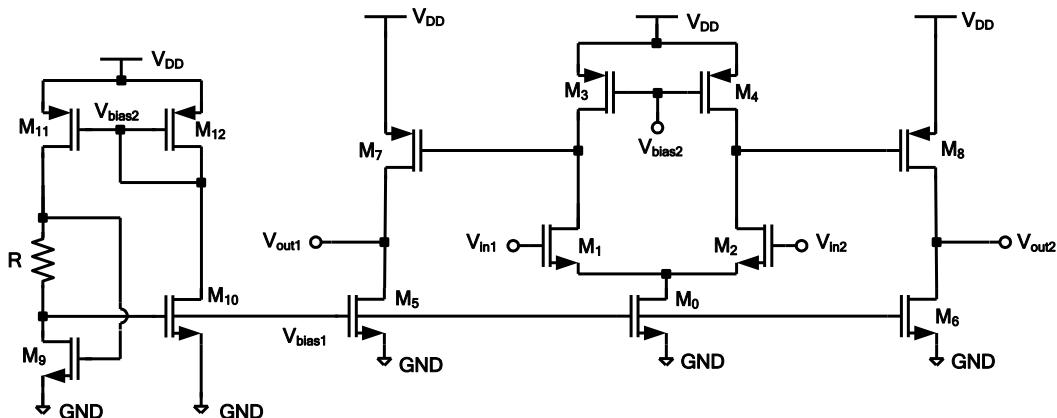


ELEC 401 Analog CMOS Integrated Circuit Design
Assignment 4
Due: Tuesday, December 2nd, 2025 at 11:59pm


1. Consider the following circuit. (This circuit is sometimes referred to as a self-biased current source).

Assume all transistors are operating in saturation region and $\lambda=\gamma=0$, $V_{DD}=3$ V, $V_{TH(NMOS)}=0.5$ V, $V_{TH(PMOS)}= -0.5$ V, $\mu_n C_{ox}=200 \mu\text{A/V}^2$, and $\mu_p C_{ox}=100 \mu\text{A/V}^2$. Also, assume that M_0 , M_3 and M_4 have the same aspect ratio.

Given that $I_{out} = 50 \mu\text{A}$ and $(W/L)_1=16$, find R .

2. Design a two-stage differential amplifier based on the topology shown below:

Use the following design specifications (Note that the gate of M_{12} is also connected to the gate of M_3):

- $V_{DD}=1.8\text{V}$
- Total power consumption of 1.98 mW
- Total gain of 4000
- $L=0.4 \mu\text{m}$ for all the devices
- $W_{11}=W_{12}$
- $W_{10}=4W_9$
- $R=1 \text{ k}\Omega$

Furthermore, assume:

- The op-amp circuit is symmetric
- The bias currents of the first stage and second stage are equal (i.e., $I_0=I_5+I_6$) and I_{11} is 10% of I_0 .
- The magnitude of overdrive voltages of M_4 , M_6 , and M_8 are equal

The technology parameters are:

$$\lambda_{(NMOS)}=\lambda_{(PMOS)}=0.1V^{-1}, \gamma = 0, V_{DD}=1.8V, V_{TH(NMOS)}=|V_{TH(PMOS)}|=0.4V, \mu_n C_{ox}=1 \text{ mA/V}^2, \mu_p C_{ox}=0.5 \text{ mA/V}^2.$$

Note: Use the parameter λ only for calculating the r_o of the transistors. **Do not** use λ in any other calculation including your bias currents.

Find all transistor widths (namely, $W_0, W_1, W_2, W_3, W_4, W_5, W_6, W_7, W_8, W_9, W_{10}, W_{11}$ and W_{12}).

Good luck!