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Suggested Reading

• Most of the material in this set are based on

Chapters 2, 16, and 17 of the Razavi’s book: Design of Analog
CMOS Integrated Circuits

Unless otherwise specified, the figures in this set are from © Design of Analog CMOS
Integrated Circuits, McGraw-Hill, 2001, unless otherwise noted.
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Transistor

• Transistor stands for …

• Transistor are semiconductor devices that can be classified as

– Bipolar Junction Transistors (BJTs)

– Field Effect Transistors (FETs)

• Depletion-Mode FETs or (e.g., JFETs)

• Enhancement-Mode FETs (e.g., MOSFETs)
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Simplistic Model

• MOS transistors have three terminals: Gate, Source, and Drain

• The voltage of the Gate terminal determines the type of connection
between Source and Drain (Short or Open).

• Thus, MOS devices behave like a switch

Device is ON
D is shorted to S

Device is OFF
D & S are disconnected

VG low

Device is OFF
D & S are disconnected

Device is ON
D is shorted to S

VG high

PMOSNMOS
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Physical Structure - 1

• Source and Drain terminals are identical except that Source provides
charge carriers, and Drain receives them.

• MOS devices have in fact 4 terminals:
– Source, Drain, Gate, Substrate (bulk)

© Microelectronic Circuits, 2004 Oxford University Press
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Physical Structure - 2 

LD: Due to Side Diffusion

Poly-silicon used instead of Metal
for fabrication reasons

• Actual length of the channel (Leff) is less than the length of gate

• Charge Carriers are electrons in NMOS devices, and holes in
PMOS devices.

• Electrons have a higher mobility than holes
• So, NMOS devices are faster than PMOS devices
• We rather to have a p-type substrate?!
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Physical Structure - 3

• N-wells allow both NMOS and PMOS devices to reside on the
same piece of die.

• As mentioned, NMOS and PMOS devices have 4 terminals:
Source, Drain, Gate, Substrate (bulk)

• In order to have all PN junctions reverse-biased, substrate of
NMOS is connected to the most negative voltage, and substrate
of PMOS is connected to the most positive voltage.
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Physical Structure - 4

• MOS transistor Symbols:

• In NMOS Devices:
Current flows from Drain to Source

• In PMOS Devices:
Current flows from Source to Drain

• Current flow determines which terminal is Source and which one
is Drain. Equivalently, source and drain can be determined based
on their relative voltages.

DrainSource electron →

DrainSource hole→
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Threshold Voltage - 1

(a) An NMOS driven by a gate voltage, (b) formation of depletion region, (c) onset of inversion,
and (d) channel formation

• Consider an NMOS: as the gate voltage is increased, the surface
under the gate is depleted. If the gate voltage increases more,
free electrons appear under the gate and a conductive channel is
formed.

• As mentioned before, in NMOS devices charge carriers in the
channel under the gate are electrons.
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Threshold Voltage - 2

• Intuitively, the threshold voltage is the gate voltage that forces the
interface (surface under the gate) to be completely depleted of charge (in
NMOS the interface is as much n-type as the substrate is p-type)

• Increasing gate voltage above this threshold (denoted by VTH or Vt)
induces an inversion layer (conductive channel) under the gate.

© Microelectronic Circuits, 2004 Oxford University Press
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Threshold Voltage - 3

Analytically:
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Threshold Voltage - 4

• In practice, the “native” threshold value may not be suited for
circuit design, e.g., VTH may be zero and the device may be on for
any positive gate voltage.

• Typically threshold voltage is adjusted by ion implantation into the
channel surface (doping P-type material will increase VTH of
NMOS devices).

• When VDS is zero, there is no horizontal electric field present in the
channel, and therefore no current between the source to the drain.

• When VDS is more than zero, there is some horizontal electric field
which causes a flow of electrons from source to drain.
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Long Channel Current Equations - 1

• The voltage of the surface under the gate, V(x), depends on the
voltages of Source and Drain.

• If VDS is zero, VD= VS=V(x). The charge density Qd (unit C/m) is uniform.

)( THGSoxd VVWCQ −−=

))(()( THGSoxd VxVVWCxQ −−−=
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=
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• If VDS is not zero, the channel is tapered, and V(x) is not constant. The
charge density depends on x.
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Long Channel Current Equations - 3

velocityQ
dt
dx
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• Current :

 Velocity in terms of V(x):

 Qd in terms of V(x):

dx
xdVVxVVWCI nTHGSoxD
)(])([ µ−−=

• Current in terms of V(x):

• Long-channel current equation:

© Microelectronic Circuits, 2004 Oxford University Press
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Long Channel Current Equations - 4

( ) 

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• Terminology:
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• Current in Triode Region:

• If VDS ≤ VGS-VTH we say the device is operating in triode (or linear) region.
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Long Channel Current Equations - 5
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• For very small VDS (deep Triode Region):
ID can be approximated to be a linear function of VDS.
The device resistance will be independent of VDS and will

only depend on Veff.
The device will behave like a variable resistor



18SM
ELEC 401 – Set 1: Background

Long Channel Current Equations - 6

• Increasing VDS causes the channel to acquire a tapered shape. Eventually,
as VDS reaches VGS – VTH the channel is pinched off at the drain. Increasing
VDS above VGS – VTH has little effect (ideally, no effect) on the channel’s
shape.

© Microelectronic Circuits, 2004 Oxford University Press

• When VDS is more than VGS – VTH the channel is pinched off, and the
horizontal electric field produces a current.
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Long Channel Current Equations - 7

• If VDS > VGS – VTH, the transistor is in saturation (active) region,
and the channel is pinched off.
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• Let’s, for now, assume that L’=L. The fact that
L’ is not equal to L is a second-order effect
known as channel-length modulation.

• Since ID only depends on VGS, MOS transistors in saturation can be
used as current sources.
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Long Channel Current Equations - 8

• Current Equation for NMOS:
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Long Channel Current Equations - 9

• Current Equation for PMOS:
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Regions of Operation - 1

• Regions of Operation:
Cut-off, triode (linear), and saturation (active or pinch-off)

© Microelectronic Circuits, 2004 Oxford University Press

• Once the channel is pinched off, the current through the channel is
almost constant. As a result, the I-V curves have a very small slope in
the pinch-off (saturation) region, indicating the large channel
resistance.
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Regions of Operation - 2

• The following illustrates the transition from pinch-off to triode region for
NMOS and PMOS devices.

• For NMOS devices:
If VD increases (VG Const.), the device will go from Triode to Pinch-off.
If VG increases (VD Const.), the device will go from Pinch-off to Triode.

** In NMOS, as VDG increases the device will go from Triode to Pinch-off.
• For PMOS devices:

If VD decreases (VG Const.), the device will go from Triode to Pinch-off.
If VG decreases (VD Const.), the device will go from Pinch-off to Triode.

** In PMOS, as VGD increases the device will go from Pinch-off to Triode.
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Regions of Operation - 3

© Microelectronic Circuits, 2004 Oxford University Press

• NMOS Regions of Operation:

• Relative levels of the terminal voltages of the enhancement-type NMOS
transistor for different regions of operation.
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Regions of Operation - 4

© Microelectronic Circuits, 2004 Oxford University Press

• PMOS Regions of Operation:

• The relative levels of the terminal voltages of the enhancement-type
PMOS transistor for different regions of operation.
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Regions of Operation - 5

Example:
For the following circuit assume that VTH=0.7V.
• When is the device on?

• What is the region of operation if the device is on?

• Sketch the on-resistance of transistor M1 as a function of VG.
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Transconductance - 1

• The drain current of the MOSFET in saturation region is ideally a
function of gate-overdrive voltage (effective voltage). In reality, it is also
a function of VDS.

• It makes sense to define a figure of merit that indicates how well the
device converts the voltage to current.

• Which current are we talking about?

• What voltage is in the designer’s control?

• What is this figure of merit?
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Transconductance - 2

• Transconductance in triode:

• Transconductance in saturation:
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Example:
Plot the transconductance of the following circuit as a function of VDS

(assume Vb is a constant voltage).

• Moral: Transconductance drops if the device enters the triode region.
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Transconductance - 3

• Transconductance, gm, in saturation:

THGS

D
DoxnTHGSoxnm VV
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• If the aspect ratio is constant: gm depends linearly on (VGS - VTH).
Or gm depends on square root of ID.

• If ID is constant: gm is inversely proportional to (VGS - VTH).
Or gm depends on square root of the aspect ratio.

• If the overdrive voltage is constant: gm depends linearly on ID.
Or gm depends linearly on the aspect ratio.
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Second-Order Effects (Body Effect)

Substrate Voltage:
• So far, we assumed that the bulk and source of the transistor are at the

same voltage (VB=VS).
• If VB >Vs, then the bulk-source PN junction will be forward biased, and

the device will not operate properly.
• If VB <Vs,

– the bulk-source PN junction will be reverse biased.
– the depletion region widens, and Qdep increases.
– VTH will be increased (Body effect or Backgate effect).

• It can be shown that (what is the unit for γ ?):
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Body Effect - 2

No Body Effect With Body Effect

Example:
Consider the circuit below (assume the transistor is in the active region):
• If body-effect is ignored, VTH will be constant, and I1 will only depend on

VGS1=Vin-Vout. Since I1 is constant, Vin-Vout remains constant.

CVVVConstCVVV THoutinTHoutin +=−→==−− .
• As Vout increases, VSB1 increases, and as a result VTH increases.

Therefore, Vin-Vout Increases.

• In general, I1 depends on VGS1- VTH =Vin-Vout-VTH (and with body effect
VTH is not constant). Since I1 is constant, Vin-Vout-VTH remains constant:

.. ContsDCVVVConstCVVV THoutinTHoutin ==+=−→==−−
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Body Effect - 3

Example:
For the following Circuit sketch the drain current of transistor M1 when VX
varies from -∞ to 0. Assume VTH0=0.6V, γ=0.4V1/2, and 2ΦF=0.7V.
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Channel Length Modulation - 1

L
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• When a transistor is in the saturation region (VDS > VGS – VTH),
the channel is pinched off.

• The drain current is LL-L'VV
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• As ID actually depends on both VGS and VDS, MOS transistors are
not ideal current sources (why?).
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Channel Length Modulation - 2

• λ represents the relative variation in effective length of the channel for a given
increment in VDS.

• For longer channels λ is smaller, i.e., λ ∝ 1/L

• Transconductance:

In Triode:

In Saturation (ignoring channel length modulation):

In saturation with channel length modulation:

• The dependence of ID on VDS is much weaker than its dependence on VGS.
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Channel Length Modulation - 3

Example:
Given all other parameters constant, plot ID-VDS characteristic of an NMOS
for L=L1 and L=2L1
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• Changing the length of the device from L1 to 2L1 will flatten the ID-VDS
curves (slope will be divided by two in triode and by four in saturation).

• Increasing L will make a transistor a better current source, while
degrading its current capability.

• Increasing W will improve the current capability.

• In Triode Region:

• In Saturation Region:
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Sub-threshold Conduction

• If VGS < VTH, the drain current is not zero.
• The MOS transistors behave similar to BJTs.

• In BJT:

• In MOS:

• As shown in the figure, in MOS transistors, the drain current drops by
one decade for approximately each 80mV of drop in VGS.

• In BJT devices the current drops faster (one decade for approximately
each 60mv of drop in VGS).

• This current is known as sub-threshold or weak-inversion conduction.

T
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V
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CMOS Processing Technology

• Top and side views of a typical CMOS process
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CMOS Processing Technology

• Different layers comprising CMOS transistors
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Photolithography (Lithography)

• Used to transfer circuit layout information to the wafer
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ELEC 401 – Set 1: Background



41SM
ELEC 401 – Set 1: Background

Self-Aligned Process

• Why source and drain junctions are formed after the gate oxide
and polysilicon layers are deposited?
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Back-End Processing 

• Oxide spacers and silicide
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Back-End Processing 

• Contact and metal layers fabrication
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Back-End Processing

• Large contact areas should be avoided to minimize the
possibility of spiking
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MOS Layout - 1

• It is beneficial to have some insight into the layout of the MOS devices.

• When laying out a design, there are many important parameters we
need to pay attention to such as: drain and source areas,
interconnects, and their connections to the silicon through contact
windows.

• Design rules determine the criteria that a circuit layout must meet for a
given technology. Things like, minimum length of transistors, minimum
area of contact windows, …
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MOS Layout - 2

Example:
Figures below show a circuit with a suggested layout.

• The same circuit can be laid out in different ways, producing different
electrical parameters (such as different terminal capacitances).
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Device Capacitances - 1

• The quadratic model determines the DC behavior of a MOS transistor.
• The capacitances associated with the device are important when

studying the AC behavior of that device.
• There is a capacitance between any two terminals of a MOS transistor.

So there are 6 capacitances in total.
• The Capacitance between Drain and Source is usually negligible

(CDS=0).

• These capacitances will depend on the region of operation (Bias
values).
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Device Capacitances - 2

• The following will be used to calculate the capacitances between
terminals:
1. Oxide Capacitance:                        ,

2. Depletion Capacitance:

3. Overlap Capacitance:

4. Junction Capacitance:
 Sidewall Capacitance:

 Bottom-plate Capacitance:

oxCLWC ⋅⋅=1
ox

ox
ox t

C
ε

=

F

subsi
dep

Nq
LWCC

Φ⋅
⋅⋅

⋅⋅==
42
ε

fringeoxDov CCLWCCC +⋅⋅=== 43

m

B

R

j
jun

V

C
C









Φ

+

=

1

0jswC

jC

jswj CCCC +== 65



49SM
ELEC 401 – Set 1: Background

Device Capacitances - 3

In Cut-off:
1. CGS: is equal to the overlap capacitance.
2. CGD: is equal to the overlap capacitance.
3. CGB: is equal to Cgate-channel = C1 in series with Cchannel-bulk = C2.

4. CSB: is equal to the junction capacitance between source and
bulk.

5. CDB: is equal to the junction capacitance between source and
bulk.

3CCC ovGS ==

4CCC ovGD ==

5CCSB =

6CCDB =
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Device Capacitances - 4

In Triode:
• The channel isolates the gate from the substrate. This means that if VG

changes, the charge of the inversion layer are supplied by the drain
and source as long as VDS is close to zero. So, C1 is divided between
gate and drain terminals, and gate and source terminals, and C2 is
divided between bulk and drain terminals, and bulk and source
terminals.
1. CGS:
2. CGD:
3. CGB: the channel isolates the gate from the substrate.
4. CSB:
5. CDB:

0=GBC

2
1CCC ovGS +=

2
2

5
CCCSB +=

2
2

6
CCCDB +=

2
1CCC ovGD +=
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Device Capacitances - 5

In Saturation:
• The channel isolates the gate from the substrate. The voltage across

the channel varies which can be accounted for by adding two
equivalent capacitances to the source. One is between source and
gate, and is equal to two thirds of C1. The other is between source and
bulk, and is equal to two thirds of C2.
1. CGS:
2. CGD:
3. CGB: the channel isolates the gate from the substrate.
4. CSB:
5. CDB:

0=GBC

13
2 CCC ovGS +=

25 3
2 CCCSB +=

6CCDB =

ovGD CC =
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Device Capacitances - 6

• In summary:

CDB
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Importance of Layout

Example (Folded Structure):
Calculate the gate resistance of the circuits shown below.

Folded structure:
• Decreases the drain capacitance
• Decreases the gate resistance
• Keeps the aspect ratio the same
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Passive Devices

• Resistors
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Passive Devices

• Capacitors:



56SM
ELEC 401 – Set 1: Background

Passive Devices

• Capacitors
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Passive Devices

• Inductors
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Latch-Up

• Due to parasitic bipolar transistors in a CMOS process
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Small Signal Models - 1

• Small signal model is an approximation of the large-signal model
around the operation point.

• In analog circuits most MOS transistors are biased in saturation region.

• In general, ID is a function of VGS, VDS, and VBS. We can use this Taylor
series approximation:
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Small Signal Models - 2

• Current in Saturation:

• Taylor approximation:

• Partial Derivatives:
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Small Signal Models - 3

• Small-Signal Model:
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• Terms, gmvGS and gmbvBS, can be modeled by dependent sources.
These terms have the same polarity: increasing vG, has the same
effect as increasing vB.

• The term, vDS/ro can be modeled using a resistor as shown below.
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Small Signal Models - 4

• Complete Small-Signal Model with Capacitances:

• Small signal model including all the capacitance makes the intuitive
(qualitative) analysis of even a few-transistor circuit difficult!

• Typically, CAD tools are used for accurate circuit analysis

• For intuitive analysis we try to find a simplest model that can represent
the role of each transistor with reasonable accuracy.
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Circuit Impedance - 1

• It is often useful to determine the impedance of a circuit seen from a
specific pair of terminals.

• The following is the recipe to do so:
1. Connect a voltage source, VX, to the port.
2. Suppress all independent sources.
3. Measure or calculate IX.
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Circuit Impedance - 2

Example:
• Find the small-signal impedance of the following current

sources.
• We draw the small-signal model, which is the same for both

circuits, and connect a voltage source as shown below:
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Circuit Impedance - 3

Example:
• Find the small-signal impedance of the following circuits.
• We draw the small-signal model, which is the same for both

circuits, and connect a voltage source as shown below:
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Circuit Impedance - 4

Example:
• Find the small-signal impedance of the following circuit. This

circuit is known as the diode-connected load, and is used
frequently in analog circuits.

• We draw the small-signal model and connect the voltage
source as shown below:
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• If channel length modulation is ignored (ro=∞) we get:
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Circuit Impedance - 5

Example:
• Find the small-signal impedance of the following circuit. This

circuit is a diode-connected load with body effect.
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• If channel length modulation is ignored (ro=∞) we get:
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Short-Channel Effects

• Threshold Reduction
– Drain-induced barrier lowering (DIBL)

• Mobility degradation

• Velocity saturation

• Hot carrier effects
– Substrate current
– Gate current

• Output impedance variation
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Threshold Voltage Variation in Short Channel Devices

• The Threshold of transistors fabricated on the same chip decreases as
the channel length decreases.

• Intuitively, the extent of depletion regions associated with drain and
source in the channel area, reduces the immobile charge that must be
imaged by the charge on the gate.
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Drain-Induced Barrier Lowering (DIBL)

When the channel is short, the drain
voltage increases the channel surface
potential, lowering the barrier to flow
charge from source (think of increased
electric field) and therefore, decreasing
the threshold.
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Effects of Velocity Saturation

• Due to drop in mobility at high electric fields

• (a) Premature drain current saturation and (b) reduction in gm
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Hot Carrier Effects

• Short channel devices may experience high lateral drain-source
electric field

• Some carriers that make it to drain have high velocity (called
“hot” carriers)

• “Hot” carriers may “hit” silicon atoms at high speed and cause
impact ionization

• The resulting electron and holes are absorbed by the drain and
substrate causing extra drain-substrate current

• Really “hot” carriers may be injected into gate oxide and flow out
of gate causing gate current!
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Output Impedance Variation

Recall the definition of  λ.
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Output Impedance Variation in Short-Channel Devices
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