ELEC 401: Analog CMOS Integrated Circuit Design
Set 6
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General Considerations

e Gain

e Small-signal bandwidth

« Large-signal performance
e Qutput swing

* |nput common-mode range
e Linearity

* Noise/offset

* Supply rejection
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One-Stage Op Amps
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One-Stage Op Amp in Unity Gain
Configuration
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Cascode Op Amps
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Unity Gain One Stage Cascode
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Folded Cascode Op Amps
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Folded Cascode Stages
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Folded Cascode (cont.)

(¥) Iss
ot Wiy 4 N wl':'_*
Vi M, Hdi ey n—TI'll I"Irli e ii My qu
ﬁ_||:|M1 "?FI VIHE |
l'Ilh'l ¥ 1

SM ) 9
ELEC 401 Set 6 - Opamp Design



Folded Cascode (cont.)
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Telescopic versus Folded Cascode
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Example Folded-Cascode Op Amp
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Single-Ended Output Cascode Op Amps
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Triple Cascode
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A, app. (gnlo)°/2
Limited Output Swing

Complex biasing
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Output Impedance Enhancement

Rout — Algm2r02rol
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Gain Boosting in Cascode Stage
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Differential Gain Boosting
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Differential Gain Boosting
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Differential Gain Boosting
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Two-Stage Op Amps

High Gain High Swing
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Single-Ended Output Two-Stage Op Amp
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Two-Stage CMOS Opamp

Popular opamp design approach
A good example to review many important design concepts
Output buffer is typically used to drive resistive loads

For capacitive loads (typical case in CMOS) buffer is not
required.

Differential Second Output
input stage gain stage buffer
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Two-Stage CMOS Opamp Example

Q10 Qff Q5 Vo Q6
|..1 25 ,|_,]‘3c:-o :
25 I_._I|_ 1 1 300 Note!
'_ll lbias 500 -
Q
Q14 Q12 Q1 Q2
o5 :||—-—||: 25 Viﬂ—o—ll‘: 300 300 :ll-o Vins Vout
=0

LI

17 Ay

Q3 Q

T
Bias circuitry
first stage

Differential-input

0161-_1_

Cc

P——

300

500

Vss

Common-source

1= 5
ard  Q
—
Output
buffer

second stage

all transistor lengths = 1.6 um (1 um technology was used!)
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Gain of the Opamp

First Stage

Differential to single-ended

Al = 9m(rosllirgy)

W AR
Imi = JQHDCDX(TJIIDI = JQHPCDX(L)] éas

Second Stage

Common-source stage

sz = _gm?(r()ﬁl r'o7)

Output buffer is not required when driving capacitive loads
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Gain of the Opamp

Third Stage

o Source follower

3T ms *+ GL+ Gmps + 9os + 9o

« Typical gain: between 0.7 tol
* Note: g,=1/r,and G =1/R,

* 0. IS body-effect conductance (is zero if source can be tied to
substrate)
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Frequency Response

Q5
300
Vbiaso—]
Vin+ O l
Q1 Q2
vin{,_||<_- 300 3oc:||_
Vi
150
15C]r—_|l |:l| _gml Vin
03 04 Ceq = Cc(1+Ay)
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Frequency Response

Simplifying assumptions:
« C. dominates
« Ignore Qi for the time being (it is used for lead compensation)

Miller effect results Iin

Ceq = Cc(l + AE) = CcA2

At midband frequencies

Z =ropllrpsI11/8C,

o 1 /(sCA,)

Al = 9mfeg = 9,17/ (8CLA))

1N
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Frequency Response

e Overall gain (assuming A; =1)
which results in a unity-gain frequency of

Wig = gml/CC

« Note: w,, Is directly proportional to g¢,, and inversely
proportional to C.
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Frequency Response

* First-order model

A
20log(A1A5)
Gain —20 dB/decade
(dB)
O3 = 9m1/Cc
| Fre
0 | T > d
@p1 “ta (log)
0)pl
| |
0 I | > Freq
Phase Ota
(log)
(degrees)
-90
-180
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Slew Rate

 Maximum rate of output change when input signal is large.

Q5
300

Q1 Q2
Vi“*”—li 300 3oc-_-|l_

150 «——
15(1:': :I:l| = 0Omz1 Vin
Y Q3 4 . .
o All the bias current of Q5 goes either into Q1 or Q2.
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Slew Rate
 Thus

_ Icc|max _ L.C_?j _ %_{_Q_l
CC CC CC

max

lH, 1s nominal bias current of input transistors

. W
» Using C, = g,,,/ 04, @and g,,,, = Jzupcox(_f)]/m

21p,

SR =
J20Co  (W/L) 1y,

Wi = Veﬂ‘lmra

here V 2/p
WSS Vel = 1 C oW/ D),
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Slew Rate

SR = Vefflo)ra

« Normally, the designer has not much control over w,,
« Slew-rate can be increased by increasing V

« This is one of the reasons for using p-channel input stage:
higher slew-rate
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Systematic Offset Voltage

« To ensure inherent (systematic) offset voltage does not exist,
nominal current through Q7 should equal to that of Q6 when the

differential input Is zero.
Q5

Vb

Q6

300
Vhiaso |

"ll s

Q2

Vin—o—ll: 300 300 :||—O Vin+

g

Q3 Q

SM

Il:rsoo

—0 Vit
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Systematic Offset Voltage

* Avoid systematic offset by choosing:

(W/L),  (W/L),

(W/L), ~ “(W/L),

* Found by noting

Ips = 21p; 21,

and

VGS? - VDS3

VGSﬂr

then setting /[, = [
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N-Channel versus P-Channel Input Stage

 Complimentary opamp can be designed with an n-channel input
differential pair and p-channel second-stage

e Overall gain would be roughly the same in both designs
P-channel Advantages

« Higher slew-rate: for fixed bias current, V  Is larger (assuming
similar widths used for maximum gain)

 Higher frequency of operation: higher transconductance of
second stage which results in higher unity-gain frequency

« Lower 1/f noise: holes less likely to be trapped; p-channel
transistors have lower 1/f noise

 N-channel source follower is preferable (less voltage drop and
higher g,,)

N-channel Advantage

« Lower thermal noise — thermal noise is lowered by high
transconductance of first stage
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Feedback and Opamp Compensation

Yis)

« Feedback systems may oscillate

 The following two are the oscillation conditions:

| fH(Jo) |=1
/BH (jo) =180
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Stable and Unstable Systems

Unstable Stable
208oglp H ()| 1 Excanthn 20i0g | H ()] L
o , -
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-
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(K] ik
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Time-domain response of a feedback system
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H(s) = A
1+ S
W,
Ay
%(S)— 1+,B,SA\O
1+
wo(l"'ﬂAo)

SM

One-pole system

2MegpAg
1] - -
LEI {xh (log scale)
o -
45 ! m (109 scale)
o
[ Q) SO
LpHl) Y

Bode plot of the Loop gain
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0.1lw,, > 10w,

SM

Multi-pole system

20og |p H (w)] b

Gain
Crossover

1]
to (log scale)
0— -
& t (log scale)
T .
- Mﬂ'- ........................
JBH @)Y

Bode plot of the Loop gain
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Loop Gain

(dB)

2010g (LG (jo))

Phase Margin

-20 dB/decade
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|
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(degrees) 0 PM | ‘
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Phase Margin
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Phase Margin (Cont.)

PM =180+ ZBH( g, )

SM

20log | M (w)] A

—
W iy (log scale)

o

iy (log scale)
.135'3.-..---...--.... '

[BHlw) g
Phase Margin = 45°
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Phase Margin (Cont.)

Phase Margin = 45°
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SM

Hrl[/\ifrv r[r}yl’ﬂhﬁu yit) PM =90
i -
t !
| k)

Phase Margin (Cont.)

=X

|
L iCH

At PM = 60° results in a small overshoot in the step response.

If we increase PM, the system will be more stable but the time
response slows down.
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Frequency Compensation

20l0g | H ()| § HFquHH'[[,]Hl*
b
Modified
o \ - i} Design
h‘ Iugm
i
0 o 0
LBl b i . 180 | AR,
»
ALIMA Modified  LBHIn! Y
Dasign
1] ik
* Push phase crossing point out
« Push gain crossing point in
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Telescopic Opamp (single-ended) -example
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Compensation (Cont.)

« Assume we need a phase margin of 45° (usually
Inadequate) and other non-dominant poles are at high
frequency.

-
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Compensation of a two-stage opamp
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Compensating Two-Stage Opamps

Q5 Q6
Vbias1 0—|,_l > Voo !I'_I?’OO
Ql Q2
Vin—O—||: 300 30 I—Q Vin"' —0 Vout2
Vbiasz
Q16 i Cc
¥ C H )|
—=
‘ 300
l5CJj= =|:3150 IE
Q3 Q4 Q
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Compensating Two-Stage Opamps

Vi
> > '\/\, H @ < —

gmlvinl> Rlé Cy— gm7v11> R22 Comm

* Q16 has Vg5 = 0 therefore it is hard in the triode region.

|
4
K, Cc;,r ( Z ) 6 V::{]‘f 16

« Small signal analysis: without R, a right-half plane zero occurs
and worsens the phase-margin.

Re = rys16 =

SM . 51
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Compensating Two-Stage Opamps

 Using R (through Q16) places zero at
_ —1
 Co(1/g ;- Re)

W,

e Zero moved to left-half plane to aid compensation
 Good practical choice is

o, = 1.2,

« satisfied by letting
1
- L.2gp,

since w;=9g,,/Coand w,=1/(RsCp) it Rp»1/9,,

SM ) 52
ELEC 401 Set 6 - Opamp Design



Design Procedure

Design example: Find C. with R-=0 for a 55° phase margin
— Arbitrarily choose C’'-=1pF and set R-=0

— Using SPICE, find frequency w, where a —125° phase shift
exists, define gain as A’

— Choose new C. so w, becomes unity-gain frequency of the
loop gain, resulting in a 55° phase margin.

Achieved by setting C.=C-A’

— Might need to iterate on C. a couple of times using SPICE

SM . 53
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Design Procedure

Next: Choose R, according to

l
R~ =
C 7 120,C,

— Increasing w, by about 20 percent, leaves zero near final w;

— Check that gain continues to decrease at frequencies above the
new w,

Next: If phase margin is not adequate, increase C. while leaving
R constant.

SM . 54
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Design Procedure

Next: Replace R by a transistor

1
Re = rgsie = ™
“ncox(f)mveﬁlﬁ

SPICE can be used for iteration to fine-tune the device
dimensions and optimize the phase margin.

SM ) 55
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Process and Temperature Independence

Can show non-dominant pole is roughly given by

o . = 9m7
P27 C, + C,

Recall zero given by

—1
0., =
* Ccol1/g9m - Re)

If R tracks inverse of g, then zero will track w;:

1
H = [ =
c ds16 “'ncox(W/L)ltaVefflé

9m7 = “'nCOX(W/L)FVeffF

ELEC 401 Set 6 - Opamp Design
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Process and Temperature Independence

* Need to ensure V /Vey IS Independent of process and
temperature variations

Q11 Q6
25
Vhias o—iE I 300

]

o],

a C
125 Q1eL ~C |
Q1 |

Vﬂ 300
- — II:¢ Q7

* First set V 4,5=V.4; Which makes V=V,
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Process and Temperature Independence

21 pq _ 21pi3
HpCox(W/ L), HpCox(W/L);
I p- (W/L),

Ipiz ~ (W/D);

» Since V_, = V, and gates of Q12 and Q16 same

Vefﬂz = Veff16

Verrie Verrio 2155
uw,C, (W-/L),,

J 21p3
V et B V etri1a B W,Cox(W/L) 5 B (W7 L)y,
(W/L),,
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Stable Transconductance Biasing

-Can bias on-chip g, to a resistor

Q10 Q11
L 125 Vasis = Vasis+ IpsR
25 —e— GS13 = VY GsisTIDi1s"B
I|II 2’[."]_1 _ I|II 215‘[5 +/ R
~— VU,Cox (W L) s ~ Wu,Co(W/L),s PV E
au Azt But/p;; = Ips and rearrange
25 J I d I 25 5 [l— I."—(W/L}u} _ A
S Co (W Dnlpal N (W/L)s °

100 | 25
I

|
|
Q15 Q13 ¥ B (W7 L)
Re 5 Imis = 2{1 _J(W/L)lﬁ il
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Stable Transconductance Biasing

Transconductance of Q,; (to the first order) is determined by
geometric ratios only.

Independent of power-supply voltages, process parameters,
temperature, etc.

For special case (W/L);s=4(WI/L),,

Om13=1/Rg

Note that high-temperature will decrease mobility and hence
Increase effective gate-source voltages.

Roughly 25% increase for 100 degree increase
Requires a start-up circuit (might have all O currents)
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