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Overview

We’'ve talked a bit about transistors, and about simple layout.
Designing a chip with 10,000,000 transistors using the techniques we
have talked about so far is not feasible! Instead, designers employ
CAD tools and a CAD methodology to handle this complexity. In this
lecture, we will talk a bit about the design flow and tools. This will set
the stage for the rest of the course, where we will talk about the design
of large chips.

As we will see, the concept of a hardware-description language is an
important part of the typical design flow. There are two common
languages: VHDL and Verilog. You learned VHDL last year, so this
lecture will talk a bit about Verilog.
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Typical Design Flow

The design task is to take a desired behaviour and implement it in silicon:

process(clk, reset)
begin
if (reset="1") then
Q<=0
elsif (clk'event and clk="1") then
Q<=D;
end if;
end,;
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Typical Design Flow

Step 1: Functional/Behavioural Design and Simulation

- Design chip at a very high level
- Often C, C++, Behavioural VHDL
- purpose: - to make high-level decisions
- to formalize chip specifications
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Typical Design Flow

Step 2. High-Level Synthesis: Translate to RTL-level description

Behavioural for(i=1;i<N;i++)
Description F(i)=D(i)K(i)+D(i+1)K(2)+D(i+2)K(3)
l Can be done automatically by tools,
High L | but these tools are immature today.
'9 e\{e Often done by hand.
Synthesis
Register Transfer Regigters, equations, arithmet.ic
Level functions, FSM specs. Often in

VHDL or Verilog
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Typical Design Flow

Step 3: Simulate RTL
- Make sure the functionality is correct

Step 4. Synthesize RTL
- Gives gate-level netlist
- Often in structural VHDL / Verilog

- uses a library of gates

Step 5: Simulate Gate-Level Netlist
- check functionality to make sure synthesis worked

- check timing, BUT....
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Typical Design Flow

Step 6: Floorplanning
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Typical Design Flow

Step 7: Physical Design
- Create lay-out for each block
- May be done automatically for random-logic type blocks
- May be done by hand for datapath-type blocks and memories
- Combine blocks onto chip, clock tree generation, power
distribution network

Step 8: Extract Parasitics and Circuit Simulation
- from layout, automatically “extract” resistances and capacitances of
each wire/gate
- “Back annotate” these R’s and C’s to simulation tool
- re-run simulation with these actual R’s and C’s and determine actual
delay/power
- Does this meet contstraints? If not, go back to step 2!
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Typical Design Flow

Step 9: Design Rule Check (DRC)
- Use DRC tools to make sure your layout meets all design rules
(eg. minimum wire spacing, etc.)

Step 10: Fabricate Chip
- usually done at another company (eg. TSMC, UMC)

Step 11: Test Each Chip that comes back

- throw away faulty chips
- sell the rest!
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Hardware Description Languages

Need a description level up from logic gates.

Work at the level of functional blocks, not logic gates
— Complexity of the functional blocks is up to the designer
— A functional unit could be an ALU, or could be a microprocessor

The description consists of function blocks and their interconnections
— Need some description for each function block (not predefined)
— Need to support hierarchical description (function block nesting)

To make sure the specification is correct, make it executable.
— Run the functional specification and check what it does
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Hardware Description Languages

There are many different languages for modeling and simulating hardware.
— Verilog
— VHDL
— Me-language (Mentor)
— AHDL (Altera)
— SystemC
— Aida (IBM / HalL)
— .... and many others

The two most common languages are Verilog and VHDL.

— For this class, we will be using Verilog-XL
— Only because you already know VHDL, and it never hurts
to be bilingual!
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Verilog from 20,000 feet

Verilog Descriptions look like software programs:
» Block structure is a key principle
* Use hierarchy/modularity to manage complexity

C Verilog
Procedures/Functions Modules
Procedure parameters Ports
Variables Wires / Regs

But they aren’t ‘normal’ programs

 Module evaluation is concurrent. (Every block has its own “program
counter”)

 Modules are really communicating blocks
 Hardware-oriented descriptions and testing process
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Verilog (or any HDL) View of the World

A design consists of a set of communicating modules

Ctrl Memory

bus |

Datapath |

 There are graphical user inferfaces for Verilog, but we will not
use them (e.g. Schematic entry)

e |nstead we will use the text method. Label the wires, and use
them as ‘arguments’ in the module calls.
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Simple XOR Gate

module my _xor(C, A, B);
output C;
Input A, B;

assign C = (A " B);
endmodule

Operation | Operator
o Bitwise NOT
& Bitwise AND
| Bitwise OR
A Bitwise XOR
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Combinational Block with Several Outputs

Can describe a block with several outputs:
A

B
Cin
module full_adder (S, Cout, A, B, Cin);

output S, Cout;
input A, B, Cin;

assign S=A"*B ™ C);

assign Cout= (A&B)|(A&Cin)| (B &Cin) ;

endmodule

* Note: Three assignments performed concurrently.

DR

) -

wvy

N
—

The order of the statements does not matter.

Cout
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One-bit Mux

A one bit multiplexor can be described this way:

module my_gate(Z, IN1, IN2, SEL);
output Z;
iInput IN1, IN2, SEL;

// This is a comment, by the way

assign Z=(SEL ==1'b0) ? IN1:INZ;

endmodule \

Condition (note: 1'b0 is If condition is true, assign IN1,

what you would call ‘0’ otherwise, assign IN2
in VHDL
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Four-bit Mux

A Four Bit-Multiplexor:

module my_gate(IN1, IN2, SEL, 2);

input [3:0] IN1, IN2;
nput SEL; _—————— Inputsand outputs are

output [3:0] Z: four bit buses

assign Z=(SEL ==1'b0) ? IN1: INZ;
endmodule;

This is written the
same as before
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Structural Descriptions

module my_gate(IN1, IN2, OUTL);

INT —
uo X U OuUT1
IN2

Internal Signal

input IN1, IN2;
output OUTI; Submodule name

wire X: (defined elsewhere)

AND G 1, IN2, X); Instance Name
NOT_G U1l (X, OUTL);

endmodule;
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Bigger Structural Example

module system;
wire [7:0] bus_v1, const_s1;
wire [2:0] regSpec_s1, regSpecA s1, regSpecB_s1;
wire [1:0] opcode_s1;
wire Phil, Phi2, writeReg_s1,
ReadReg_sl,nextVec
clkgen clkgen(Phil, Phi2);
datapath datapath(Phil, Phi2, regSpec_s1, bus_v1,
writeReg_sl, readReg_sl);
controller controllerl(Phil, Phi2, regSpec_s1, bus_v1,
const_sl, writeReg_sl, readReg_s1,
opcode_s1, regSpecA si, regSpecB_sl1,
nextVector_sl);
patternsource patternsource(Phil, Phi2,nextVector s1,
opcode_sl1, regSpecA_sl, regSpecB_sl,
const_s1);
endmodule

Phi2

Clkgen
) atternsource
Phil P —~
/
//
cantroller
® S | o
4 |8 |39
D
4 5 | & |n|Z
Q 8 o

datapath
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Concatenation

Suppose we have defined:

wire [3:0] S; // athree bit bus
wire C; /[ a one bit signal

Then, the expression
{C, S}
Is a 5 bit bus:

C S[3] S[2] S[1] S[O]

Note: Verilog does not warn you if bus sizes mismatch
(just like C allows you to assign a float to an int, it silently truncates)
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Behavioural Description of an Adder:

module adder4( A, B, CO, S, C4);
input [3:0] A, B;

iInput CO; 4-bit operands,
output [3:0] S; 5-bit result
output C4;

assign {C4,S}=A+B + CO;
endmodule;

Slide Set 8, Page 21



Behavioural Description of a Flip-Flop:

module dff_v (CLK, RESET, D, Q);

input CLK, RESET, D; What does this mean?
out%cess in VHDL

reg Q;

/ Equivalent to a
alway's @(posedge CLK or posedge RESET) ~ Sensitivity list”
begin

If (RESET ==1)
Q<=0;
else
Q <=D;
end
endmodule;
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Wire vs. Reg

There are two types of variables in Verilog:
— Wires (all outputs of assign statements must be wires)
— Regs (all outputs of always blocks must be regs)

Both variables can be used as inputs anywhere
— Can use regs or wires as inputs (RHS) to assign statements
— assign bus = LatchOutput + ImmediateValue
—  bus must be a wire, but LatchOutput can be a reg

— Can use regs or wires as inputs (RHS) in always blocks
always @ (in or clk)
if (clk) out =in (in can be a wire, out must be a reg)
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REG vs WIRE signals:

As in VHDL, a process may or may not set the value of each
output (for example, in the DFF, Q is not set if CLK is not rising).
This implies that some sort of storage is needed for outputs of a

always block. Therefore, outputs of an always block must be
declared as REG.

Note: this does not mean a register will actually be used. You
can declare purely combinational blocks, where no register is to

be used. But, you still must declare the outputs of the always
block as REG.

Rule: All outputs of an always block (a process) must be
declared as reqg.
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Behavioural Description of a Comb. Block:

module comp_v (IN1, IN2, X, Y, 2);
Input IN1, IN2, X, Y;
output Z;
reg Z,

always @(IN1 or IN2 or X or Y)
begin Combinational only.

if (X==Y) / No flip-flops are
Z <= IN1; generated.

else
Z <= [N2;
end
endmodule;
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Two-Phase Clocking

Separate a FF into 2 latches —=
Latch: transparent (level) e
FF: non-transparent (edge)

- =D

reg sig_s2, sig_s1;
I First latch clocked with phil produces s2 signal
always @ (phil or ctrlsig_sl1 or ...)

begin
if (phil)
begin
If (ctrlsig_s1) sig_s2 <= ...
else Sig_s2 <= ...
end
end

// Second latch clocked with phi2 produces sl signal

always @ (phi2 or sig_s2)
begin

If (phi2) sig_s1 <= sig_s2,
end

9,
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Activation List

Tells the simulator when to run this block
Allows the user to specify when to run the block and makes the
simulator more efficient.
If not sensitized to every input, you get a storage element

But also enables subtle errors to enter into the design (as in VHDL)

Two forms of activation list in Verilog:
@(signalName or signalName or ...)

Evaluate this block when any of the named signals change
@posedge(signalName); or @negedge(signalName);

Makes an edge triggered flop. Evaluates only on one edge of a
signal.
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always @ (phi)

Activation List Examples

VS

always @ (phi)

VS

always @(phi or in)
if(phi) outC =in;

OUtA =in; if(phi) outB =in;
phi
in
outA
outB
outC
t= 2 t=3 4
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Blocking vs Non-Blocking Assignments

Blocking Assignments
* Inside an always block, assignments are evaluated sequentially after activation
always @(posedge clk)
begin
Z=A|B;
Y=Z2&C;
end
 Here, Y uses the newest value assigned to Z (like C language)

Non-Blocking Assignments

« Outside an always block, assignments are concurrent, producing different
results

assign Z = A | B;
assignY =Z & C;
 Here, Y uses the old value assigned to Z (old = prior value in simulation time)

« Think of non-blocking assignments as being “queued up” to run in batch mode:
— First, all RHS arguments are evaluated.
— Second, all assignments are made to the LHS signals.
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Simulation: Initial Block

This is another type of procedural block
« Does not need an activation list
e Itis run just once, when the simulation starts.

Used to do extra stuff at the very start of simulation

* [nitialize simulation environment

* Initialize design
This is usually only used in the first pass of writing a design.
Beware, real hardware does not have initial blocks.

» Best to use initial blocks only for non-hardware statements
(like $display or $gr_waves)
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Simulation: + Delays in Verilog

Verilog simulated time is in “units” or “ticks”.
e Simulated time is unrelated to the wallclock time to run the simulator.
e Simulated time is supposed to model the time in the modelled machine

— Itis increased when the computer is finished modelling all the
changes that were supposed to happen at the current simulated
time. It then increases time until another signal is scheduled to
change values.

User must specify delay values explicitly to Verilog
e # delayAmount

— When the simulator sees this symbol, it will stop what it is doing,
and pause delayAmount of simulated time (# of ticks).

— Delays can be used to model the delay in functional units, but we
will not use this feature. All our logic will have zero delay. Can be
tricky to use properly.
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Simulation: + Delays in Verilog

always @(phi or in)
#10 if (phi) then out = in;

This code will wait 10 ticks after either input changes, then checks to see if
phi == 1, and then updates the output. If you wanted to sample the
input when it changed, and then update the output later, you need to

place the delay in a different place:

always @(phi or in)
iIf (phi) then out = #10 in;

This code runs the code every time the inputs change, and just delays the
update of the output for 10 ticks.
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Simulation: + Delays in Verilog

Think about this example:

always
#100 out = in;

Since the always does not have an activation, it runs all the time.
As a result every 100 time ticks the output is updated with the
current version of the input.

Delay control is used mostly for clock or pattern generation during
simulation. Don’t use it to specify circuit behavior.
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Common Mistakes

Thinking in Software instead of in Hardware: Remember, HDL
describes circuits!

Dangerous: Multiple processes (@always blocks) writing to the
same variable

Bitwidth mismatches or forgetting to declare a bus with [...:0]

Forgetting to increase the bitwidth of a state register when you
add more states to a state machine

Endian-ness mismatches

Unintentional latches
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Simple Example

Here is a simple example of a serial Adder called serAdd that is

called by a top-level module called testAdd

clkGen

phil
phi2

A vl
B vl

Reset s2

SerAdd

Yvy vy

testAdd

p Sum sl
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Il serAdd.v -- 2 phase serial adder module

module serAdd(Sum_s1, A vl, B vl, Reset s2,
phil, phi2);

output Sum_s1,

input A _v1, B vi, phil, phi2, Reset_s2;

reg Sum_si,;
reg A s2, B s2, Carry_sl, Carry_s2;

always @(phil or A v1)
if (phil)
A s2=A vi,

always @(phil or B_v1)
if (phil)
B s2=B vi,;

always @ (A _s2 or B_s2 or Reset_s2 or Carry_s2 or phi2)
if (phi2)
If (Reset_s2) begin
Sum_sl1=0;
Carry_s1 = 0;
end
else begin
Sum sl =A s2+ B s2+ Carry_s2;
Carry s1=A s2&B s2 |
A s2 & Carry s2 |
B _s2 & Carry_s2;
end

always @(Carry_sl or phil)
if (phil)
Carry_s2 = Carry_s1;

endmodule



/[ testAdd.v -- serial adder test vector generator

/I 2 phase clock generator

module clkGen(phil, phi2);
output phil,phi2;
reg phil, phi2;

initial
begin
phil = 0;
phi2 = 0;
end

always
begin
#100
phil =0;
#20
phi2 = 1;
#100
phi2 = 0;
#20
phil =1;
end
endmodule

/*
The above clock generator will produce a clock with a period of 240 units of

simulation time.
*/



/* [/ test module for the adder
module testAdd; // top level

wire A vl, B vi,;
reg Reset s2;

serAdd serAdd(Sum_s1, A vl, B vl, Reset_s2, phil, phi2);

/*

The serial adder takes inputs during phil

and produces _s1 outputs during phi2.

The _s1 output corresponds to the addition of
the inputs at the previous falling edge of phil
*/

clkGen clkGen(phil,phi2);

reg [5:0] tstVA_sl, tstVB_s1,
reg [6:0] accum_Sum;

initial
$gr_waves("phil",phil,"phi2",phi2,
"Reset_s2",Reset_s2,"A_v1",A_vl,
"B v1",B v1,"Sum sl" Sum sl
"Carry s1”, serAdd. Carry sl,
accum_Sum ,accum_Sum);

/*

Since SerAdd is a serial adder, we put in the operands one bit at a time, and
accumulate the output one bit at a time.

*/

assign A_v1 = tstVA_s1[0];

assign B_v1 = tstVB_s1[0];

always @ (posedge phil) begin
#10
release A vi,;

release B_v1;
end



always @ (posedge phi2) begin
#10

force A vl = 1'b0;
force B_v1 = 1'b0;
end

initial begin
Reset s2 = 1;
tstVA sl = 6'b01000;
tstVB_sl1 = 6'b11010;
accum_Sum = 0;
@(posedge phil)
#50 Reset_s2 = 0;
end

always @(negedge phil) begin
$display ("A_v1=%h, B v1=%h,
sum_s1=%h, time=%d",
A v1, B vl, Sum_s1,$time);
accum_Sum = accum_Sum << 1| Sum_s1;
$display ("tstVA=%h, tstVB=%h,
sum_s1=%h,accum_Sum=%h\n",
tstVA s1,tstVB_s1,Sum_sl,accum_Sum);
end

always @ (posedge phi2) begin
#15

If (~Reset_s2) begin
tstVA sl = tstVA sl >> 1;
tstVB sl =tstVB sl >>1;
if (tstVA sl == 0 && tstVB_s1 == 0) begin
#800 $stop;
end
end
end
endmodule



Some Flip-Flop Examples

» Positive edge-triggered, no set
or reset

« module dff (clk, d, q);
input clk, d;
output q;
reg q,
always @ (posedge clk)
begin
g<=d;
end
endmodule

. _________________________________________________________________________________________________________________________________________________________________________________________________________|]
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Some Flip-Flop Examples

* Synchronous set and reset » Positive edge-triggered, active
high asynchronous set and
reset

 module dff2 (clk, d, set, reset,q) ¢ module dff3(clk, d, set, reset)

input clk, d, set, reset; input clk, d, set, reset;
output q; output q;
reg q, reg g,
always @ (posedge clk) always @ (posedge clk or
begin posedge set or
if (set) posedge reset)
g <=1b1,; begin
else if (reset) if (set)
g <= 1'b0; g <=1bl;
else else if (reset)
g <=d; g <= 1'b0;
end else
endmodule g<=d;
end
endmodule
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Some Latch Examples

D Latch

module dlatch (sel, d, q);
iInput sel, d;
output q;
reg q,
always @ (sel, d)
begin

if (sel)

q<=d;

end // Note: no else clause
endmodule

Asynchronous set and reset latch

module asarlatch (sel, d, set, reset, q)
input sel, d, set, reset;
output q;
reg dq,
always @ (sel, d, reset)
begin
If (reset)
g <= 1'b0;
else if (set)
g <=1bl;
else if (sel)
q<=d;
end // Note: no final else clause
endmodule
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Verilog

From what I've told you, you don’t know enough Verilog to
thoroughly understand that code.

| am going to leave it up to you to “fill in the holes” by finding a
Verilog book or following the Verilog links from the course home

page.

How much you learn is up to you:
A “C” student will get by with what is in these notes
A “B” student will want to read a bit more, at least enough to
understand the example on the previous pages
An “A” student will want to read quite a bit more
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