

THE UNIVERSITY OF BRITISH COLUMBIA
Department of Electrical and Computer Engineering
ELEC 401 – Analog CMOS Integrated Circuit Design
Take-Home Midterm Exam
Due: Wednesday October 28th, 2020 at 11:59 pm

Good luck!

This exam consists of 5 questions and including the cover page has 16 pages. Please check that you have a complete copy.

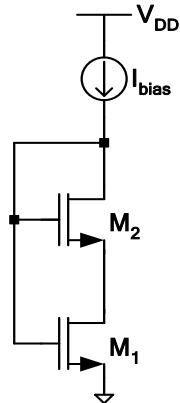
Student Number

#	MAX	GRADE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

READ THIS

→ **IMPORTANT NOTE:**

Candidates guilty of any of the following, or similar, dishonest practices shall be liable to disciplinary action:


Speaking or communicating with other candidates or non-candidates regarding the exam questions.

Purposely exposing their solution to the view of other candidates.

The plea of accident or forgetfulness shall not be received.

1. In the following circuit assume that the bulks of the two NMOS transistors are connected to ground, and furthermore for both transistors $\lambda=0$, and $\gamma\neq 0$.

- a) If $I_{bias} > 0$, what is the region of operation of transistors M_1 and M_2 ? [14 marks]
 b) For $I_{bias} > 0$, does the region of operation of M_1 and M_2 depend on the size of the transistors. In other word, does it depend on any or all of the values of W_1 , W_2 , L_1 , and L_2 . Why? [6 marks]

a) With $I_{bias} > 0$ both transistors are on:

M_2 is diode connected so it is in saturation (Also its $V_{GD2} = 0 < V_{th2}$)

For M_1 , we have

$$V_{GD1} = V_{GS2}$$

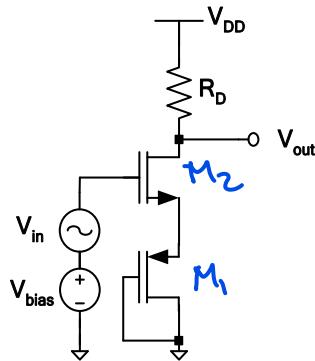
and since M_2 is on $V_{GS2} > V_{th2}$

Also due to body effect

$$V_{Th2} > V_{Th1}$$

Thus, $V_{GD1} > V_{Th1}$, that is M_1 is in triode.

b) As mentioned above, irrespective of transistor sizing, when $I_D > 0$ both transistors are on and


since $V_{GD2} = 0 < V_{Th2}$, M_2 is in saturation and

since $V_{GD1} > V_{Th1}$, M_1 is in triode (independent of sizes of transistors)

Region of operation of M_1 : _____, Region of operation of M_1 :

Does the region of operation of M_1 and M_2 depend on the sizing of transistors?
_____ (your answer should be based on the justification presented in your solution)

2. In the following circuit, assuming the NMOS transistor is operating in the saturation region: Assume $\lambda = \gamma = 0$, $V_{TH0(NMOS)} = 0.5V$, $V_{TH0(PMOS)} = -0.6V$, $\mu_n C_{ox} = 200 \mu A/V^2$, $\mu_p C_{ox} = 100 \mu A/V^2$, $(W/L)_{NMOS} = 40$, $(W/L)_{PMOS} = 80$, and $V_{DD} = 3V$.

- a) Find the required V_{bias} for which the dc bias current of the circuit is 1mA. [5 marks]

$$I = 1mA \Rightarrow 1mA = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L} \right)_1 (V_{SG1} - V_{th1})^2$$

$$1mA = \frac{1}{2} 0.1 \frac{mA}{V^2} (80) (V_{SG1} - 0.6)^2$$

$$\Rightarrow (V_{SG1} - 0.6)^2 = \frac{1}{4} \Rightarrow V_{SG1} - 0.6 = \pm 0.5 \quad -0.5 \text{ is not acceptable since transistor would be off.}$$

$V_{SG1} = 0.6 + 0.5 = 1.1V \leftarrow V_{S2}$ (voltage of the source of M2)

For the NMOS transistor

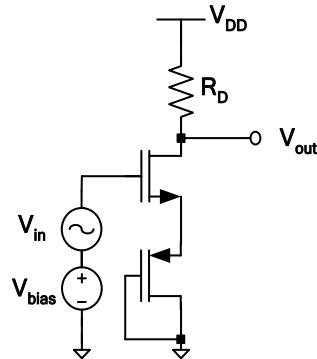
$$1mA = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_2 (V_{GS2} - V_{th2})^2 = \frac{1}{2} 0.2 \frac{mA}{V^2} (40) (V_{GS2} - V_{th2})^2$$

$$(V_{GS2} - V_{th2})^2 = \frac{1}{4} \Rightarrow V_{GS2} - V_{th2} = \pm 0.5V \Rightarrow V_{GS2} = 0.5 + 0.5 = 1V$$

negative not acceptable

$$V_{GS2} = V_{G2} - V_{S2} = V_{bias} - 1.1V = 1$$

$$V_{bias} = 2.1V$$


Write your answer in this box

$$V_{bias} = \underline{\hspace{2cm}} V$$

b) Find R_D such that the magnitude of the small-signal gain of the circuit is 1.

For your convenience the circuit and its parameters are duplicated below:

$\lambda = \gamma = 0$, $V_{TH(NMOS)} = 0.5V$, $V_{TH(PMOS)} = -0.6V$, $\mu_n C_{ox} = 200 \mu A/V^2$, $\mu_p C_{ox} = 100 \mu A/V^2$, $(W/L)_{NMOS} = 40$, $(W/L)_{PMOS} = 80$, and $V_{DD} = 3V$. [5 marks]

$$A_V = \frac{-R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}}$$

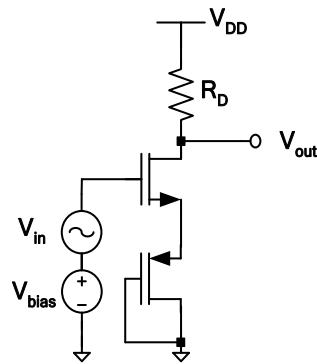
$$g_{m1} = \frac{2I_{D1}}{V_{eff1}} = \frac{2 \times 1mA}{0.5} = 4mS$$

$$g_{m2} = \frac{2I_{D2}}{V_{eff2}} = \frac{2 \times 1mA}{0.5} = 4mS$$

$$A_V = \frac{-R_D}{\frac{1}{4} + \frac{1}{4}} = -2R_D$$

Write your answer in this box

$$R_D = \text{_____ } \Omega$$


$$|A_V| = 1 \Rightarrow 2R_D = 1$$

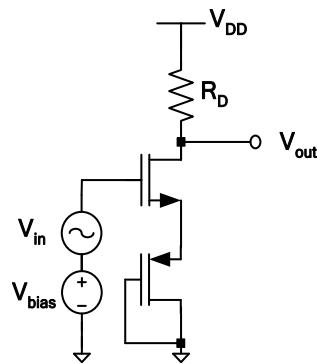
$$\Rightarrow R_D = 0.5k\Omega$$

c) Find R_D such that the magnitude of the small-signal gain of the circuit is 25.

For your convenience the circuit and its parameters are duplicated below:

$\lambda = \gamma = 0$, $V_{TH(NMOS)} = 0.5V$, $V_{TH(PMOS)} = -0.6V$, $\mu_n C_{ox} = 200 \mu A/V^2$, $\mu_p C_{ox} = 100 \mu A/V^2$, $(W/L)_{NMOS} = 40$, $(W/L)_{PMOS} = 80$, and $V_{DD} = 3V$. [5 marks]

$$|A_V| = 25 \Rightarrow 2R_D = 25 \Rightarrow R_D = 12.5 k\Omega$$


Write your answer in this box

$$R_D = \text{_____} \Omega$$

d) **Designer X** would argue with you that the value of R_D that you have calculated in part (c) is not a good engineering choice and the gain of your circuit would not be as expected. Please state your reason whether or not you agree with **Designer X**? [5 marks]

For your convenience the circuit and its parameters are duplicated below:

$\lambda = \gamma = 0$, $V_{TH(NMOS)} = 0.5V$, $V_{TH(PMOS)} = -0.6V$, $\mu_n C_{ox} = 200 \mu A/V^2$, $\mu_p C_{ox} = 100 \mu A/V^2$, $(W/L)_{NMOS} = 40$, $(W/L)_{PMOS} = 80$, and $V_{DD} = 3V$.

Designer X is correct, since if R_D were to be $12.5\text{k}\Omega$ then the voltage drop across R_D would have been $12.5\text{k}\Omega \times 1\text{mA} = 12.5\text{V}$! which is not possible since V_{DD} is 3V .

3. In the following circuit the DC current of M1 is 1 mA and M3 and M4 have equal DC (bias) currents. Assume all transistors are in saturation and the aspect ratio of transistors is as follows: $(W/L)_1 = 128$, $(W/L)_2 = 256$, $(W/L)_3 = 25$, and $(W/L)_4 = 50$.

The technology parameters are: $\lambda(\text{NMOS}) = \lambda(\text{PMOS}) = 0 \text{ V}^{-1}$, $V_{DD} = 3.0 \text{ V}$, $\gamma = 0$, $V_{TH}(\text{NMOS}) = |V_{TH}(\text{PMOS})| = 0.5 \text{ V}$, $\mu_n C_{ox} = 1 \text{ mA/V}^2$, and $\mu_p C_{ox} = 0.5 \text{ mA/V}^2$.

- Find DC value of V_{out1} , V_{out2} , V_{in} , and V_{Bias} . [8 marks]
- Find g_m of all transistors. [4 marks]
- Assume $R_L = \infty$ and find the voltage gains: V_{out1}/V_{in} and V_{out2}/V_{in} . [4 marks]
- Choose R_L such that $V_{out1} = -V_{out2}$. [4 marks]

a)

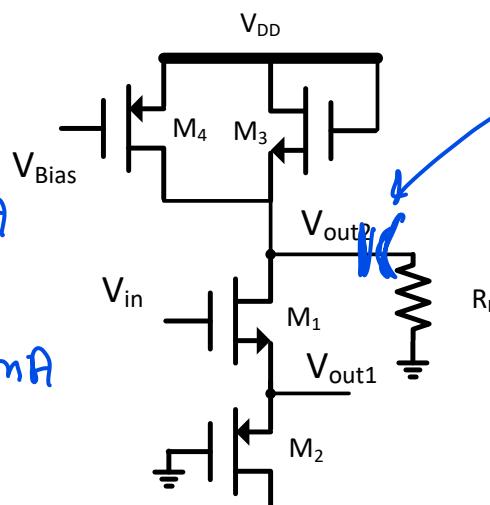
$$I_{D1} = I_{D2} = 1 \text{ mA}$$

$$I_{D3} = I_{D4} = 0.5 \text{ mA}$$

$$I_{D4} = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L} \right)_4 (V_{SG4} - V_{th4})^2$$

$$0.5 \text{ mA} = \frac{1}{2} 0.5 \frac{\text{mA}}{\text{V}^2} (50) (V_{DD} - V_{Bias} - 0.5)^2 \Rightarrow (2.5 - V_{Bias})^2 = \frac{1}{25}$$

$$2.5 - V_{Bias} = \pm \frac{1}{5} \Rightarrow V_{Bias} = 2.5 - 0.2 = 2.3 \text{ V}$$

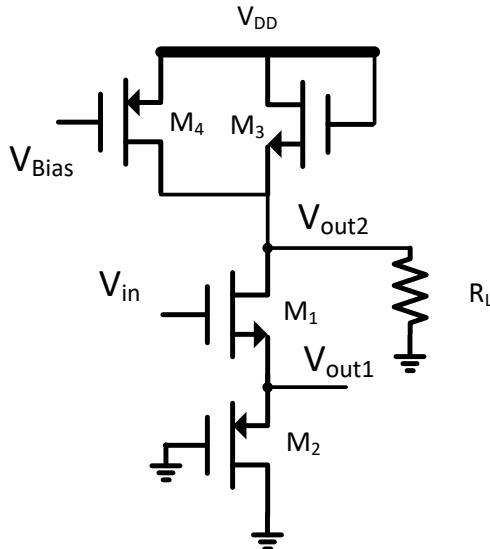

$$I_{D3} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_3 (V_{GS3} - V_{th3})^2 \Rightarrow 0.5 = \frac{1}{2} 1 \times 25 (V_{DD} - V_{out2} - 0.5)^2$$

$$(2.5 - V_{out2})^2 = \frac{1}{25} \Rightarrow 2.5 - V_{out2} = \pm 0.2 \Rightarrow V_{out2} = 2.3 \text{ V}$$

negative not acceptable

$$I_{D2} = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L} \right)_2 (V_{SG2} - |V_{th2}|)^2 \Rightarrow 1 = \frac{1}{2} 0.5 (256) (V_{out1} - 0.5)^2$$

$$(V_{out1} - 0.5)^2 = \frac{1}{64} \Rightarrow V_{out1} - 0.5 = \pm 0.125 \Rightarrow V_{out1} = 0.625$$


note: there
is a capacitor
here!

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_1 (V_{GS1} - V_{th1})^2 \Rightarrow I = \frac{1}{2} 1 (128) (V_{in} - V_{out1} - 0.5)^2$$

$$(V_{in} - 0.625 - 0.5)^2 = \frac{1}{64} \Rightarrow V_{in} - 0.625 - 0.5 = \pm 0.125 \Rightarrow V_{in} = 1.25V$$

For your convenience the circuit and the assumptions and circuit parameters are duplicated below:

$(W/L)_1 = 128$, $(W/L)_2 = 256$, $(W/L)_3 = 25$, and $(W/L)_4 = 50$.

The technology parameters are: $\lambda(\text{NMOS}) = \lambda(\text{PMOS}) = 0 \text{ V}^{-1}$, $V_{DD} = 3.0 \text{ V}$, $\gamma = 0$, $V_{TH}(\text{NMOS}) = |V_{TH}(\text{PMOS})| = 0.5 \text{ V}$, $\mu_n C_{ox} = 1 \text{ mA/V}^2$, and $\mu_p C_{ox} = 0.5 \text{ mA/V}^2$.

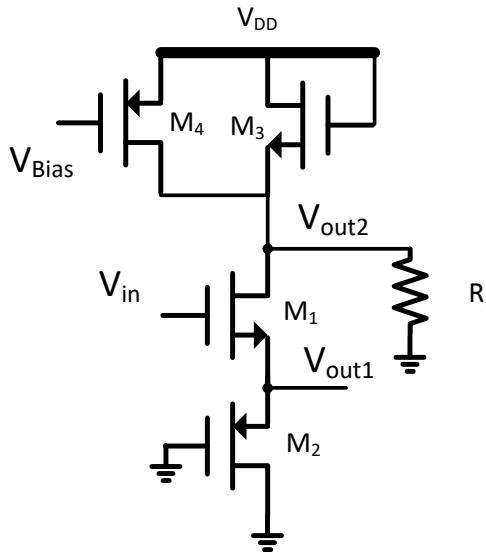
b)

$$g_{m1} = \frac{2 I_{D1}}{V_{eff1}} = \frac{2 \times 1}{0.125} = 16 \text{ mS}$$

$$g_{m2} = \frac{2 I_{D2}}{V_{eff2}} = \frac{2 \times 1}{0.125} = 16 \text{ mS}$$

$$g_{m3} = \frac{2 I_{D3}}{V_{eff3}} = \frac{2 \times 0.5}{0.2} = 5 \text{ mS}$$

$$g_{m4} = \frac{2 I_{D4}}{V_{eff4}} = \frac{2 \times 0.5}{0.2} = 5 \text{ mS}$$


c) $R_L \rightarrow \infty$

$$\frac{V_{out1}}{V_{in}} = \frac{\frac{1}{g_{m2}}}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} = \frac{\frac{1}{16}}{\frac{1}{16} + \frac{1}{16}} = 0.5 \text{ V/V}$$

$$\frac{V_{out2}}{V_{in}} = \frac{-\frac{1}{g_{m3}}}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} = \frac{-\frac{1}{5}}{\frac{1}{16} + \frac{1}{16}} = -1.6 \text{ V/V}$$

For your convenience the circuit and the assumptions and circuit parameters are duplicated below:

$(W/L)_1 = 128$, $(W/L)_2 = 256$, $(W/L)_3 = 25$, and $(W/L)_4 = 50$.

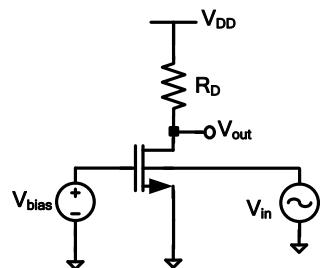
The technology parameters are: $\lambda(\text{NMOS})=\lambda(\text{PMOS})=0 \text{ V}^{-1}$, $V_{DD}=3.0 \text{ V}$, $\gamma=0$, $V_{TH}(\text{NMOS})=|V_{TH}(\text{PMOS})|=0.5 \text{ V}$, $\mu_n C_{ox}=1 \text{ mA/V}^2$, and $\mu_p C_{ox}=0.5 \text{ mA/V}^2$.

d) R_L $V_{out2} = \frac{-\left(\frac{1}{g_{m3}}\right) \parallel (R_L)}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in}$

$$V_{out1} = \frac{\frac{1}{g_{m2}}}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in}$$

$$V_{out2} = -V_{out1} \Rightarrow +\left(\frac{1}{g_{m3}}\right) \parallel (R_L) = \frac{1}{g_{m2}}$$

$$\left(\frac{1}{5}\right) \parallel (R_L) = \frac{1}{16} \Rightarrow \frac{0.2 R_L}{R_L + 0.2} = \frac{1}{16} \Rightarrow 8 R_L = R_L + 0.2 \Rightarrow R_L = \frac{0.2}{7}$$

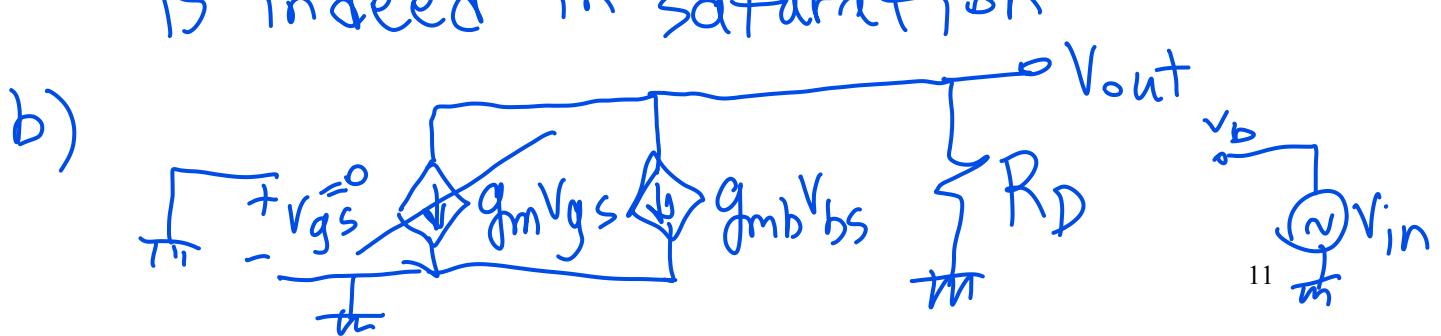

$$g_{m1} = \text{_____}, g_{m2} = \text{_____}, g_{m3} = \text{_____}, g_{m4} = \text{_____}, R_L = 28.6 \Omega$$

$$V_{out1}/V_{in} = \text{_____}, V_{out2}/V_{in} = \text{_____}, R_L \text{ such that } V_{out2} = -V_{out1} \text{ _____}$$

4. It is possible to use the bulk terminal of a transistor as an input of an amplifier. Consider the single-stage NMOS amplifier shown below where the small signal source V_{in} is applied to the bulk node of the transistor. For $V_{bias}=1$ V:

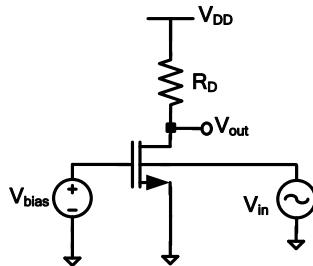
- What is the region of operation of the transistor? **[6 marks]**
- Calculate the small-signal gain ($A_v=V_{out}/V_{in}$) of the amplifier. Recall $g_{mb}=\eta g_m$. **[8 marks]**
- Would it be possible to resize the transistor, so that with the same circuit parameters the gain magnitude of the gain becomes 10? Why?

Assume, $\lambda = 0$, $\eta=0.2$, $V_{TH(NMOS)}= 0.5$ V, $\mu_n C_{ox}=800 \mu\text{A/V}^2$, $R_D=2 \text{ k}\Omega$, $(W/L)_{NMOS}= 10$, and $V_{DD}=3$ V. **[10 marks]**


a) Assume the transistor is in saturation

$$I = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

$$I = \frac{1}{2} 0.8 \frac{m\text{A}}{\text{V}^2} \times 10 (1 - 0.5)^2 = 1 \text{ mA}$$


$$V_{out,DC} = V_{DD} - R_D I = 3 - 2 \times 1 = 1 \text{ V}$$

$V_{GD} = 1 - 1 = 0 < V_{TH} \Rightarrow$ The transistor is indeed in saturation

For your convenience the circuit and the assumptions and circuit parameters are duplicated below:

Assume, $\lambda = 0$, $\eta = 0.2$, $V_{TH(NMOS)} = 0.5V$, $\mu_n C_{ox} = 800 \mu A/V^2$, $R_D = 2 k\Omega$, $(W/L)_{NMOS} = 10$, and $V_{DD} = 3V$. [10 marks]

$$V_{bs} = V_{in}$$

$$\frac{V_{out}}{V_{in}} = -g_{mb} R_D$$

$$g_m = \frac{2I_D}{V_{eff}} = \frac{2 \times 1}{1 - 0.5} = 4 \text{ mS}$$

$$g_{mb} = \eta g_m = 0.2 \times 4 = 0.8 \text{ mS}$$

$$\frac{V_{out}}{V_{in}} = -0.8 \times 2 = -1.6 \text{ V/V}$$

c) For increasing the gain by resizing the transistor g_{mb} should be 5 or

Write your answer in this box

Region: _____

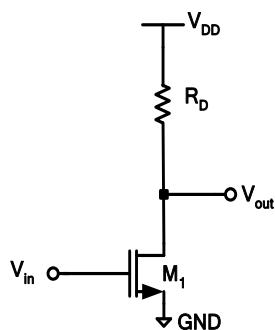
Write your answer in this box

$A_v = \text{_____ V/V}$

c) Yes or No, because:

g_m should be 25 $\Rightarrow I = 6.25 \text{ mA}$

which is not possible since
the voltage drop across R_D
would need to be $6.25 \times 2 = 12.5V!$


5. Design a common-source amplifier with a resistive load based on the schematic shown below with the following design specifications:

- $V_{DD}=3$ V
- Transistor M_1 is in saturation
- The minimum possible output voltage to keep M_1 in saturation is 0.2 V
- Total power consumption of the amplifier is 1.5 mW
- Absolute value of gain of 20
- $L=0.4$ μm for the transistor

The technology parameters are:

$$\lambda_{(\text{NMOS})}=0.1, \gamma=0, V_{DD}=3 \text{ V}, V_{TH(\text{NMOS})}=0.4 \text{ V}, \mu_n C_{Ox}=1 \text{ mA/V}^2.$$

Note: Use λ only for calculating the r_o of the transistor. **Do not** use λ in any other calculation including your bias currents (for biasing consider λ to be 0).

Find the following values:

- 1) DC level (bias voltage) of the input [4 marks]
- 2) Width (W_1) of transistor M_1 [4 marks]
- 3) R_D [4 marks]
- 4) Nominal dc level (bias level) of the output node [4 marks]
- 5) Maximum output signal swing for a symmetric output signal [4 marks]

1) Minimum output voltage to keep M_1 in saturation is 0.2 V

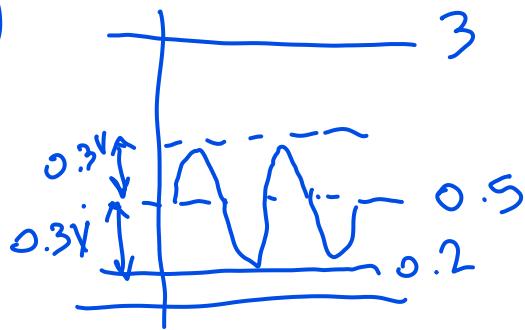
$$\Rightarrow V_{eff}=0.2 \text{ V} \Rightarrow V_{in,DC}-V_{th}=0.2 \text{ V} \Rightarrow V_{in,DC}=0.6 \text{ V}$$

$$2) P=1.5 \text{ mW} \Rightarrow \frac{V_{DD}I}{2}=1.5 \text{ mW} \Rightarrow I=\frac{1.5}{3}=0.5 \text{ mA}$$

$$I=\frac{1}{2}\mu_n C_{Ox} \frac{W}{L} (V_{eff})^2 \Rightarrow 0.5=\frac{1}{2} \times 1 \frac{\text{mA}}{\text{V}^2} \left(\frac{W}{L}\right) (0.2)^2 \Rightarrow \frac{W}{L}=25$$

$$W=25 L = 10 \mu\text{m}$$

$$3) A_V=g_m(R_D \parallel r_o) \Rightarrow 20=\frac{2I}{V_{eff}}(R_D \parallel r_o)$$


$$R_D \parallel r_o = 4 \text{ k}\Omega \quad r_o=\frac{1}{\lambda I_D}=\frac{1}{0.1 \times 0.5}=20 \text{ k}\Omega^{14}$$

$$\frac{20 \times R_D}{20 + R_D} = 4 \Rightarrow 20 R_D = 80 + 4 R_D$$

$$16 R_D = 80 \Rightarrow R_D = 5 \text{ k}\Omega$$

$$4) V_{out, DC} = V_{DD} - R_D I = 3 - 5 \times 0.5 = 0.5 \text{ V}$$

5)

Maximum symmetric swing:
amplitude: 0.3V
peak-to-peak: 0.6V

DC level of input = _____ V, $W_1 =$ _____ μm , $R_D =$ _____ $\text{k}\Omega$,

Nominal output DC level = _____ V, Maximum symmetric output swing = _____ V

This page is intentionally left blank.