

THE UNIVERSITY OF BRITISH COLUMBIA
Department of Electrical and Computer Engineering
ELEC 401 – Analog CMOS Integrated Circuit Design
Take-Home Midterm Exam
Due: Monday, October 18th, 2021 at 11:59 pm

Good luck!

This exam consists of 6 – 6/6 (= 5) questions and including the cover page has 6+6(=12) pages. Please check that you have a complete copy.

#	MAX	GRADE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

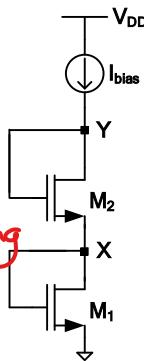
READ THIS

IMPORTANT NOTE:

Candidates guilty of any of the following, or similar, dishonest practices shall be liable to disciplinary action:

Speaking or communicating with other candidates or non-candidates regarding the exam questions.

Purposely exposing their solution to the view of other candidates.


The plea of accident or forgetfulness shall not be received.

1. In the following circuit assume that the bulks of the two NMOS transistors are connected to ground, and furthermore assume that the current source is ideal with $I_{bias}=4$ mA, and for both transistors we have $\lambda = 0$, $\gamma = 1$ V $^{1/2}$, $2\Phi_F=0.64$ V, $V_{TH0} = 0.4$ V, $\mu_n C_{ox} = 500$ $\mu\text{A/V}^2$, and $(W/L) = 100$.

a) Find the voltage of node X? [8 marks]
b) Find the voltage of node Y? [10 marks]

c) If we were to implement the current source with a single PMOS transistor which would have an effective voltage of 0.5 (i.e., $V_{SG}-|V_{THP}| = 0.5$ V), then, what was the minimum required V_{DD} for the circuit to operate properly? [2 marks]

Since transistors M_1 and M_2 are diode-connected, and they are "on" they are operating in saturation region:

no body effect

$$a) I_1 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right) (V_{GS1} - V_{th1})^2$$

$$4\text{mA} = \frac{1}{2} 0.5 \frac{\text{mA}}{\text{V}^2} (100) (V_x - V_{th1})^2 \Rightarrow (V_x - 0.4)^2 = 0.16 \text{ V}^2$$

$$V_x - 0.4 = \pm 0.4 \Rightarrow V_x = 0.8 \text{ V}$$

\downarrow
negative answer is not acceptable.

b) M_2 experiences body-effect as it's source voltage is $V_x = 0.8 \text{ V}$

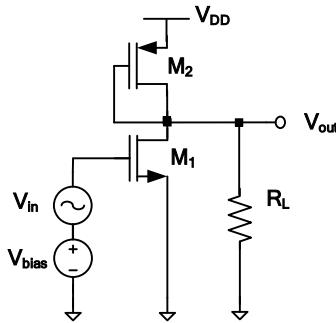
$$\text{Thus, } V_{th2} = V_{th0} + \gamma (\sqrt{2\Phi_F + V_{SB}} - \sqrt{2\Phi_F})$$

$$= 0.4 + 1 (\sqrt{0.64 + 0.8} - \sqrt{0.64}) = 0.8 \text{ V}$$

$$I_2 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_2 (V_{GS2} - V_{th2})^2 = \frac{1}{2} 0.5 (100) (V_{GS2} - 0.8)^2$$

$$(V_{GS2} - 0.8)^2 = 0.16 \text{ V} \Rightarrow V_{GS2} - 0.8 = \pm 0.4 \text{ V}$$

\downarrow
not acceptable.


$$V_{GS2} = V_y - V_x = 1.2 \text{ V} \Rightarrow V_y = V_x + 1.2 = 2.0 \text{ V}$$

$$c) V_{DD} \geq V_{eff(\text{PMOS})} + V_y \Rightarrow V_{DD} \geq 2.5 \text{ V}$$

Voltage of Node X: 0.8 V, Voltage of Node Y: 2.0 V

Minimum required V_{DD} = 2.5 V

2. In the following circuit, assume that $V_{DD} = 3V$ and the total dc power consumption of the circuit is 2.25mW, and the dc level of the output is 1.5 V. Furthermore, assume that M_1 is operating in saturation region, and for transistors we have $\lambda = 0$, $V_{TH0(NMOS)} = 0.5V$, $V_{TH0(PMOS)} = -0.5V$, $\mu_n C_{ox} = 200 \mu A/V^2$, $\mu_p C_{ox} = 100 \mu A/V^2$, and $(W/L)_1 = 80$.

a) Find the required V_{bias} for which the dc bias current of M_1 is 0.5 mA. [4 marks]
b) Find $(W/L)_2$. [4 marks]
c) Find R_L . [4 marks]
d) What is the small-signal gain of the circuit? [4 marks]
e) Is the assumption that M_1 is operating in saturation correct. If so, why? [2 marks]
f) What is the maximum peak-to-peak symmetric signal swing of the output? [2 marks]

$$a) I_1 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) (V_{GS1} - V_{TH1})^2$$

$$0.5 = \frac{1}{2} \times 0.2 \frac{mA}{V^2} (80) (V_{bias} - V_{TH1})^2 \Rightarrow (V_{bias} - V_{TH1})^2 = \frac{1}{16}$$

$$V_{bias} - V_{TH1} = \pm 0.25V \Rightarrow V_{bias} = 0.75V$$

negative not acceptable

$$b) P = I_2 V_{DD} \Rightarrow 2.25mW = 3 \times I_2 \Rightarrow I_2 = 0.75mA$$

M_2 is diode connected so it is in saturation:

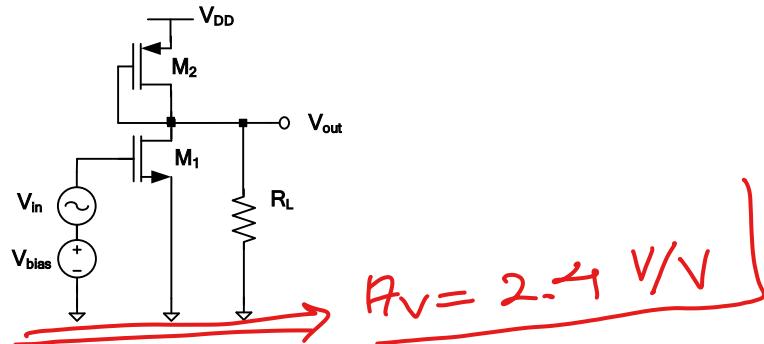
$$I_2 = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L}\right)_2 (V_{SG2} - |V_{TH2}|)^2 \Rightarrow 0.75 = \frac{1}{2} \times 0.1 \times \left(\frac{W}{L}\right)_2 (3 - 1.5)^2$$

$$\left(\frac{W}{L}\right)_2 = 15$$

$$c) I_2 = I_1 + I_R \Rightarrow 0.75 = 0.5 + I_L \Rightarrow I_L = 0.25mA$$

$$I_L = \frac{V_{out,DC}}{R_L} = \frac{1.5}{R_L} = 0.25mA \Rightarrow R_L = 6k\Omega$$

For your convenience the circuit and its parameters are duplicated below:


$V_{DD} = 3V$ and the total dc power consumption of the circuit is $2.25mW$, and the dc level of the output is $1.5V$. Furthermore, $\lambda = 0$, $V_{TH0(NMOS)} = 0.5V$, $V_{TH0(PMOS)} = -0.5V$, $\mu_n C_{ox} = 200 \mu A/V^2$, $\mu_p C_{ox} = 100 \mu A/V^2$, and $(W/L)_{NMOS} = 80$.

$$d) A_V = -g_{m1} (R_L \parallel \frac{1}{g_{m2}})$$

$$g_{m1} = \frac{2ID1}{V_{eff1}} = 4 \text{ mS}$$

$$g_{m2} = \frac{2ID2}{V_{eff2}} = 1.5 \text{ mS}$$

$$A_V = -4 \times \left(6 \parallel \frac{1}{1.5 \text{ mS}} \right)$$

$$A_V = 2.4 \text{ V/V}$$

$$e) V_{eff1} = V_{GS} - V_{Th1} = 0.75 - 0.5 = 0.25 \text{ V}$$

$$V_{DS1} = V_{out, DC} = 1.5 \text{ V} \Rightarrow V_{eff1} < V_{DS1}$$

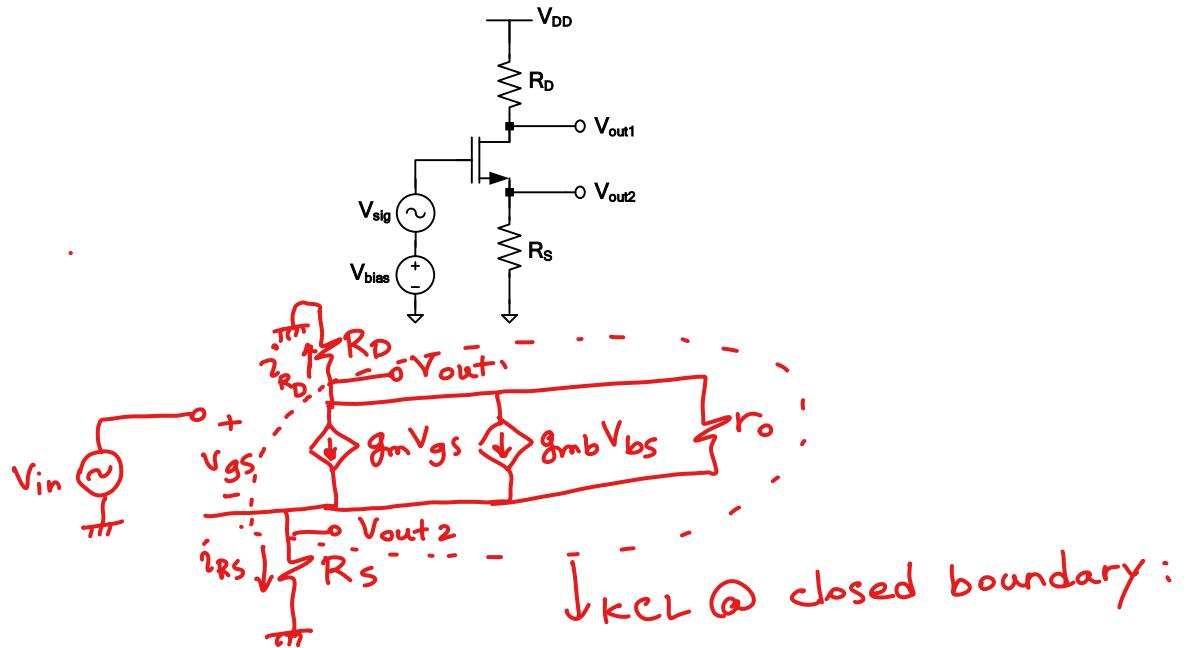
$\Rightarrow M_1$ is in saturation

$$f) V_{out, min} = V_{eff1} = 0.25 \text{ V}$$

for $V_{out, max}$, note that for M_2 to be

$$\text{ON } V_{SG2} \geq |V_{Th2}| \Rightarrow V_{DD} - V_{out} \geq 0.5$$

$$V_{out} \leq 3 - 0.5 = 2.5 \text{ V}$$


$$\text{symmetric swing} = 1 \text{ V peak} \quad \text{1.5 V peak to peak} \quad \text{2.5 V peak to peak}$$

$$V_{bias} = 0.75 \text{ V} \quad (W/L)_2 = 15 \quad R_L = 6 \text{ k}\Omega$$

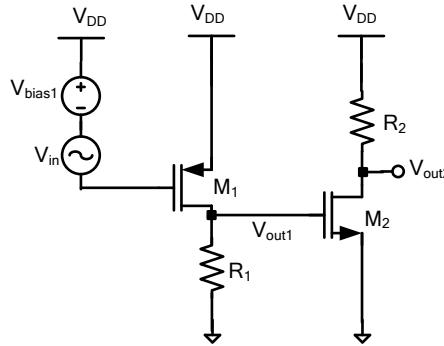
small-signal gain 2.4 V/V , region of operation of M_1 = saturation

output symmetric peak-to-peak signal swing = 2 V,

3. In the following circuit, assuming that the transistor is biased properly so that it is not operating in the cut-off region, show that in the small-signal domain, even when $\lambda > 0$ and $\gamma > 0$ (i.e., in the presence of channel length modulation and body effect), V_{out1} and V_{out2} are related by: $V_{out1}/V_{out2} = -R_D/R_S$. [20 marks].

$$i_{RD} + i_{RS} = 0$$

$$\Rightarrow i_{RD} = -i_{RS} \Rightarrow \frac{V_{out1} - 0}{R_D} = -\frac{V_{out2} - 0}{R_S} \Rightarrow \frac{V_{out1}}{V_{out2}} = -\frac{R_D}{R_S}$$



4. Design the following two-stage amplifier with the schematic shown below and these design specifications:

- $V_{DD}=1.8 \text{ V}$
- Total power consumption of the amplifier is 1.8 mW
- V_{bias1} and the level of V_{out1} and V_{out2} are all 0.9 V
- $L=0.25 \mu\text{m}$ for both transistors
- The output impedance of the circuit, that is the impedance seen at V_{out2} is $1.8 \text{ k}\Omega$

Assume the following technology parameters:

$\lambda=0$, $V_{DD}=1.8 \text{ V}$, $V_{TH(NMOS)}=0.4 \text{ V}$, $V_{TH(PMOS)}=-0.4 \text{ V}$, $\mu_n C_{ox}=500 \mu\text{A/V}^2$, $\mu_p C_{ox}=250 \mu\text{A/V}^2$. Furthermore, assume that V_{in} is a small-signal source.

- Find R_1 , R_2 , W_1 and W_2 . [12 marks]
- What is the overall gain of the system, i.e., V_{out2}/V_{in} . [3 marks]
- What is the maximum symmetric peak-to-peak output swing. [3 marks]
- If the input V_{in} is a small-signal sinusoid, what would be the maximum amplitude of the input signal for which the circuit operates as expected. [2 marks]

$$a) P = I_{D1}V_{DD} + I_{D2}V_{DD} = 1.8 \text{ mW} \implies I_{D1} + I_{D2} = \frac{1.8 \text{ mW}}{1.8 \text{ V}} = 1 \text{ mA}$$

Given that $\lambda=0$, the output impedance is

$$R_2, \text{ thus, } R_2 = 1.8 \text{ k}\Omega$$

$$\frac{V_{DD} - V_{out2, PC}}{R_2} = I_{D2} \implies I_{D2} = \frac{1.8 - 0.9}{1.8} = 0.5 \text{ mA}$$

Both transistors are in saturation since:

$$\text{For } M_1: V_{SD1} = 1.8 - 0.9 = 0.9 \quad V_{SG1} = 1.8 - \underbrace{0.9}_{V_{DD} - V_{bias1}} = 0.9 \implies V_{SG1} |V_{th1}| < V_{SD1}$$

$$\text{For } M_2: V_{DS2} = 0.9 \text{ V}, \quad V_{GS2} = V_{out1} = 0.9 \text{ V} \implies V_{GS2} - V_{th2} < V_{DS2}$$

$$I_{D2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_2 \left(V_{GS2} - V_{th2} \right)^2 \implies 0.5 = \frac{1}{2} 0.5 \left(\frac{W}{L} \right)_2 \left(0.9 - 0.4 \right)^2$$

$$\left(\frac{W}{L} \right)_2 = 8 \implies W_2 = 8 \times L_1 = 8 \times 0.25 = 2 \mu\text{m}$$

$$I_{D1} + I_{D2} = 1 \text{ mA}, I_{D2} = 0.5 \text{ mA} \Rightarrow I_{D1} = 0.5 \text{ mA}$$

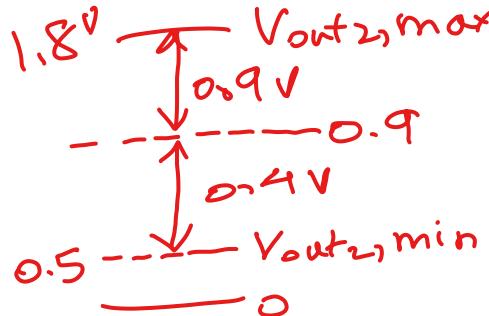
$$I_{D1} = \frac{V_{out1}}{R_1} \Rightarrow 0.5 = \frac{0.9}{R_1} \Rightarrow R_1 = 1.8 \text{ k}\Omega$$

$$I_{D1} = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L} \right) \left(V_{SG1} - V_{th} \right)^2$$

$$0.5 = \frac{1}{2} 0.25 \left(\frac{W}{L} \right) \left(1.8 - 0.9 - 0.4 \right)^2$$

$$\left(\frac{W}{L} \right)_2 = 16 \Rightarrow W_2 = 16 \times L_2 = 16 \times 0.25 = 4 \mu\text{m}$$

$$b) A_v = \frac{V_{out1}}{V_{in}} \times \frac{V_{out2}}{V_{out1}} = (-g_{m1} R_1) \times (-g_{m2} R_2)$$


$$g_{m1} = \frac{2 I_{D1}}{V_{eff1}} = \frac{2 \times 0.5}{0.9 - 0.4} = 2 \text{ mS}$$

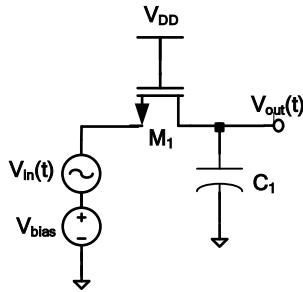
$$g_{m2} = \frac{2 I_{D2}}{V_{eff2}} = \frac{2 \times 0.5}{0.9 - 0.4} = 2 \text{ mS}$$

$$A_v = (-2 \times 1.8) (-2 \times 1.8) = 12.96 \text{ V/V}$$

$$c) V_{out2,min} = V_{eff2} = 0.5 \text{ V} \quad 1.8 \text{ V} \xrightarrow{\text{V}_{out2,\text{max}}} \\ V_{out2,max} = V_{DD} = 1.8 \text{ V} \quad 0.9 \text{ V} \xrightarrow{\text{V}_{out2,\text{min}}} 0.5 \text{ V} \quad 0 \text{ V}$$

$$\underbrace{V_{peak-to-peak}}_{\text{symmetric}} = 2 \times 0.4 = 0.8 \text{ V}$$

d) Max amplitude of input


$$V_{in,max} = \frac{V_{out,p-p/2}}{A_v} = \frac{0.8/2}{12.96} = 0.031 \text{ mV}$$

$$W_1 = 4 \mu\text{m}, W_2 = 2 \mu\text{m}, R_1 = 1.8 \text{ k}\Omega, R_2 = 1.8 \text{ k}\Omega,$$

$$V_{out2}/V_{in} = 12.96 \text{ V/V}, \text{ Maximum peaking-to-peak symmetric output swing} = 0.8 \text{ V}$$

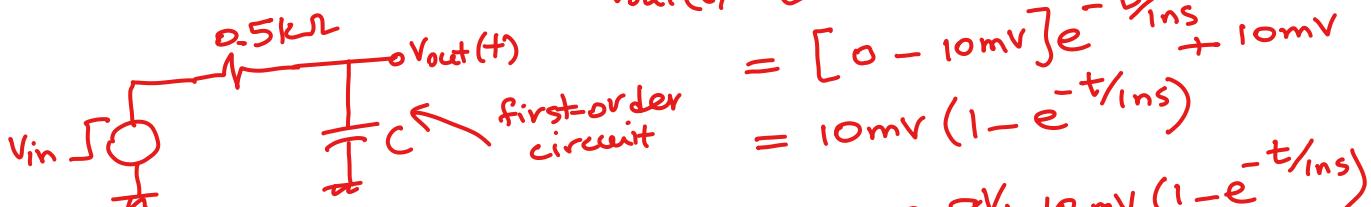
$$\text{Maximum amplitude of the small-signal input sinusoid} = 31 \text{ mV}$$

5. Consider the following circuit:

The technology parameters are:

$\lambda_{(NMOS)} = 0 \text{ V}^{-1}$, $\gamma = 0$, $V_{DD} = 3.3 \text{ V}$, $V_{TH(NMOS)} = 0.5 \text{ V}$, $\mu_n C_{Ox} = 0.1 \text{ mA/V}^2$, and $C_{Ox} = 5 \text{ fF}/\mu\text{m}^2$.

Assume $C_1 = 2 \text{ pF}$ and for the transistor we have: $L_1 = 0.5 \mu\text{m}$ and $W_1 = 5 \mu\text{m}$.

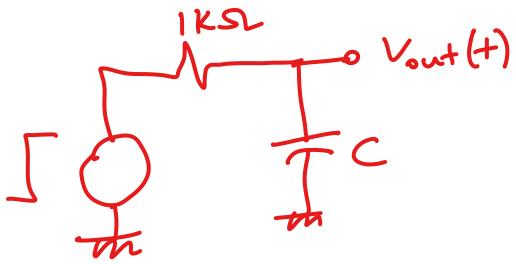

- If $V_{bias} = 0.8 \text{ V}$, what is the region of operation of the transistor and why? [6 marks]
- If the input signal, $V_{in}(t)$, is a step function with a small magnitude of 10 mV (i.e., V_{in} abruptly changes from 0 V to 10 mV at time $t = 0$), what is $V_{out}(t)$ for $t \geq 0$? [6 marks]
- Repeat parts (a) and (b) for $V_{bias} = 1.8 \text{ V}$. [8 marks]

a) $V_{GS1} = V_{DD} - V_{bias} = 3.3 - 0.8 = 2.5 \text{ V} > V_{th}$

So transistor is on: since its current is zero (drain is open circuit) therefore the transistor is in deep triode. $I_D = 0 \Rightarrow V_{DS} = 0 \Rightarrow V_D = V_S$

b) In deep triode transistor can be modelled by a resistor of value $R_{on} = \frac{1}{\mu_n C_{Ox} \frac{W}{L} (V_{GS} - V_{th})} = \frac{1}{0.1 \frac{\text{mA}}{\sqrt{2}} \frac{5}{0.5} (2.5 - 0.5)} = 0.5 \text{ k}\Omega$

small-signal model: $V_{out}(t) = [V_{out}(0) - V_{out}(\infty)] e^{-t/k_L} + V_{out}(\infty)$


$$= [0 - 10 \text{ mV}] e^{-t/10\text{ns}} + 10 \text{ mV}$$

$$= 10 \text{ mV} (1 - e^{-t/10\text{ns}})$$

$$V_{out, total}^{(t)} = V_{out, DC} + V_{out}(t) = 0.8 \text{ V} + 10 \text{ mV} (1 - e^{-t/10\text{ns}})$$

c) For $V_{bias} = 1.8 \text{ V} \Rightarrow V_{GS} = V_{DD} - V_{bias} = 3.3 - 1.8 = 1.5 > V_{th}$
 Transistor is still in deep triode

$$R_{on} = \frac{1}{\mu_n C_{Ox} \frac{W}{L} (V_{GS} - V_{th})} = \frac{1}{0.1 \frac{\text{mA}}{\sqrt{2}} \frac{5}{0.5} (1.5 - 0.5)} = 1 \text{ k}\Omega$$

$$V_{out,DC} = 1.8V$$

$$V_{out}(t) = [0 - 10mV] e^{-t/2ns} + 10mV$$

$$= 10mV (1 - e^{-t/2ns})$$

$$V_{out, total}(t) = V_{out,DC} + V_{out}(t) = 1.8V + 10mV (1 - e^{-t/2ns})$$

$$V_{out}(t) = [V_{out}(0^+) - V_{out}(\infty)] e^{-t/RC} + V_{out}(\infty)$$

$$= [0 - 10mV] e^{-t/2ns} + 10mV$$

$$= 10mV (1 - e^{-t/2ns})$$

This is intentionally left blank.