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Overview

We’ve talked a bit about transistors, and about simple layout.  
Designing a chip with 10,000,000 transistors using the techniques we 
have talked about so far is not feasible!  Instead, designers employ 
CAD tools and a CAD methodology to handle this complexity.  In this 
lecture, we will talk a bit about the design flow and tools.  This will set 
the stage for the rest of the course, where we will talk about the design 
of large chips.

As we will see, the concept of a hardware-description language is an 
important part of the typical design flow.  There are two common
languages: VHDL and Verilog.  You learned VHDL last year, so this 
lecture will talk a bit about Verilog.  
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Typical Design Flow

The design task is to take a desired behaviour and implement it in silicon:

process(clk, reset)
begin
      if (reset='1') then
          Q <= '0';
      elsif (clk'event and clk='1') then
         Q <= D;
     end if;
end;
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Typical Design Flow

Step 1: Functional/Behavioural Design and Simulation

- Design chip at a very high level
- Often C,  C++,  Behavioural VHDL
- purpose:  - to make high-level decisions

- to formalize chip specifications
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Typical Design Flow

Step 2:  High-Level Synthesis: Translate to RTL-level description

High Level
Synthesis

Behavioural
Description

Register Transfer
Level

for(i=1;i<N;i++)
     F(i)=D(i)K(i)+D(i+1)K(2)+D(i+2)K(3)

Registers, equations, arithmetic
functions, FSM specs.  Often in
VHDL or Verilog

Can be done automatically by tools, 
but these tools are immature today.  

Often done by hand.
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Typical Design Flow

Step 3:  Simulate RTL
- Make sure the functionality is correct

Step 4:  Synthesize RTL

- Gives gate-level netlist

- Often in structural VHDL / Verilog

- uses a library of gates

Step 5:  Simulate Gate-Level Netlist

- check functionality to make sure synthesis worked

- check timing, BUT….
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Typical Design Flow

Step 6:  Floorplanning
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Typical Design Flow

Step 7: Physical Design
- Create lay-out for each block
- May be done automatically for random-logic type blocks
- May be done by hand for datapath-type blocks and memories
- Combine blocks onto chip, clock tree generation, power

distribution network

Step 8: Extract Parasitics and Circuit Simulation
- from layout, automatically “extract” resistances and capacitances of  

each wire/gate
- “Back annotate” these R’s and C’s to simulation tool
- re-run simulation with these actual R’s and C’s and determine actual    

delay/power
- Does this meet contstraints?  If not, go back to step 2!
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Typical Design Flow

Step 9: Design Rule Check (DRC)
- Use DRC tools to make sure your layout meets all design rules

(eg. minimum wire spacing, etc.)

Step 10: Fabricate Chip 
- usually done at another company (eg. TSMC, UMC)

Step 11:  Test Each Chip that comes back
- throw away faulty chips
- sell the rest!
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Hardware Description Languages

• Need a description level up from logic gates.

• Work at the level of functional blocks, not logic gates
– Complexity of the functional blocks is up to the designer
– A functional unit could be an ALU, or could be a microprocessor

• The description consists of function blocks and their interconnections
– Need some description for each function block (not predefined)
– Need to support hierarchical description (function block nesting)

• To make sure the specification is correct, make it executable.
– Run the functional specification and check what it does
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Hardware Description Languages

There are many different languages for modeling and simulating hardware.
– Verilog 
– VHDL 
– M-language (Mentor)
– AHDL (Altera)
– SystemC
– Aida (IBM / HaL)
– …. and many others

The two most common languages are Verilog and VHDL.

– For this class, we will be using Verilog-XL
– Only because you already know VHDL, and it never hurts

to be bilingual!
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Verilog from 20,000 feet

Verilog Descriptions look like software programs:
• Block structure is a key principle
• Use hierarchy/modularity to manage complexity

But they aren’t ‘normal’ programs
• Module evaluation is concurrent. (Every block has its own “program 

counter”)
• Modules are really communicating blocks
• Hardware-oriented descriptions and testing process
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Verilog (or any HDL) View of the World

A design consists of a set of communicating modules

• There are graphical user inferfaces for Verilog, but we will not 
use them (e.g. Schematic entry)

• Instead we will use the text method. Label the wires, and use 
them as ‘arguments’ in the module calls.

Ctrl

Datapath

Memory

bus da

b

c
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Simple XOR Gate

module my_xor( C, A, B );
output C;
input A, B;  

assign C = (A ^ B);
endmodule

Operation    Operator
~           Bitwise NOT
&          Bitwise AND
|           Bitwise OR
^           Bitwise XOR
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Can describe a block with several outputs:

module full_adder (S, Cout, A, B, Cin);
output S, Cout;
input A, B, Cin;

assign S = A ^(B ^ C);
assign Cout =   (A & B) | (A & Cin) | (B & Cin)  ;

endmodule

• Note: Three assignments performed concurrently.
The order of the statements does not matter.

Combinational Block with Several Outputs

A
B

Cin

Cout

S
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One-bit Mux

A one bit multiplexor can be described this way:

module my_gate(Z,  IN1, IN2, SEL);
output Z;
input IN1, IN2, SEL;

// This is a comment, by the way

assign Z = (SEL == 1’b0)  ?  IN1 : IN2;
endmodule

Condition (note: 1’b0 is 
what you would call ‘0’
in VHDL

If condition is true, assign IN1, 
otherwise, assign IN2
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A Four Bit-Multiplexor:

module my_gate(IN1, IN2, SEL, Z);
input [3:0] IN1, IN2;
input SEL;
output [3:0]  Z;

assign Z = (SEL == 1’b0)  ?  IN1 : IN2;
endmodule;

This is written the 
same as before

Inputs and outputs are 
four bit buses

Four-bit Mux
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module my_gate(IN1, IN2, OUT1);
input IN1, IN2;
output OUT1;

wire X;

AND_G U0 (IN1, IN2, X);
NOT_G U1 (X, OUT1);

endmodule;

X OUT1
IN2

IN1
U0 U1

Submodule name 
(defined elsewhere)

Instance Name

Internal Signal

Structural Descriptions
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Bigger Structural Example

module system;
wire [7:0] bus_v1, const_s1;
wire [2:0] regSpec_s1, regSpecA_s1, regSpecB_s1;
wire [1:0] opcode_s1;
wire Phi1, Phi2, writeReg_s1,  

ReadReg_s1,nextVector_s1
clkgen clkgen(Phi1, Phi2);
datapath datapath(Phi1, Phi2, regSpec_s1, bus_v1,

writeReg_s1, readReg_s1);
controller controller1(Phi1, Phi2, regSpec_s1, bus_v1,

const_s1, writeReg_s1, readReg_s1, 
opcode_s1, regSpecA_s1, regSpecB_s1,
nextVector_s1);

patternsource patternsource(Phi1, Phi2,nextVector_s1,
opcode_s1, regSpecA_s1, regSpecB_s1,
const_s1);

endmodule
datapath

controller

patternsource

clkgen

Phi1Phi2

bus

regSpec

w
riteReg

readReg
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Suppose we have defined:

wire [3:0]  S;   // a three bit bus
wire C;          // a one bit signal

Then, the expression

{ C, S } 

Is a 5 bit bus:

C S[3] S[2] S[1] S[0]

Note: Verilog does not warn you if bus sizes mismatch
(just like C allows you to assign a float to an int, it silently truncates)

Concatenation



Slide Set 8, Page 21

Behavioural Description of an Adder:

module adder4( A, B, C0, S, C4);
input [3:0]  A, B;
input C0;
output [3:0]  S;
output C4;

assign { C4, S } = A + B + C0;
endmodule;

4-bit operands,

5-bit result
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Behavioural Description of a Flip-Flop:

module dff_v (CLK, RESET, D, Q);
input CLK, RESET, D;
output Q;
reg Q;

always @(posedge CLK or posedge RESET)
begin

if (RESET == 1)
Q <= 0;

else
Q <= D;

end
endmodule;

Like a process in VHDL

Equivalent to a 
“sensitivity list”

What does this mean?
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Wire vs. Reg

There are two types of variables in Verilog:
– Wires (all outputs of assign statements must be wires)
– Regs (all outputs of always blocks must be regs)

Both variables can be used as inputs anywhere
– Can use regs or wires as inputs (RHS) to assign statements 
– assign bus = LatchOutput + ImmediateValue
– bus must be a wire, but LatchOutput can be a reg
– Can use regs or wires as inputs (RHS) in always blocks

always @ (in or clk)
if (clk) out = in (in can be a wire, out must be a reg)
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REG vs WIRE signals:

• As in VHDL, a process may or may not set the value of each 
output (for example, in the DFF, Q is not set if CLK is not rising).  
This implies that some sort of storage is needed for outputs of a 
always block.  Therefore, outputs of an always block must be 
declared as REG.

• Note: this does not mean a register will actually be used.  You 
can declare purely combinational blocks, where no register is to
be used.  But, you still must declare the outputs of the always 
block as REG.

• Rule:  All outputs of an always block (a process) must be 
declared as reg.
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Behavioural Description of a Comb. Block:

module comp_v ( IN1, IN2, X, Y, Z);
input IN1, IN2, X, Y;
output Z;
reg Z;

always @(IN1 or IN2 or X or Y)
begin

if (X == Y)  
Z <= IN1;

else
Z <= IN2;

end
endmodule;

Combinational only.

No flip-flops are 
generated.



Slide Set 8, Page 26

Two-Phase Clocking

• Separate a FF into 2 latches
• Latch: transparent (level)
• FF: non-transparent (edge)
• reg sig_s2, sig_s1;

// First latch clocked with phi1 produces s2 signal
always @ (phi1 or ctrlsig_s1 or …)
begin

if (phi1)
begin

if (ctrlsig_s1) sig_s2 <= …
else sig_s2 <= …

end
end
// Second latch clocked with phi2 produces s1 signal
always @ (phi2 or sig_s2)
begin

if (phi2) sig_s1 <= sig_s2;
end
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Activation List

Tells the simulator when to run this block
Allows the user to specify when to run the block and makes the  

simulator more efficient.
If not sensitized to every input, you get a storage element

But also enables subtle errors to enter into the design (as in VHDL)

Two forms of activation list in Verilog:
@(signalName or signalName or …)

Evaluate this block when any of the named signals change
@posedge(signalName); or @negedge(signalName);

Makes an edge triggered flop. Evaluates only on one edge of a 
signal.
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Activation List Examples

always @(phi)       vs always @(phi)              vs always @(phi or in)
outA =in; if(phi) outB = in; if(phi) outC = in;
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Blocking vs Non-Blocking Assignments

Blocking Assignments
• Inside an always block, assignments are evaluated sequentially after activation

always @(posedge clk)
begin

Z = A | B;
Y = Z & C;

end
• Here, Y uses the newest value assigned to Z (like C language)

Non-Blocking Assignments
• Outside an always block, assignments are concurrent, producing different 

results
assign Z = A | B;
assign Y = Z & C;

• Here, Y uses the old value assigned to Z (old = prior value in simulation time)

• Think of non-blocking assignments as being “queued up” to run in batch mode:
– First, all RHS arguments are evaluated.
– Second, all assignments are made to the LHS signals.
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Simulation: Initial Block

This is another type of procedural block
• Does not need an activation list
• It is run just once, when the simulation starts.

Used to do extra stuff at the very start of simulation
• Initialize simulation environment
• Initialize design

This is usually only used in the first pass of writing a design.
Beware, real hardware does not have initial blocks.

• Best to use initial blocks only for non-hardware statements 
(like $display or $gr_waves)
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Simulation: + Delays in Verilog

Verilog simulated time is in “units” or “ticks”.
• Simulated time is unrelated to the wallclock time to run the simulator.
• Simulated time is supposed to model the time in the modelled machine

– It is increased when the computer is finished modelling all the 
changes that were supposed to happen at the current simulated 
time. It then increases time until another signal is scheduled to 
change values.

User must specify delay values explicitly to Verilog
• # delayAmount

– When the simulator sees this symbol, it will stop what it is doing, 
and pause delayAmount of simulated time (# of ticks).

– Delays can be used to model the delay in functional units, but we 
will not use this feature. All our logic will have zero delay. Can be 
tricky to use properly.
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Simulation: + Delays in Verilog

always @(phi or in)
#10 if (phi) then out = in;

This code will wait 10 ticks after either input changes, then checks to see if 
phi == 1, and then updates the output. If you wanted to sample the 
input when it changed, and then update the output later, you need to 
place the delay in a different place:

always @(phi or in)
if (phi) then out = #10 in;

This code runs the code every time the inputs change, and just delays the 
update of the output for 10 ticks.
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Simulation: + Delays in Verilog

Think about this example:

always
#100 out = in;

Since the always does not have an activation, it runs all the time. 
As a result every 100 time ticks the output is updated with the 
current version of the input.

Delay control is used mostly for clock or pattern generation during 
simulation.  Don’t use it to specify circuit behavior.



Slide Set 8, Page 34

Common Mistakes

• Thinking in Software instead of in Hardware: Remember, HDL 
describes circuits!

• Dangerous: Multiple processes (@always blocks) writing to the 
same variable

• Bitwidth mismatches or forgetting to declare a bus with […:0]

• Forgetting to increase the bitwidth of a state register when you 
add more states to a state machine

• Endian-ness mismatches

• Unintentional latches
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Simple Example

Here is a simple example of a serial Adder called serAdd that is

called by a top-level module called testAdd

SerAdd

testAdd

clkGen
Sum_s1

A_v1
B_v1

Reset_s2

phi1
phi2



// serAdd.v -- 2 phase serial adder module
module serAdd(Sum_s1, A_v1, B_v1, Reset_s2,
              phi1, phi2);
output Sum_s1;
input   A_v1, B_v1, phi1, phi2, Reset_s2;

reg Sum_s1;
reg A_s2, B_s2, Carry_s1, Carry_s2;

always @(phi1 or A_v1)
        if (phi1)
                A_s2 = A_v1;

always @(phi1 or B_v1)
        if (phi1)
                B_s2 = B_v1;

always @(A_s2 or B_s2 or Reset_s2 or Carry_s2 or phi2)
        if (phi2)
            if (Reset_s2) begin

Sum_s1 = 0;
Carry_s1 = 0;

end
            else begin
               Sum_s1   = A_s2 + B_s2 + Carry_s2;
               Carry_s1 = A_s2 & B_s2 |
                           A_s2 & Carry_s2 |
                           B_s2 & Carry_s2;
            end

always @(Carry_s1 or phi1)
        if (phi1)
                Carry_s2 = Carry_s1;

endmodule



// testAdd.v -- serial adder test vector generator

// 2 phase clock generator

module clkGen(phi1, phi2);
output phi1,phi2;
reg phi1, phi2;

initial
        begin
                phi1 = 0;
                phi2 = 0;
        end

always
        begin
                #100
                        phi1 = 0;
                #20
                        phi2 = 1;
                #100
                        phi2 = 0;
                #20
                        phi1 = 1;
        end
endmodule

/*
The above clock generator will produce a clock with a period of 240 units of
simulation time.
*/



/* // test module for the adder
module testAdd; // top level

wire     A_v1, B_v1;
reg      Reset_s2;

serAdd serAdd(Sum_s1, A_v1, B_v1, Reset_s2, phi1, phi2);

/*
 The serial adder takes inputs during phi1
 and produces _s1 outputs during phi2.
 The _s1 output corresponds to the addition of
 the inputs at the previous falling edge of phi1
*/

clkGen clkGen(phi1,phi2);

reg [5:0] tstVA_s1, tstVB_s1;
reg [6:0] accum_Sum;

initial
 $gr_waves("phi1",phi1,"phi2",phi2,

"Reset_s2",Reset_s2,"A_v1",A_v1,
            "B_v1",B_v1,"Sum_s1",Sum_s1,
            "Carry_s1",serAdd.Carry_s1,
            "accum_Sum",accum_Sum);

/*
Since SerAdd is a serial adder, we put in the operands one bit at a time, and
accumulate the output one bit at a time.
 */
assign A_v1 = tstVA_s1[0];
assign B_v1 = tstVB_s1[0];

always @(posedge phi1) begin
                #10
                release A_v1;
                release B_v1;
end



always @(posedge phi2) begin
                #10
                force A_v1 = 1'b0;
                force B_v1 = 1'b0;
end

initial begin
        Reset_s2 = 1;
        tstVA_s1 = 6'b01000;
        tstVB_s1 = 6'b11010;
        accum_Sum = 0;
        @(posedge phi1)
                #50 Reset_s2 = 0;
end

always @(negedge phi1) begin
        $display ("A_v1=%h, B_v1=%h,
                  sum_s1=%h, time=%d",
                  A_v1, B_v1, Sum_s1,$time);
        accum_Sum = accum_Sum << 1 | Sum_s1;
        $display ("tstVA=%h, tstVB=%h,

     sum_s1=%h,accum_Sum=%h\n",
                  tstVA_s1,tstVB_s1,Sum_s1,accum_Sum);
end

always @(posedge phi2) begin
 #15
        if (~Reset_s2) begin
            tstVA_s1 = tstVA_s1 >> 1;
            tstVB_s1 = tstVB_s1 >> 1;
            if (tstVA_s1 == 0 && tstVB_s1 == 0) begin
                        #800 $stop;
            end
        end
end
endmodule
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Some Flip-Flop Examples

• Positive edge-triggered, no set 
or reset

• module dff (clk, d, q);
input clk, d;
output q;
reg q;
always @ (posedge clk) 
begin

q <= d;
end
endmodule
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Some Flip-Flop Examples

• Synchronous set and reset 

• module dff2 (clk, d, set, reset, q)
input clk, d, set, reset;
output q;
reg q;
always @ (posedge clk)
begin

if (set)
q <= 1’b1;

else if (reset)
q <= 1’b0;

else
q <= d;

end
endmodule

• Positive edge-triggered, active 
high asynchronous set and 
reset

• module dff3(clk, d, set, reset)
input clk, d, set, reset;
output q;
reg q;
always @ (posedge clk or

posedge set or
posedge reset)

begin
if (set)

q <= 1’b1;
else if (reset)

q <= 1’b0;
else

q <= d;
end
endmodule
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Some Latch Examples

• D Latch
• module dlatch (sel, d, q);

input sel, d;
output q;
reg q;
always @ (sel, d)
begin

if (sel)
q <= d;

end // Note: no else clause
endmodule

• Asynchronous set and reset latch
• module asarlatch (sel, d, set, reset, q)

input sel, d, set, reset;
output q;
reg q;
always @ (sel, d, reset) 
begin

if (reset)
q <= 1’b0;

else if (set)
q <= 1’b1;

else if (sel)
q <= d;

end // Note: no final else clause
endmodule
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Verilog

From what I’ve told you, you don’t know enough Verilog to
thoroughly understand that code.

I am going to leave it up to you to “fill in the holes” by finding a
Verilog book or following the Verilog links from the course home
page.

How much you learn is up to you:
A “C” student will get by with what is in these notes
A “B” student will want to read a bit more, at least enough to

understand the example on the previous pages
An “A” student will want to read quite a bit more


