

ELEC 401 Analog CMOS Integrated Circuit Design

Assignment 2

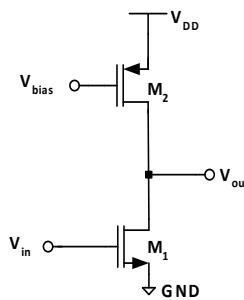
Due: Tuesday, October 21, 2025 at 11:59 pm

1. In the following circuit assume that all transistors are operating in the saturation region. Also, assume that $\lambda=\gamma=0$, $V_{DD}=3V$, $V_{bias3}=1.9V$, $V_{TH(NMOS)}=0.5V$, $V_{TH(PMOS)}=-0.6V$, $\mu_nC_{ox}=200 \mu A/V^2$, $(W/L)_1=40$, $\mu_pC_{ox}=100 \mu A/V^2$, $(W/L)_2=40$, $(W/L)_3=40$, and $R_s=50\Omega$.

- a) Find V_{bias1} such that the bias current of M_1 is $I_1=1mA$.
- b) Calculate the small-signal voltage gain $A_{V1}=V_{out1}/V_{in}$.
- c) Calculate the small-signal voltage gain $A_{V2}=V_{out2}/V_{in}$.
- d) Calculate the small-signal output impedance seen at the output node V_{out1} .
- e) Calculate the small-signal output impedance seen at the output node V_{out2} .

2. Design a common-source amplifier with a current source load based on the topology shown below with the following design specifications:

- $V_{DD}=3 V$
- Total power consumption of 1.5 mW
- Peak to peak output signal swing of 2.5 V
- Absolute value of gain of 40
- $L = 0.4 \mu \text{m}$ for all the devices

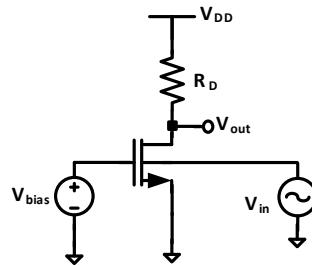

Use the following assumptions for your design

- The nominal dc level of the output node is 1.5 V

The technology parameters are:

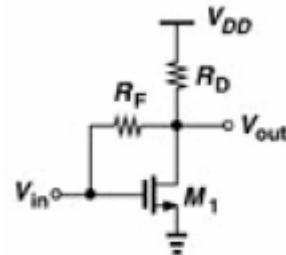
$\lambda_{(NMOS)} = 0.1 \text{ V}^{-1}$, $\lambda_{(PMOS)} = 0.1 \text{ V}^{-1}$, $\gamma = 0$, $V_{TH(NMOS)} = 0.5V$ and $V_{TH(PMOS)} = -0.5V$, $\mu_nC_{ox} = 0.2 \text{ mA/V}^2$, $\mu_pC_{ox} = 0.1 \text{ mA/V}^2$.

Note: Use the parameter λ only for calculating the small-signal output resistance (r_o) of the transistors. Do not use λ in any other calculation including the bias current calculations.



Find V_{bias} , DC level of the input, the transistor widths (i.e., W_1 and W_2), and the gain of the circuit.

3. It is possible to use the bulk terminal of a transistor as an input of an amplifier. Consider the single-stage NMOS amplifier shown below. For $V_{bias}=1.5V$:


- What is the region of operation of the transistor?
- Calculate the small-signal gain ($A_v=V_{out}/V_{in}$) of the amplifier. **Recall** that $g_{mb}=\eta g_m$.

Assume, $\lambda = 0$, $\eta=0.2$, $V_{TH(NMOS)}= 0.5V$, $\mu_n C_{ox}=100 \ \mu A/V^2$, $R_D=1k\Omega$, $(W/L)_{NMOS}= 20$, and $V_{DD}=3V$.

4. **Note:** In this problem you do not need to use any numerical value for the process parameters. If needed express your answers in terms of R_D , R_F and/or transistor small-signal parameters g_m and r_o .

In the following circuit, assuming the MOSFET is in active region:

- Calculate the small-signal voltage gain (assume $\lambda \neq 0$).
- Find the value of R_F for which the gain of the circuit is +1.
- Find the value of R_F for which the gain of the circuit is -1.
- State any condition that may be required so that the R_F calculated in part c is realizable.

Good luck!