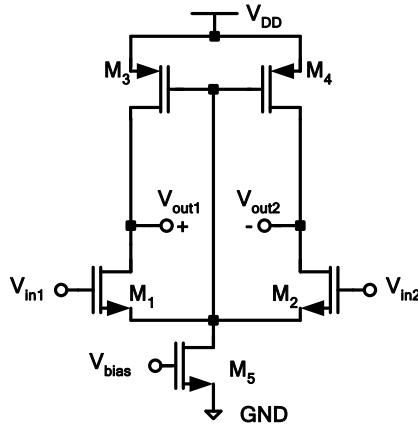


ELEC401 Analog CMOS Integrated Circuit Design
Assignment 3
Due: Tuesday, November 4th, 2025 at 11:59 pm

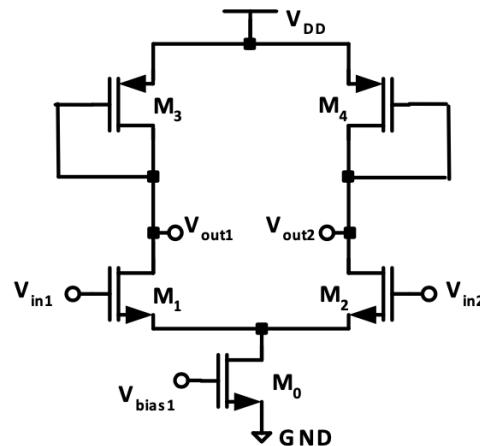

1. Consider the following differential amplifier where the small-signal input is applied to the bulk of M_1 and M_2 . For $V_{bias1}=1.4V$, and assuming that V_{bias2} is properly chosen so that all transistors are operating in their saturation region, calculate the small-signal differential gain of the amplifier.

Recall that $g_{mb} = \eta g_m$.

Assume, $\lambda = 0$, $\eta=0.2$, $|V_{TH(PMOS)}|= 0.6V$ (the threshold value is in the presence of body effect), $\mu_p C_{ox}=100 \mu A/V^2$, $R_D=1k\Omega$, $(W/L)_0= 40$, $(W/L)_1=(W/L)_2= 20$, and $V_{DD}=3V$.

2. In the following circuit all transistors have a W/L of $7\mu\text{m}/0.35\mu\text{m}$ and M_3 and M_4 are to operate in deep triode region with an on-resistance of $2k \Omega$. Assume: $I_5 = 40 \mu\text{A}$ and $\lambda = \gamma = 0$, $V_{DD} = 3 \text{ V}$, $V_{TH(NMOS)} = 0.5 \text{ V}$, $V_{TH(PMOS)} = -0.6 \text{ V}$, $\mu_n C_{ox}=200 \mu A/V^2$, $\mu_p C_{ox}=100 \mu A/V^2$.

- Calculate the dc level of the input (input common-mode level) that yields such on-resistance.
- Calculate the small-signal differential gain, i.e., $(V_{out1}-V_{out2})/(V_{in1}-V_{in2})$, of the circuit when the input common-mode level is equal to value calculated in part a.


3. Design a symmetric differential amplifier based on the topology shown below with the following design specifications:

- $V_{DD}=3.0$ V
- Total power consumption of 3.0 mW
- Output DC level of 1.5 V
- Differential gain of 40 V/V
- $L=0.4$ μ m for all devices

Assume that the minimum required voltage at the drain of M_0 to keep it in saturation is 0.2 V.


The technology parameters are:

$$\lambda_{(NMOS)}=0 \text{ V}^{-1}, \lambda_{(PMOS)}=0 \text{ V}^{-1}, \gamma=0, V_{DD}=3.0 \text{ V}, V_{TH(NMOS)}=|V_{TH(PMOS)}|=0.5 \text{ V}, \mu_n C_{ox}=1 \text{ mA/V}^2, \mu_p C_{ox}=0.25 \text{ mA/V}^2.$$

- Find V_{bias1} , and all the transistor widths (i.e., W_0, W_1, W_2, W_3 , and W_4).
- Find the minimum and maximum allowable input common-mode (input DC) levels.

4. Consider the following differential amplifier.

Assume all transistors are operating in saturation region and $\lambda=\gamma=0$, $V_{DD}=3$ V, $V_{TH(NMOS)}=0.5$ V, $\mu_nC_{ox}=1$ mA/V², $R=100$ Ω , $(W/L)_1=(W/L)_2=16$ and $(W/L)_0=32$. Also, assume that the $V_{bias}=0.75$ V and the circuit is symmetric.

- What should the value of R_L be if the magnitude of the differential voltage gain of the circuit is 4 V/V.
- For the circuit to operate properly (i.e., all transistors operate in their saturation region), what are the minimum and maximum values of the input common-mode voltage (i.e., input DC voltage)

Good luck.