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Frequency response (review)
• Steady state output 

• Frequency is same as the input frequency
• Amplitude is that of input (A) multiplied by
• Phase shift is

• Frequency response function (FRF): G(jw)
• Bode plot: Graphical representation of G(jw)
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Stability of feedback system
• Consider the feedback system:

• Fundamental questions:
• If G(s) and C(s) are stable, is the closed-loop system
always stable?

• If G(s) and C(s) are unstable, is the closed-loop system
always unstable?
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Closed-loop stability criterion
• Closed-loop stability can be determined by the

roots of the characteristic equation:

• Closed-loop system is stable if the Ch. Eq. has all
roots in the open left half plane.

• How to check the closed-loop stability?
• Computation of all the roots
• Routh-Hurwitz stability criterion
• Nyquist stability criterion: Open-loop FRF L(jw) contains
information of closed-loop stability.
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Nyquist plot
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 Nyquist path  Nyquist plot

s-plane
L(s) when s moves 
on Nyquist path 

Re

Im

Re

Im

L(jω)-plane or w-plane

Note: We pick an s on the Nyquist path and then plug it into the OLTF, i.e., L(s). This will give us a point which is
located in another environment (w-plane). This new plot is called Nyquist plot. Nyquist path is in s-plane while
Nyquist plot is in w-plane.
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Nyquist Plot (or Polar Plot)
• Nyquist plots were invented by Nyquist - who worked at Bell Laboratories, the

premiere technical organization in the U.S. at the time.

• Nyquist plots are a way of showing frequency responses of linear systems.

• There are several ways of displaying frequency response data, including Bode
plots and Nyquist plots.

• Bode plots use frequency as the horizontal axis and use two separate plots to
display gain and phase of the frequency response. This was covered earlier.

• Nyquist plots display both gain and phase angle on a single plot, using
frequency as a parameter in the plot. This will be covered in this lecture.

• Nyquist plots have properties that allow you to see whether a system is stable
or unstable. They can also be used for designing various types of controllers.
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Nyquist Plot

• Simply put, a Nyquist plot is basically a polar plot of the frequency
response function of a linear system.

• That means a Nyquist plot is a plot of the transfer function, G(s) with
s = jω (i.e., the FRF). Here, you will be plotting G(jω).

• G(jω) is a complex number for any angular frequency, ω. So, the plot
is a plot of complex numbers.

• The complex number, G(jω), depends upon frequency, so frequency
will be a parameter if you plot the imaginary part of
G(jω) against the real part of G(jω). Therefore, Nyquist plot is a
graph of Im{G(jω)} vs. Re{G(jω)} in which ω is the varying
parameter.
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How to sketch the Nyquist Plot of Frequency Response Function

• To sketch the Nyquist plot of G(jω) for the entire range of frequency ω, i.e., from
0+ to positive infinity, there are four key points that usually need to be known
(sometimes you will need more points!):

• Key Point 1: The start of plot where ω = 0.
• Key Point 2: The end of plot where ω = ∞.
• Key Point 3: Where the plot crosses the real axis, i.e., Im(G(jω)) = 0.
• Key Point 4: Where the plot crosses the imaginary axis, i.e.,

Re(G(jω)) = 0.

• Note for tests/exams/assignments: In practice, using the above method
sometimes does not provide you with enough number of key points to sketch
more complicated FRF. For tests/exams/assignments (unless you are specifically
tasked with finding the above key points), you can set up a table and plug in
suitable number of arbitrary numerical values for ω and find the corresponding
gain and phase values. Then, sketch the trend of the Nyquist plot.
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Example 1: Nyquist Plot of First Order System

Consider a first order system where T is the time constant.

The magnitude of G(jω), i.e., |G(jω)|, is obtained as:

The phase of G(jω), denoted by, , is obtained as:

మ మ j మ మ

By representing G(s) in the form of frequency response function G(jω) and
by replacing s = jω:
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The start of plot where ω = 0+

The end of plot where ω = +∞

The mid part of plot where ω = 1/T

Example 1 (cont’d): Nyquist Plot of First Order System

For  ω = ା ା ିଵ ା.T) = 0

For  ω = ିଵ .T) = -90

For  ω = ଵ
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+
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Nyquist PlotBode Plot

Phase

Example 1 (cont’d): Nyquist Plot of First Order System

+

+

Gain

) Re + Im.jω

For T = 1

Note:  You can use either i or j.
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Example 1 (cont’d): Nyquist Plot of First Order System

𝝎 = +∞

𝝎 = −∞ 𝝎 = 𝟎ି

𝝎 = 𝟎ା

Nyquist Plot:

Im

Re

+0.5

-0.5

For T = 1

0.5
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Example 2: Nyquist Plot of Integrator
Consider an integrator system,

The magnitude of G(jω), i.e., |G(jω)|, is obtained as:

The phase of G(jω), denoted by, , is obtained as:

Bode Plot Nyquist Plot

Gain

Phase

𝝎 = +∞

𝝎 = −∞

𝝎 = 𝟎ି

𝝎 = 𝟎ା

By representing G(s) in the form of frequency response function G(jω) and
by replacing s = jω:



Lecture 18: Nyquist stability criterion: Introduction ELEC 341: Systems and Control

© Siamak Najarian 2025 15

Example 2 (cont’d): Nyquist Plot of Integrator

closures at infinity

𝝎 = +∞

𝝎 = −∞

𝝎 = 𝟎ି

𝝎 = 𝟎ା

Nyquist Plot:

Re

Im
If the points of 𝝎 = 𝟎ି and
𝝎 = 𝟎ା are not at the same
point, then connect them with
a curve with an arbitrary large
radius that lies in the 1st and 4th

quadrant. That is, in order to
obtain a complete Nyquist plot,
we use closures at infinity. It
means you connect the
aforementioned points with an
infinite radius. By so doing, we
generate a closed Nyquist plot.
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Example 3: (Bode & Nyquist plots)
• First order system
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Example 4: (Bode & Nyquist plots)
• Second order system
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Bode plot
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Example 5: (Bode & Nyquist plots)
• Third order system
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Bode plot
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Nyquist stability criterion

Z : # of CL poles in open RHP
P : # of OL poles in open RHP (given)
N : # of clockwise/counterclockwise encirclement

of -1 by Nyquist plot of OL transfer function
L(s) (counted by using Nyquist plot of L(s))

Remark: A negative value for N means a
counterclockwise encirclement. For example, N = -2
means we encircle point -1 twice and in
counterclockwise direction.

19
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Encirclements in Nyquist plot
• Clockwise

20

• Counter-clockwise

Re

Im

Re

Im
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Remark
• If Nyquist plot passes the point -1, it means that

the closed-loop system has a pole on the imaginary
axis (and thus, marginally stable).

21

Re

Im
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Example 6: (for 2nd order L(s))
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Example 7: (for 3rd order L(s))
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How to count # of encirclement (N)
• A ray is drawn from -1 point in any convenient

direction. Then,

24

Re

Im

-1 -1

Re

ImN = 0 N = 2ray ray

The ray should only cross the loops that
somehow encircle the “-1” point and not the
irrelevant loops (i.e., non-encircling ones).
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Notes on Nyquist stability criterion

• Nyquist stability criterion allows us to determine the
stability of CL system from knowledge of the
OL system.

• It can deal with time delay (next lecture), which
Routh-Hurwitz criterion cannot.

• You can draw only half of Nyquist plot and then draw
the other half using the notion that it will be the
mirror image with respect to the real axis.
 Important Note: For determining CL system stability,

you should always draw the whole Nyquist plot.
• Nyquist plot in MATLAB: nyquist(sys).

25
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Example 8: (for unstable L(s))

26

L(s)K

Using the numerical values of 5, 8, and 11 for the gain of a proportional
controller (K ), investigate the stability of the following closed-loop system for
the given OLTF. Use Nyquist criterion.



Lecture 18: Nyquist stability criterion: Introduction ELEC 341: Systems and Control

© Siamak Najarian 2025

Example 8: (for unstable L(s), cont’d)
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Example 8: (for unstable L(s), cont’d)
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Example 8: (for unstable L(s), cont’d),
Interpretation by root locus

29

1-2-3
Re

Im

An increase in open loop gain will
first stabilize, and then, destabilize
the closed-loop system.

Stabilizing!

Destabilizing!
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Nyquist criterion: A special case

• If P = 0 (i.e., if L(s) has no pole in open RHP)

30

This fact is important since open-loop systems in
real-life engineering problems usually have no pole in
open RHP!
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Example 9: (when P = 0)
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Re

Im

Re

Im

CL stable CL unstable

K . K . 

Note: Sometimes, engineers draw only half of the Nyquist plot (for simplicity or to save
space). For investigating, stability, you should always draw the whole Nyquist plot.
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Example 10: (for stable L(s), cont’d)
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Example 10: 
(Interpretation by root locus, cont’d)
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An increase in open loop gain
will destabilize the closed-loop
system.
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Example 11: Stability using the Nyquist criterion

(1)

The following block diagram is given. (a) Find the 4 key points for sketching the
Nyquist plot. (b) Find FRF in the form of a complex number for various values of
frequency, i.e., in the form of . (c) Sketch the Nyquist plot, and then
determine the system stability using the Nyquist criterion.

Ea Y(s)E(s)R(s)

C(s) G(s)

500

C(s)G(s)

C(s)G(s)

C( )G( )

(a) 

C( )G( ) =
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Key Point 1: The start of plot where ω = 0

ଶ
ିଵ °

Now that when we have expressions for the magnitude and phase of the
frequency response, we can sketch the polar plot using the 4 key points.

Example 11 (cont’d)

C( )G( )

C( )G( ) C( )G( )

C( )G( ) =
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Key Point 3: Where the plot crosses the real axis, i.e., Im{C(jω)G(jω)} = 0

Key Point 2: The end of plot where ω = ∞

ିଵ

Take the imaginary part of equation (1), and set it equal to zero, to get the
value of frequency ω at the interception of real axis:

Example 11 (cont’d)

C( )G( )

C( )G( )
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Key Point 4: Where the plot crosses the imaginary axis, Re{C(jω)G(jω)} = 0
Take the real part of equation (1), and set it equal to zero, to get the value of
frequency ω at the interception of imaginary axis:

Example 11 (cont’d)

) Re + Im.jω

j
j
j
j
j
j
j

(b) 



Lecture 18: Nyquist stability criterion: Introduction ELEC 341: Systems and Control

© Siamak Najarian 2025 38

Example 11 (cont’d)

P = 0, N = 0 (no encirclements of -1).  So based on Z = P + N = 0 (CL is stable).

ω = 1.46 rad/s

ω = 6.56 rad/s

ω = 0+ rad/s

ω = +∞ rad/s

Nyquist Plot

Start Point

End Point

C(𝑗𝜔)G(𝑗𝜔) ∠C(𝑗𝜔)G(𝑗𝜔)

(c) 
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Summary
• Nyquist stability criterion for feedback stability
• Examples for Nyquist stability criterion
• Next

• Relative stability
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