
Slide Set 9, Slide 1

Slide Set 9

Memory 

Steve Wilton
Dept. of ECE

University of British Columbia
stevew@ece.ubc.ca

.



Slide Set 9, Slide 2

Overview

Wolf 6.7

Memories are one of the most useful VLSI building blocks. One 
reason for their utility is that memory arrays can be extremely 
dense. This density results from their very regular wiring.
Memories come in many different types (RAM, ROM, EEPROM) 
and there are many different types of cells, but the basic idea 
and organization is pretty similar. We will look at the most 
common memory cell that is used today, a 6T sRAM cell, and 
then look at the other components needed to build complete 
memory system.



Slide Set 9, Slide 3

Memory Array

It has N2  elements and only 2N wires. It is an easy way to use 
millions of transistors. The layout is quite dense since they are 
composed of snap-together cells.

row decoder

C o r e

A d d r e s s

d a t a  o u t

w o r d l i n e s

m e m o r yc e l l

b i t l i n e s

c o l .  m u x / d e c o d e r

row
 decoder

Core

Address

data out

wordlines

memory
cell

bitlines

col. mux/decoder

taccess (make roughly a
square shape to equalize
row/column access times)

x



Slide Set 9, Slide 4

Memory Cell Options

Often need to have either large number of bits or high-speed operation:
• In some cases more bits are needed: use simple cell design but complex 

control signals and refresh during the operation
• In other cases, speed is critical: use a complex cell, but keep control as 

simple as possible; also no need to refresh during operation
• If you have enough cells, it is ok to make peripheral circuits more complex

Leads to many innovative cell designs: 
• 6T RAM cells
• 4T RAM cell with poly loads
• 1T DRAM cell
• And lots of strange layouts

We will look at the 6T RAM, which is the key to all memory cells



Slide Set 9, Slide 5

6T Static RAM Cell

Uses only six transistors:

Read and write use the same port. There is one wordline and two bit lines. 
The bit lines carry the data. The cell is small since it has a small number of 
wires.

BitBit_b

wordline

back-to-back
inverters

cell access
transistors

SA = sense amplifier

+   -

q=1 q =0

Write 0 = Force Bit_b to 0



Slide Set 9, Slide 6

SRAM Cell Operation

Read:
• Both Bit and Bit must start high. One wordline (one row) goes high. The 

cell will pull one of the lines low

row
 decoder

Core

Address

data out

wordlines

memory
cell

bitlines

col. mux/decoder

One wordline goes 
high 0         0        0        0         0



Slide Set 9, Slide 7

SRAM Cell Operation

Read:
• Both Bit and Bit must start high. One wordline (one row) goes high. The 

cell will pull one of the lines low

row
 decoder

Core

Address

data out

wordlines

memory
cell

bitlines

col. mux/decoder

Each cell along 
the selected row 
pulls down one of 
its bitlines

0         0        0        0         0



Slide Set 9, Slide 8

SRAM Cell Operation

Read:
• Both Bit and Bit must start high. One wordline (one row) goes high. The 

cell will pull one of the lines low

BitBit_b

wordline

1 1

0

1For this case:

Which side will go low?

This side stays high
This side will slowly go low

+   -

0



Slide Set 9, Slide 9

SRAM Cell Operation

Write:
• One (Bit or Bit) is forced low, the other is high. This low value 

overpowers the pMOS in the inverter, and this will write the cell.

row
 decoder

Core

Address

data out

wordlines

memory
cell

bitlines

col. mux/decoder

One wordline goes 
high 1         1        1        1         1



Slide Set 9, Slide 10

SRAM Cell Operation

Write:
• One (Bit or Bit) is forced low, the other is high. This low value 

overpowers the pMOS in the inverter, and this will write the cell.

row
 decoder

Core

Address

data out

wordlines

memory
cell

bitlines

col. mux/decoder

Within each pair 
of bitlines, one is 
pulled strongly 0 
and one is pulled 
strongly 1

0         0        0        0         0



Slide Set 9, Slide 11

SRAM Cell Operation

Write:
• One (Bit or Bit) is forced low, the other is high. This low value 

overpowers the pMOS in the inverter, and this will write the cell.

BitBit_b

wordline

0

1

0

1

0



Slide Set 9, Slide 12

SRAM Cell Design

For the cell to work correctly, a “0”on the bit line must over power the 
pMOS pull up (for a proper write operation), but a “1” on the bit line must 
not over power the pull down (for a proper read operation)

For the write case, M3 is passing a zero, so for it to overpower the pMOS it 
must be at least as wide (preferably 1.5x as wide). This gives a 2-3:1 
current ratio between the nMOS and the pMOS.

For the read case, M3 is passing a one so it is somewhat weaker. Still M3 
should be 1.5 to 2x smaller than M1 to make sure a read does not disturb 
the value of the cell.

1x

1.5x

3x

during a     0
write, we 
want to flip node
value

during a read, we want 
to keep node value at 0

1->01                                0



Slide Set 9, Slide 13

SRAM Cell Layout

There are many clever SRAM layouts. This is a common one:

This layout is fairly dense, since the most of the contacts (bitline, Vdd, 
Gnd) are shared. Also, a clever cross-coupling method is used.

BitBit_b

Wordline

Gnd

Vdd

Cell boundary



Slide Set 9, Slide 14

SRAM Layout

A conservative cell:

substrate and well connects in each cell

It has a wordline poly contact in each cell

pMOS transistors are very weak (3:3)

nMOS pulldown is 8:2

All the boundaries are shared

41 x 28, about 1/4 the size of latch cell

A slightly smaller cell

Only nwell contact in cell

pMOS transistors are very weak (3:3)

nMOS pulldown is 6:2

36 x 28



Slide Set 9, Slide 15

SRAM Array

This is an array of 3 cells wide and 2 high.
• Shows how the contacts are shared



Slide Set 9, Slide 16

Peripheral Circuits

We need to build the I/O circuits for read/write, decoders and wordline
drive circuits, and the column select and bitline drive circuits. Lets look at 
building each of these circuits for CMOS memories.

R/W

pullups

R/W

pullups

decoder



Slide Set 9, Slide 17

Bitline I/O Circuit (precharge for a read)

For reads both bitlines must be 
high, for write you need to drive the 
bitlines to the correct value. 

– Bitlines need to be 
precharged, or use a 
pseudo nMOS load

We will use a precharged structure:
– To avoid a conflict during 

precharge, make wordline a 
qualified clock.

Bitlines are like the outputs of 
normal precharge gates - _v 
signals

R
ea

d_
b_

v1

R
ea

d_
v1

Φ
2

W
or

dl
in

e_
q1

bi
t_

b_
v1

bi
t_

v1

Memory 
Cell

Precharge
Circuitry

Φ1

decode_s1



Slide Set 9, Slide 18

Bitline I/O Circuit (for a write)

We've added a write driver at the 
bottom.

Notice that since the memory cell is 
a storage element, its enable (the 
wordline) needs to be a _q signal. 
That will ensure that the clock falls 
latching in the data BEFORE the 
data has a chance to change.

Need to isolate the write driver so it 
does not fight with the precharge
(power issue), which is why the 
write signal is qualified.

Φ
2

W
or

dl
in

e_
q1

D
at

a_
s1

W
rit

e_
q1

*
*I

ns
te

ad
 o

f Φ
1 

co
ul

d 
be

 A
N

D
ed

 w
ith

 Φ
2

bi
t_

b_
v1

bi
t_

v1

Φ1Φ1

Write_s1



Slide Set 9, Slide 19

Decoders

A decoder decodes an n-bit address.  The outputs of the decoder are the 
wordlines.  Since there are n address bits, there are 2n wordlines.  
Depending on the address, exactly one wordline is asserted (which 
activates exactly one row in the memory).

decoder

n-bit
address 2n wordlines



Slide Set 9, Slide 20

Decoders

A decoder is just a structure that contains a number of AND gates, where 
each gate is enabled for a different input value.

For a n-bit to 2n decoder, we need to build 2n, n-input AND gates. And we 
want to build these AND gates so they layout nicely (in a regular way)

A0A0A1A1

Wordlines
(one wordline is asserted

depending on value of
address)

Address Inputs



Slide Set 9, Slide 21

Large Fanin AND Gates

In CMOS building this type of gate causes a problem, since large fanin
implies a series stack. We will see a little later in the notes that the best 
way to do this is to use a two-level decoder by predecoding the inputs. 

In nMOS the problem was easy, large fanin NOR gates work well. So a 
collection of NOR gates solves the problem very nicely.

A0A0A1A1

Wordlines
(one wordline is asserted
depending on value of

address)

Address Inputs

NOR



Slide Set 9, Slide 22

CMOS Decoders

In CMOS, a large fanin gate implies a series stack. So we need to build a 
decoder that does not use a large fanin gate. But how? Use a 2-level 
decoder.

An n-bit decoder requires 2n wires
A0, A0, A1, A1, …
Each gate is an n-bit NOR (NAND gate)

Could predecode the inputs
Send A0 A1, A0 A1, A0 A1, A0 A1, A2 A3 …
Instead of A0, A0, A1, A1, …
Maps 4 wires into 4 wires that need to go to the decoder
Reduces the number of inputs to the decode gate by a factor of two.



Slide Set 9, Slide 23

Predecode

Predecode is just like what we did when we needed to make a single six 
input AND gate. Did it in a few levels:

One can do a 2 input predecode, or a 3 input predecode
– A 2 input predecoder generates 4 outputs
– A 3 input predecoder generates 8 outputs

The difference with standard logic is that we need to decode all possible 
inputs. This means that each predecode gate can be reused by many 
‘final’ decode gates. A little planning can yield a regular layout.

decode gate

predecode



Slide Set 9, Slide 24

Predecode

A pre-decoded Decoder:

A0  A1 A4  A5A2  A3

A0A1 A0A1 A0A1 A0A1 A2A3 A2A3 A2A3 A2A3 A4A5 A4A5 A4A5 A4A5

PREDECODER

FINAL

DECODER

WL63WL62WL61



Slide Set 9, Slide 25

Decoder Layout Issues

Often we need to build large array structures (for example we need a large 
RAM), so we want to layout the decoder in as little space as possible. We 
need to find a good way to layout this structure.

Clearly we need to run the address lines through each decoder cell, and 
stack the decoder cells on top of each other.

A0 A0 A1 A1

A0A1

A0A1

A0A1

A0A1



Slide Set 9, Slide 26

Predecode Layout

The output of the predecode gate need to drive the address lines.

These address lines are usually high capacitance

So usually it is better to use a NAND with an inverter buffer as the 
predecode cells.

Cells can be placed underneath the address lines, or to the left of the 
address lines.

decode cells

predecode cells

WL0

WL1

WL2

A0A1

A0A1

A0A1

A0A1



Slide Set 9, Slide 27

Decoder Layout

Cell Area is proportional to n2. Decoder area is n3.

The problem with this layout is that most of the space is wasted. All of the 
area under the wires is wasted. We should rotate the gate to fit under the 
wires. 

A2A2A1A1A0A0 Gnd Vdd

Layout

for 3 inputs

at a time

(pre-decoder)



Slide Set 9, Slide 28

Wordline Drivers

I lied to you: the outputs of the decoders are not the wordlines.  The 
problem is that the wordlines are high-capacitance, so we need a large 
driver between the decoder outputs and the wordlines.  These drivers are 
called “wordline drivers”.

decoder

Wordline Drivers



Slide Set 9, Slide 29

Wordline Drivers

Also need to AND the wordlines with the clock (because we only want the 
wordlines going high once the bitlines have been precharged).

Clock qualification can be done in the decoder
A0 … An Phi1 - just another input to the decoder
Usually not a great idea, since this can lead to large skew

Clock AND is usually done in last stage before driver

Φ1

decode_s1 wordline_q1

or use normal NAND gate

can be large devices



Slide Set 9, Slide 30

Thin Drivers

Wordline pitch of memory cell is not that tight (about 40λ), but not that 
large either. There are some memories (ROMs, dRAMs) with much tighter 
pitch. For many of these applications you need thin gates and drivers. The 
minimum useful space is 16λ

For the wordline driver, I might use two of these drivers in parallel, to 
reduce the horizontal length (effectively fold the transistors again)

Gnd Vdd Contacts can
be shared

16λDecoder
is here

In Out



Slide Set 9, Slide 31

Putting it Together

Floorplan for a memory

Often, the memory is generated using a “memory generator”

Column Mux

R
ow

 D
ecode

Memory Array

Bit Line Precharge

Decoder

2:1 Mux
Bit IO Bit IO

&

Drv

Drv Decoder

Φ1

Pr
ed

ec
od

er

Address

R
/W

Mem

Mem



Slide Set 9, Slide 32

DRAM

DRAM relies on charge stored on a capacitor in each cell:

BitLine

Wordline

One memory cell = 1 access
transistor + 1 capacitor



Slide Set 9, Slide 33

Simple way to design capacitor:

Use an extra “poly-plate” layer 

(a) Cross-section

(b) Layout

Diffused
bit line

Polysilicon
plate

M1 word
line

Capacitor

Polysilicon
gate

Metal word line

SiO2

n+ Field Oxide

Inversion layer
induced by 
plate bias

n+

poly

poly

Used Polysilicon-Diffusion Capacitance

Expensive in Area



Slide Set 9, Slide 34

Microphotograph of DRAM:

•



Slide Set 9, Slide 35

Trench Capacitor Cells:

•

Cell Plate Si

2nd Field Oxide

Refilling Poly

Si Substrate

Capacitor Insulator

Capacitor Insulator



Slide Set 9, Slide 36

Stacked-Capacitor Cells

•

P-substrate

n+

bitline

n+

wordline (gate)

poly storage node
dielectric

supply



Slide Set 9, Slide 37

Stacked-Capacitor Cells:

Capacitor dielectric layerCell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode



Slide Set 9, Slide 38

And Finally…

• For more on digital integrated circuits and memory design: 
take EECE481 next term


