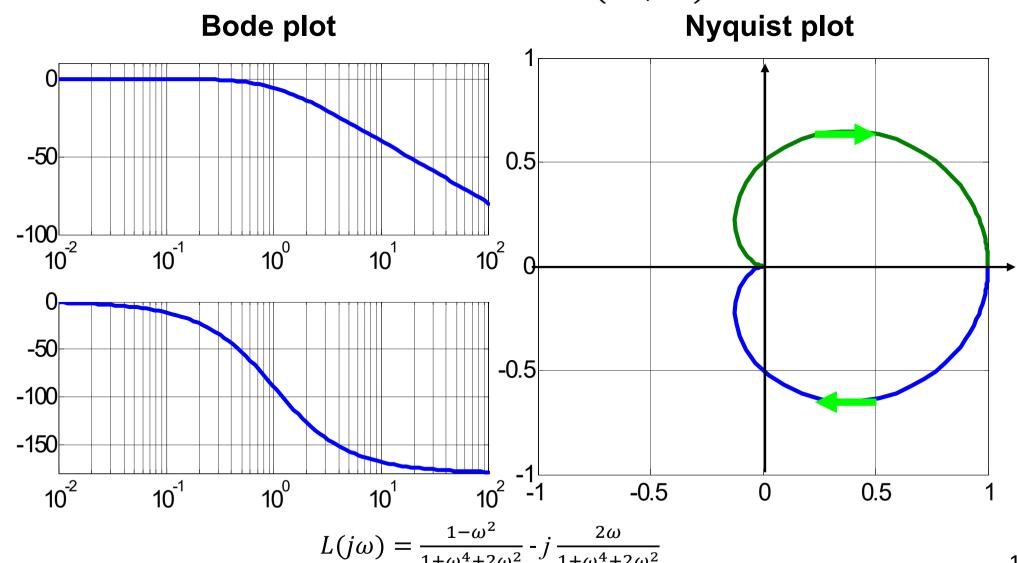
• First order system $L(s) = \frac{1}{s+1}$



 $L(j\omega) = \frac{1}{1+\omega^2} - j\frac{\omega}{1+\omega^2}$

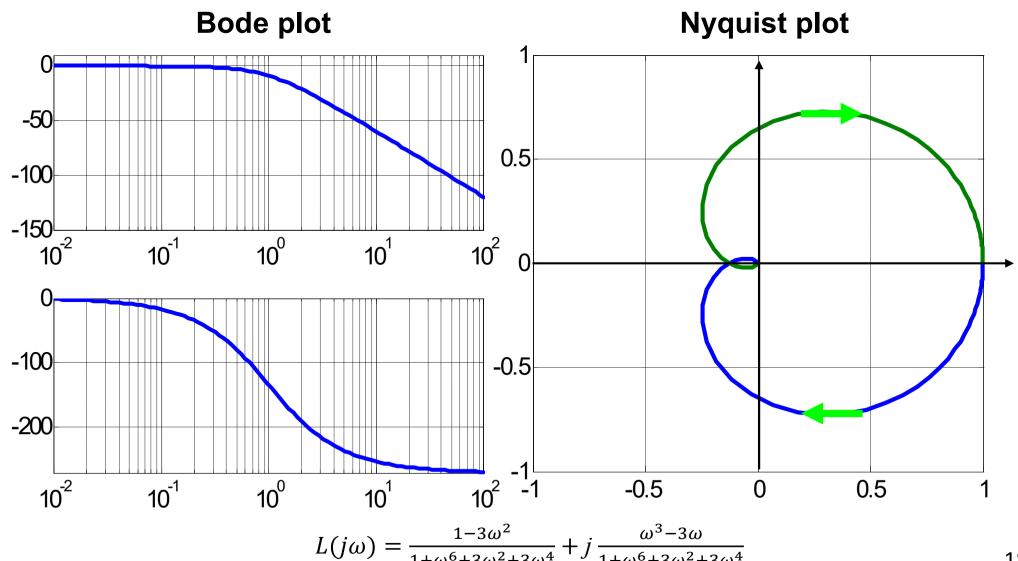
Example 4: (Bode & Nyquist plots)

• Second order system $L(s) = \frac{1}{(s+1)^2}$



Example 5: (Bode & Nyquist plots)

• Third order system $L(s) = \frac{1}{(s+1)^3}$



Nyquist stability criterion

CL system is stable $\Leftrightarrow Z = P + N = 0$

Z: # of CL poles in open RHP

 $P\colon$ # of OL poles in open RHP (given)

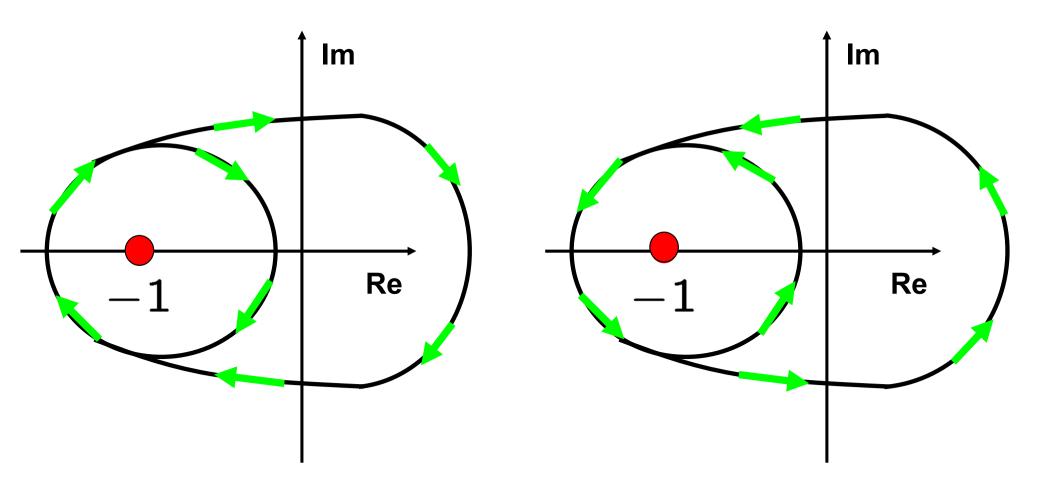
N: # of clockwise/counterclockwise encirclement of -1 by Nyquist plot of OL transfer function L(s) (counted by using Nyquist plot of L(s))

Remark: A **negative value** for N means a **counterclockwise** encirclement. For example, N = -2 means we encircle point -1 twice and in counterclockwise direction.

Encirclements in Nyquist plot

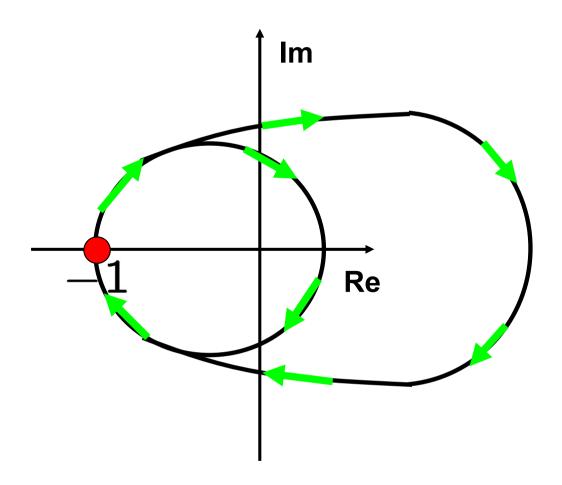
Clockwise

• Counter-clockwise

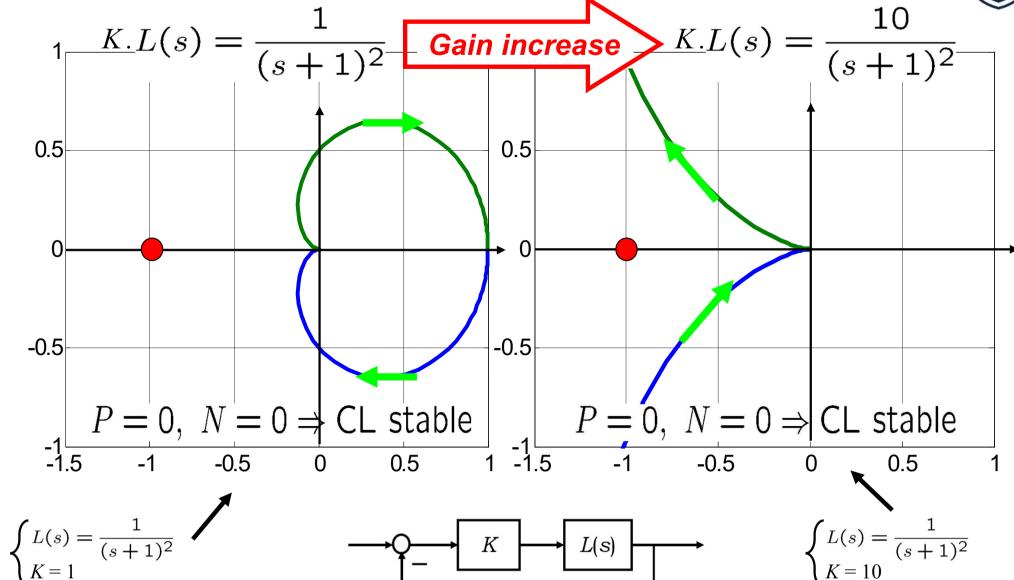


Remark

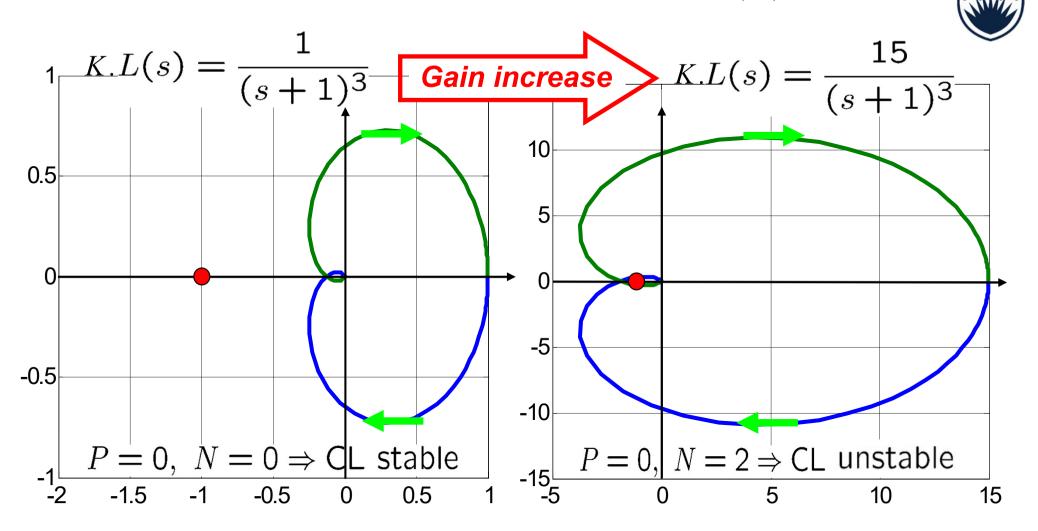
• If Nyquist plot passes the point -1, it means that the closed-loop system has a pole on the imaginary axis (and thus, marginally stable).



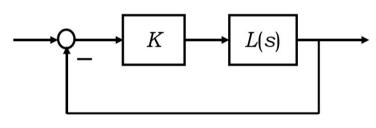
Example 6: (for 2nd order L(s))



Example 7: (for 3rd order L(s))



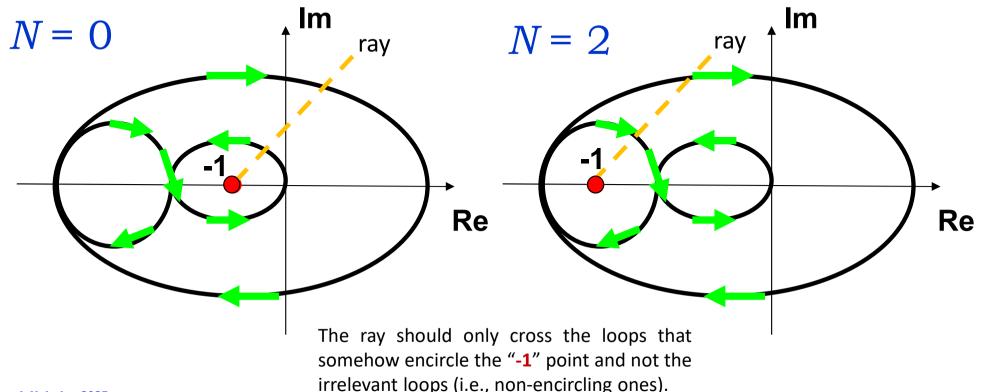
$$L(s) = \frac{1}{(s+1)^3}$$



a place of mind

How to count # of encirclement (N)

- A ray is drawn from -1 point in any convenient direction. Then,
- N = (# of crossing of ray by Nyquist plot in clockwise direction)-(# of crossing of ray by Nyquist plot in counterclockwise direction)



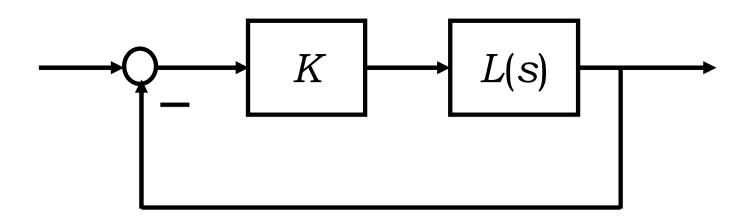
Notes on Nyquist stability criterion

- Nyquist stability criterion allows us to determine the stability of CL system from knowledge of the OL system.
- It can deal with time delay (next lecture), which Routh-Hurwitz criterion cannot.
- You can draw only half of Nyquist plot and then draw the other half using the notion that it will be the mirror image with respect to the real axis.
 - Important Note: For determining CL system stability, you should always draw the whole Nyquist plot.
- Nyquist plot in MATLAB: nyquist(sys).

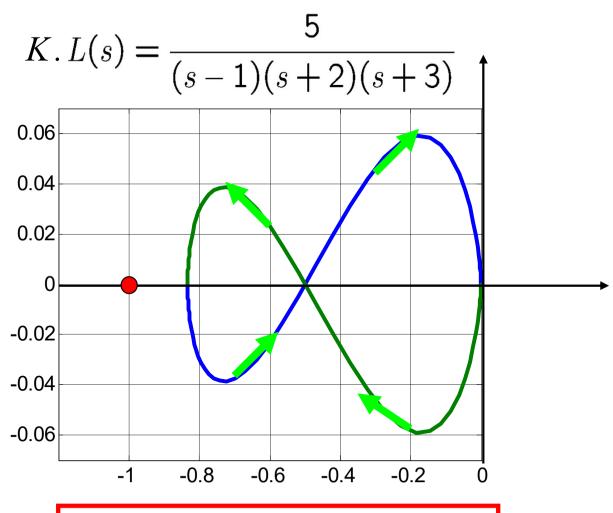
Example 8: (for unstable L(s))

Using the numerical values of 5, 8, and 11 for the gain of a proportional controller (K), investigate the stability of the following closed-loop system for the given OLTF. Use Nyquist criterion.

$$L(s) = \frac{1}{(s-1)(s+2)(s+3)}$$

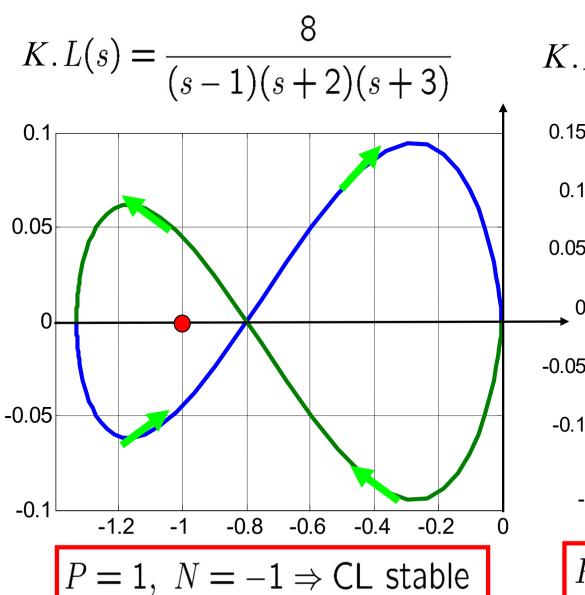


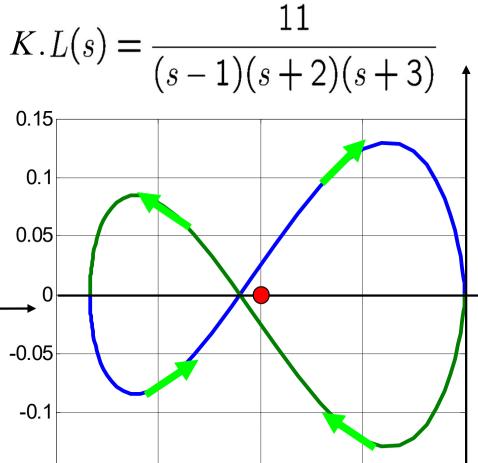
Example 8: (for unstable L(s), cont'd)



 $P = 1, N = 0 \Rightarrow CL$ unstable

Example 8: (for unstable L(s), cont'd)



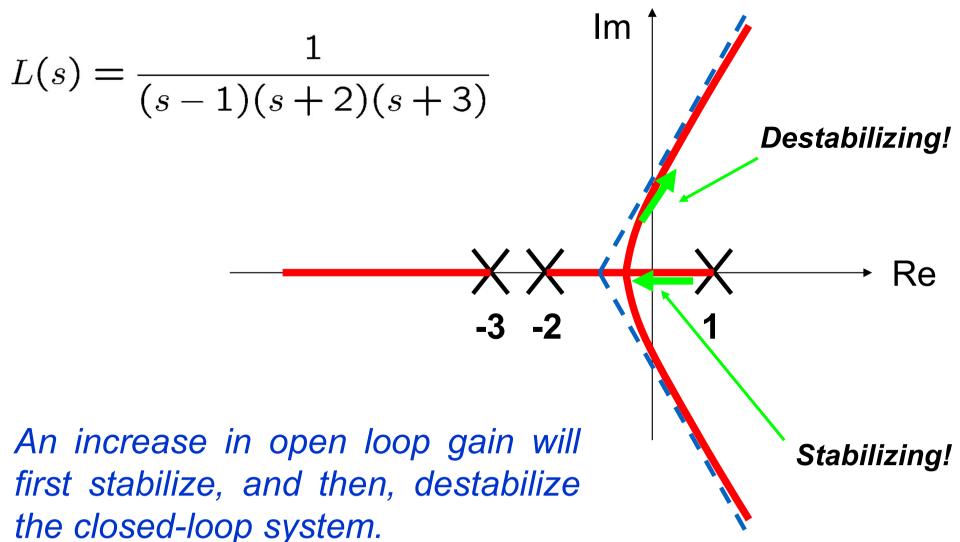


 $P = 1, N = 1 \Rightarrow CL$ unstable

-0.5

-1.5

Example 8: (for unstable L(s), cont'd), Interpretation by root locus



Nyquist criterion: A special case

CL system is stable $\Leftrightarrow Z = P + N = 0$

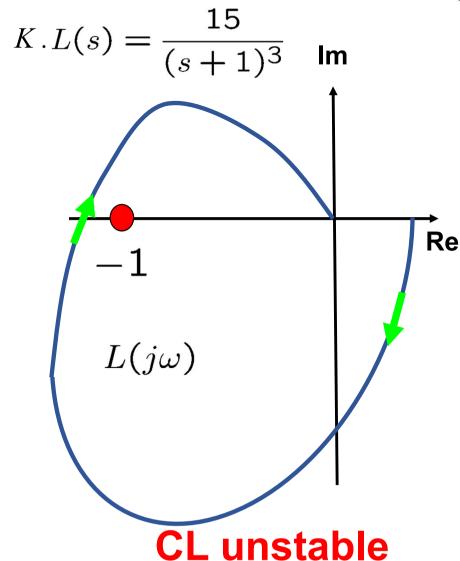
• If P = 0 (i.e., if L(s) has no pole in open RHP)

CL system is stable $\Leftrightarrow N = 0$

This fact is important since open-loop systems in real-life engineering problems usually have no pole in open RHP!

Example 9: (when P = 0)

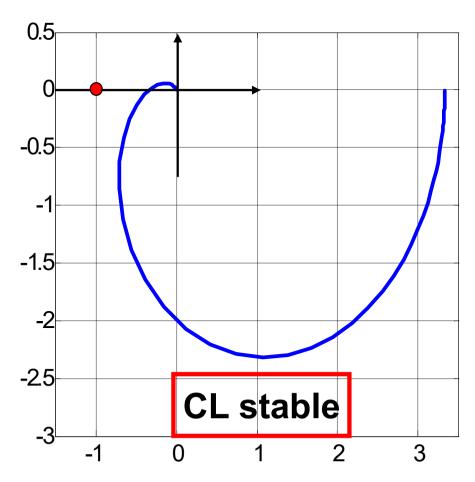
$$K.L(s) = \frac{1}{(s+1)^3}$$
 Im

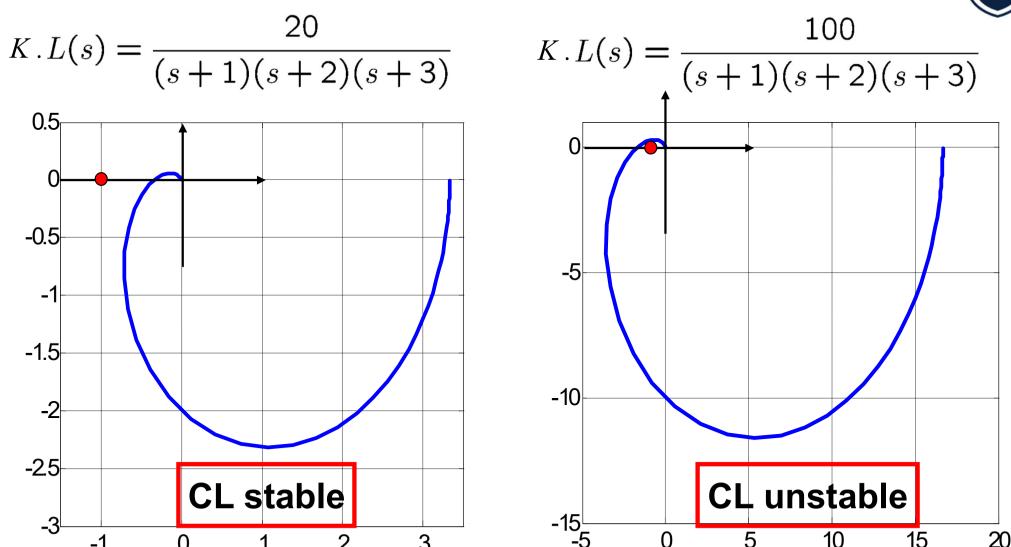


Note: Sometimes, engineers draw only half of the Nyquist plot (for simplicity or to save space). For investigating, stability, you should always draw *the whole Nyquist plot*.

Example 10: (for stable L(s), cont'd)

$$K.L(s) = \frac{20}{(s+1)(s+2)(s+3)}$$



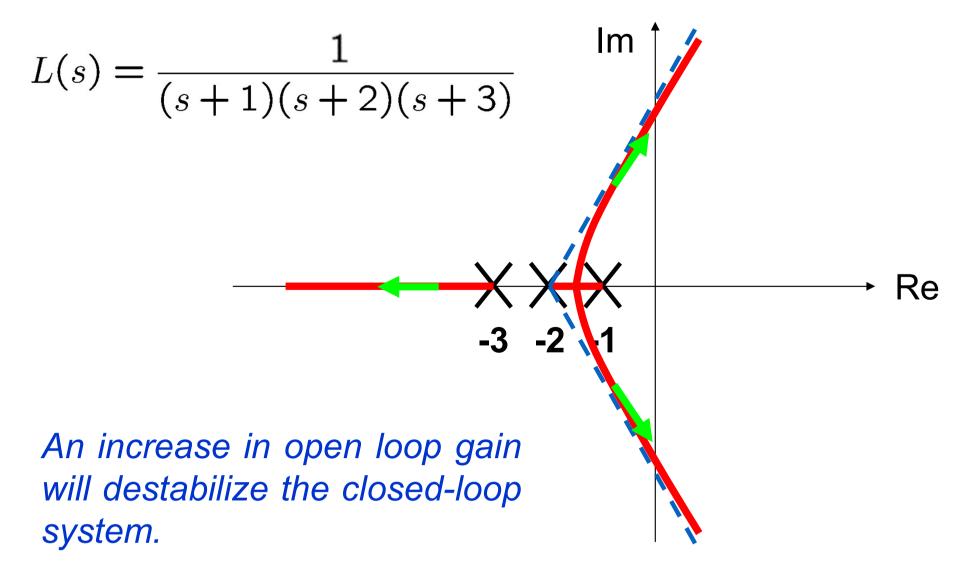


10

15

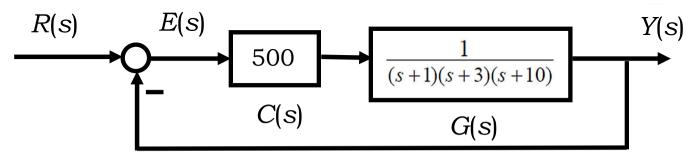
20

Example 10: (Interpretation by root locus, cont'd)



Example 11: Stability using the Nyquist criterion

The following block diagram is given. (a) Find the 4 key points for sketching the Nyquist plot. (b) Find FRF in the form of a complex number for various values of frequency, i.e., in the form of $a(\omega) \pm b(\omega)j$. (c) Sketch the Nyquist plot, and then determine the system stability using the Nyquist criterion.



The open-loop transfer function: $C(s)G(s) = \frac{500}{(s+1)(s+3)(s+10)}$.

Replacing s with $j\omega$ yields the frequency response of C(s)G(s), i.e.,

$$C(j\omega)G(j\omega) = \frac{500}{(j\omega+1)(j\omega+3)(j\omega+10)} = \frac{500}{(-14\omega^2+30)+j(43\omega-\omega^3)} \longrightarrow$$

$$\longrightarrow C(j\omega)G(j\omega) = \frac{500(-14\omega^2 + 30)}{(-14\omega^2 + 30)^2 + (43\omega - \omega^3)^2} + j\left[\frac{-500(43\omega - \omega^3)}{(-14\omega^2 + 30)^2 + (43\omega - \omega^3)^2}\right]$$
 (1)

(a)

Magnitude response:

$$|C(j\omega)G(j\omega)| = \sqrt{\text{Re}^2 + \text{Im}^2} = \frac{500}{\sqrt{(-14\omega^2 + 30)^2 + (43\omega - \omega^3)^2}}$$

Phase response:

$$\angle C(j\omega)G(j\omega) = \tan^{-1}\left(\frac{\operatorname{Im}}{\operatorname{Re}}\right) = \tan^{-1}\left(\frac{-\left(43\omega - \omega^3\right)}{-14\omega^2 + 30}\right)$$

Now that when we have expressions for the magnitude and phase of the frequency response, we can sketch the polar plot using the 4 key points.

Key Point 1: The start of plot where $\omega = 0$

$$|C(0)G(0)| = \frac{500}{\sqrt{(30)^2}} = 16.67$$
 $\angle C(0)G(0) = \tan^{-1}\frac{0}{30} = 0^{\circ}$

Key Point 2: The end of plot where $\omega = \infty$

$$|C(\infty)G(\infty)| = \frac{500}{\sqrt{\infty}} = 0$$

$$\angle C(\infty)G(\infty) = \tan^{-1}\infty = -270^{\circ}$$

Key Point 3: Where the plot crosses the real axis, i.e., $Im\{C(j\omega)G(j\omega)\}=0$

Take the imaginary part of equation (1), and set it equal to zero, to get the value of frequency ω at the interception of real axis:

$$\frac{-(43\omega - \omega^3)}{(-14\omega^2 + 30)^2 + (43\omega - \omega^3)^2} = 0 \Rightarrow \begin{cases} 43\omega - \omega^3 = 0 & \Rightarrow \omega = 0 \text{ and } \omega = 6.56 \text{ rad/s} \\ \omega = \infty \end{cases}$$

Key Point 4: Where the plot crosses the imaginary axis, $\text{Re}\{C(j\omega)G(j\omega)\}=0$

Take the real part of equation (1), and set it equal to zero, to get the value of frequency ω at the interception of imaginary axis:

$$\frac{-14\omega^2 + 30}{(-14\omega^2 + 30)^2 + (43\omega - \omega^3)^2} = 0 \Rightarrow \begin{cases} -14\omega^2 + 30 = 0 & \Rightarrow \omega = 1.46 \text{ rad/s} \\ \omega = \infty \end{cases}$$

(b)

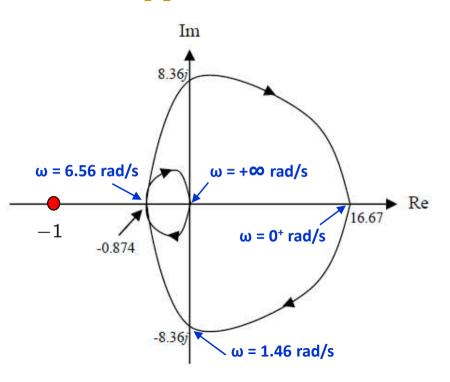
ω	Re + Im.j		
0	16.6667 + 0.0000j		
1.0000	3.9604 -10.3960j		
1.4600	0.0221 - 8.3797j		
2.0000	-1.9231 - 5.7692j		
6.5600	-0.8734 + 0.0003j		
20.0000	-0.0340 + 0.0435j		
73.0000	-0.0002 + 0.0012j		

(c)

Key Points of the polar plot:

	$ C(j\omega)G(j\omega) $	$\angle C(j\omega)G(j\omega)$
$\omega = 0$ Start Point	16.67	0°
$\omega = \infty$ End Point	0	-270°
Re Crossing:	a) 5	
$\omega = 0$	16.67	00
$\omega = \infty$	0	-270°
$\omega = 6.56 \text{ rad/s}$	0.874	-180°
Im Crossing:	ii.	
$\omega = \infty$	0	-270°
$\omega = 1.46 \text{ rad/s}$	8.36	-90°

Nyquist Plot



 $P=0,\ N=0$ (no encirclements of -1). So based on Z=P+N=0 (CL is stable).

Summary

- Nyquist stability criterion for feedback stability
- Examples for Nyquist stability criterion
- Next
 - Relative stability