Slide Set 14

Design for Testability

Steve Wilton
Dept. of ECE
University of British Columbia
stevew@ece.ubc.ca

Slide Set 14, Page 1

Overview

Wolf 4.8, 5.6, 5.7, 8.7 ""?

Up to this point in the class, we have spent all of time trying to figure out
what we want on a chip, how to implement the desired functionality. We
also need to figure out a method of testing to see if the chip works after it is
manufactured. There are two types of testing a designer is interested in.
The first is to check out the design, to make sure it is correct, and
implements the desired functionality. We have talked some about this
testing already.

Unfortunately the manufacturing process for ICs is not perfect, so we need
to check each chip created to see if it matches the original design. Given
the complexity of today’s chips, this can be a very difficult task, unless
some planning is done up front. This planning is called design for
testability.

Slide Set 14, Page 2

Types of Testing

1. Verification: Testing your design to make sure it is correct
- Done using simulators (HSPICE, Verilog, IRSIM, etc.)
- Usually follow a test plan written by Verification Engineers
- Involves both testing Verilog code and final layout

2. Validation: Test every chip to see if it works
- You are assuming your design is correct
- Fabrication errors, imperfections in silicon cause errors
- Don’t want to sell faulty chips!

3. Debugging: Why doesn’t this chip work?
- S0 you can correct it in the next “spin”

Slide Set 14, Page 3

Verification

1 63000-

1 O?.OO.

1 030—

Number of States

108

=

T 1 1 1 |
1 10 100 1000 10000 1000OT 1000000

Number of Storage Elements
Number of latches

In Itanium processor
From J. Abraham, Oct 2005

Design Bug Distribution in Pentium 4

From J. Abraham, Oct 2005

Type of Bug %
“Goof” 12.7
Miscommunication 11.4
Microarchitecture 9.3
Logic/microcode changes 9.3
Corner cases 8
Power down 5.7
Documentation 4.4
Complexity 3.9
Initialization 3.4
Late definition 2.8
Incorrect RTL assertions 2.8
Design mistake 2.6

Source: EE Times,

42 Million Transistors,
1+ Million lines of RTL

Slide Set 14, Page 6

Pentium FDIV Bug

Pentium shipped in August 1994

* Intel actually knew about the bug in July

e But calculated that delaying the project a month would cost ~$1M
* And that in reality only a dozen or so people would encounter it
 They were right... but one of them took the story to EE times

By November 1994, firestorm was full on
* |BM said that typical Excel user would encounter bug every month
 Assumed 5K divisions per second around the clock
* People believed the story

 |IBM stopped shipping Pentium PCs

By December 1994, Intel promises full recall
e Total cost: ~$550M
« All for a bug which in reality maybe affected a dozen people

Slide Set 14, Page 7

TOP TEN NEW INTEL SLOGANS FOR THE PENTIUM

e 9.9999973251
e 8.9999163362
e 7.9999414610
e 6.9999831538
e 5.9999835137
e 4.9999999021
e 3.9998245917

e 2.9991523619
« 1.9999103517

It's a FLAW, Dammit, not a Bug

It's Close Enough, We Say So

Nearly 300 Correct Opcodes

You Don't Need to Know What's Inside

Redefining the PC -- and Mathematics As Well

We Fixed It, Really

Division Considered Harmful - No Life-Maintenance
Devices Should Be Used With This Processor

Why Do You Think They Call It *Floating* Point?
We're Looking for a Few Good Flaws

And the 0.9999999998th Slogan Is...

e The Errata Inside

Moral:
Test your chip thoroughly.
If you don't test it, it won’t work. Guaranteed!

But, even if your design is correct, the chips that come back from
the fab might not work

Validation

Defects in Fabrication

In the fabrication of chips, there are defects that get introduced. These
defects come from many sources:

— Defects in the base silicon.

— Dust or contamination in the fab or on wafer.
— Dust on mask.

— Misalighment.

— Over-etch or under-etch.

— sometimes you don't get the exact pattern you printed due to
limitations in the photolithographic process as we reach limits on
resolution.

Thus, sometimes, the implementation of the fabricated die doesn’t match
its specification, and you get wires you don’t want, don’t get wires that
you want, or find out that the transistors don’t operate as you expect

Slide Set 14, Page 11

Example Mask Alignment Error

This is from an NCR Memory Chip. This was what was sent to be fabbed:

Slide Set 14, Page 12

Example Mask Alignment Error

This is what came back. Layers were not aligned properly.

In this case, this part of the circuit was not functional anyway, but imagine
what this would do to your transistors

Slide Set 14, Page 13

Particle Defects

Particles can disrupt either “light-field” or “dark-field” patterns on the mask
or on the wafer during photolithographic process.

poly wires —— dust spot

I AT A

S0 wires end up shorted together

or

ANY R

missing a piece.

Slide Set 14, Page 14

Remember this distinction: Verification vs. Validation

Verification: - Test your design
- You can take advantage of regularity
- If one bit of a register works, they probably all do

Verification: - Test the actual chip
- A fault could occur in any bit of a register... test them all
- Need to test every chip you intend to sell

Slide Set 14, Page 15

This sort of testing Is very expensive:

0.5-1.0GHz, analog instruments, 1,024 digital pins:
ATE purchase price
= $1.2M + 1,024 x $3,000 = $4.272M

Running cost (five-year linear depreciation)
= Depreciation + Maintenance + Operation
= $0.854M + $0.085M + $0.5M
= $1.439M/year

Test cost (24 hour ATE operation)
— = $1.439M/(365 x 24 x 3,600)
— = 4.5 cents/second

Slide Set 14, Page 16

Production Testing

Once the design is fully correct, production testing verifies correct
fabrication for each new die.

But this isn’t trivial:
1. Need to test all the gates in a chip.
2. Only get to force chip inputs and observe chip outputs.

(Production testing is done with automated equipment, never
microprobing or e-beam, obviously)

gates >> # inputs/outputs.

3. Production testing is always done by applying a sequence of vectors
(apply new input to pins, and measure outputs from pins), usually one
vector per clock cycle.

If there were no internal states, the problem would merely be hard, but not
impossible. With states, the problem is nearly impossible unless the
designer helps.

Slide Set 14, Page 17

Don’t need to verify design at this step, just need to see if
the chip works
- ldea: come up with a model of what sort of faults are

likely, and test for those faults

Fault Model

Come up with a model of what sort of errors are common, and test
for those errors

“Stuck at” Model: this is the most popular:
- assume that a faulty chip has exactly one node that is
either stuck at O or stuck at 1
- come up with a set of test vectors that will find as many
of these faults as possible
- given a set of test vectors, you can come up with
a “fault coverage™: percentage of single stuck-at faults
that the test vectors will uncover

Slide Set 14, Page 19

Production Testing

We obviously created some test vectors before we sent the chip out to be
fabbed (to check our design). Can we just use these for production
testing?

No, not usually:

- When you simulated, you were making sure your design was correct

- But when we test the actual chip, it may be that there are
fabrication errors

- Since fabrication errors are very different than design errors, we
shouldn’t expect our design simulation vectors to be very effective
when looking for fabrication errors

- Ideally, we would want to test every gate and every wire on the chip

Slide Set 14, Page 20

Test Example

SAl SAO

¢ A,
° A2
° Al
° AO
e nNnl
e N2
e n3
e Y

e Minimum set:

Example from: Bushel, Rutgers University

Slide Set 14, Page 21

Test Example

SA1 SAO
. A, {0110} {1110} A pn

© A A > nZZ n3
¢ AO 1

° nl A0

* N2

e n3

I 4

e Minimum set:

Slide Set 14, Page 22
Example from: Bushel, Rutgers University

Test Example

SAl SAO

« A; {0110} {1110}
« A, {1010} {1110}
¢ A,

A,

e nNnl

e N2

e n3

e Y

e Minimum set:

Example from: Bushel, Rutgers University

A, > nZZ n3
A

Slide Set 14, Page 23

Test Example

SA1 SAO
. A, {0110} (1110} A pn

. A, {1010} 11100 r :}Y

« A, {0100} {0110} R o 3
° nl A0

e N2

e n3

e Y

e Minimum set:

Slide Set 14, Page 24
Example from: Bushel, Rutgers University

Test Example

SA1L SAO
° A, — 1
A, {0110} (1110} A
.« A, {1010} {1110}
. A, {0100} {0110} A > -
. A, {0110} {0111} m
[nl AO
e N2
e n3
.Y

e Minimum set:

Slide Set 14, Page 25
Example from: Bushel, Rutgers University

SAl
s {0110}
, {1010}
. {0100}
o {0110}
« nl {1110}
« n2 {0110}
« n3 {0101}
« Y {0110}

> > > P

Test Example

SAD

{1110}
{1110}
{0110}
{0111}
{0110}
{0100}
{0110}
{1110}

A, > nZZ n3
A

e Minimum set: {0100, 0101, 0110, 0111, 1010, 1110}

Example from: Bushel, Rutgers University

Slide Set 14, Page 26

Fault Coverage = 100 * Number of faults we will find
Total number of potential faults

100% Fault coverage would be great, but we sometimes
can’t quite get there

Testing Circuits with State

Suppose you have a 64 bit counter:
With no inputs but clock and the outputs there are two problems:

The tester does not know where the counter starts. Thus it can’t
simply compare the counter output to the ‘expected’ value.

To test the counter takes 264 = 18446744073709551616 clock
cycles. This is a long time to test just 64 counter cells.

Adding a reset fixes the first problem.

All counters (and state in general) need a reset to enable the tester to
get the chip in a known starting state.

Adding a load input fixes the second problem.
With a load it takes O(32) steps to test the counter.

To efficiently test state machines, you need a direct way of getting the
state machine into the state you want to test. The easiest way of
doing this it to provide a mechanism to load the state in the state
machines.

Slide Set 14, Page 28

Observability

Original Design:

Yyvy

ALU Registers

More Testable Design:
MODE

some other signal N 7pyy If mode is 1, we
output internal
signal. ldea:
: intelligently choose
which internal
signals you will want
access to

\

ALU Registers

Slide Set 14, Page 29

Controllability

Original Design:

More Testable Design:

Input

ALU

ALU

yvyvy

Registers

Registers

If mode is 1, we can use
iInput pin(s) to drive
Internal signals. Can be
used to set state of a
state machine, etc.

Slide Set 14, Page 30

Scan

Scan techniques are often used in testing, since they take only a few
(about 4 to 6) additional pins, but have the potential to control a lots of
things (state, other output pads, etc.). Trade bandwidth for pins.
Techniques requiring everything to be scannable are often called by the
buzzword LSSD (level-sensitive scan design) which really just means
“full-scan”. (Original meaning also implied strict 2 phase clocking)

« Convert testing a sequential machine into solely the problem of testing a
block of combinational logic with ALL primary inputs controllable through
scan, and all primary outputs observable through scan.

« Accomplish this by changing all the state latches into a latch that can
become a shift-register, and linking them all together in scan chains.

» A state can be shifted in, all the logic can compute, and then the state
can be shifted out at the same time the next state is shifted in.
Do a complete scan between every applied test vector.

» Scan great for both debug and production wafer or packaged part testing
» Partial-scan is possible, but ATPG tools are not as automated.

Slide Set 14, Page 31

Scan

Structured technigue which allows us to set state of flip-flops
In a circuit or read out state during testing:

Replace all DFF’s with:

Data in (DI) \k

Scan In (SI)

CLK —>

If Mode=0, operate as a normal flip-flop
If Mode=1, take input from Sl instead

Slide Set 14, Page 32

Original Design:

New Design:

Scan in

)
[T
)L

Clock not shown
(each flip-flop receives
a common clock)

S| DI

Sl DI
M _Q

Clock not shown
(each flip-flop receives
a common clock)

ul

Sl DI
M Q
Scan out
—_—

Scan

If M is 1, all registers act as a big shift chain

Operation:
a) to set state:
-setMto 1l
- shift in 3 bits on scan in
- set Mto 0, and operate circuit as normal

b) to read state:
-setMto 1l
- shift out 3 bits out of scan out
-setMto O

You can link all FFs in a design this way -> full scan
Or only some FFs -> partial scan

Slide Set 14, Page 34

W — Combinational —™ 7K
- circuit
== Scan-out
Y3
3 13 |
y o b [o |
<] I
Yo
Y2
o D [0]
< <
Y
Y1 0 L
Q D)
< > 3
Clock Scan-in Normal

/ Scan

Scan If you are using two-phase clocking

Scan of Register-based designs

Scan In

q>1_c1>2

Scan Out

Scan of Latch-based designs

Scan In

on

Scan Out

In a latch-based chip, need to add extra ®2 latches so the scan chain

doesn’t go through combinational logic.

Slide Set 14, Page 36

Design for LSSD

Does not affect user-visible architecture but
* Makes registers or latches more complex (larger and slightly slower)
— area penalty.

« The additional wiring taken up by the scan wires is usually minuscule,
but this is only true when the CAD flow can generate a good scan
ordering, which must be determined after cell placement (and then
backannotated into logic netlist).

For many semi-custom design, full-scan makes sense since it allows the
production test vectors to be generated with good test coverage.

Slide Set 14, Page 37

Built-In-Self-Test

The buzzword BIST is best used to refer to the portions of a design where an
additional FSM has been added solely for the purposes of running through a
test sequence where the results are NOT observable by the tester on every
clock cycle.

Typically, BIST is added to test large (RAM) arrays where the number of clock
cycles required by conventional vector-based tests would be just too
excessive.

Additionally, BIST can be used to test the delay performance of circuits which
would also not be accessible by a tester applying vectors slowly.

The result of BIST is meant to be a pass/fail result, not diagnostic information.
Typically, the BIST controller compresses the results into a “signature” which
can be compared against the signature of a known good chip.

Unlike other methods of design for testability, adding BIST usually doesn’t
really help in providing any controllability for design debug.

Slide Set 14, Page 38

Built-In Self Test

(Sub)-Circuit

Stimulus Generator |__, Under I, | Response Analyzer
F Test ¥
f

Test Controller F

Slide Set 14, Page 39

Example Stimulus Generator: LFSR

YO

P <
(@p]
N

RPOORRPEPOR (g I
A
A 4
Py
<

SCORrRrPFRPEFLPOPRFRO
OFrRrRFRPPFRPOPFOO

Slide Set 14, Page 40

Example Analyzer: Signhature Analysis

In

Y _~

)

Counts transitions on input stream

-> Compression in time

Counter

Slide Set 14, Page 41

Example Analyzer: Signhature Analysis

Slightly more complex signature analysis circuit:

Signature

A' # 4

P 7

l—>
Clock

Ol O
Ol O

V
Ol

\%
Ol

\%

Slide Set 14, Page 42

IDDQ Testing

Measuring the quiescent power supply current (IDDQ) as a method of
testing is another good idea in CMOS circuits.

Once pure fully-complementary static CMOS circuits have driven their
outputs they only draw picoamps from the power supply (leakage)

So, design the chip with a way of turning off all DC power consumption
(like ratioed-logic NOR gates), and then after every vector, the power
supply current will settle down. Even on big chips with millions of
transistors, the leakage current of all the transistors together is less than
(or about the order of) the on-current of a single transistor that is stuck on.

So, measuring IDDQ is a great way to detect shorts which will cause
fighting output drivers to consume current.

But, don’t have time to measure IDDQ after every test vector, so just
measure it after a few well chosen ones, and hope.

With higher leakage currents in recent technologies, this may be more
difficult.

Slide Set 14, Page 43

Debug

Silicon Debug

If you find that none of your chips work, then it probably is a
design problem.

Reality: most chips go
through a few “spins” before
It is correct enough to sell

But, if there is a problem, you have
to find the cause FAST
- This is a really stressful
time for an engineer
- Better get it right before
committing another few million
- What if one bug hides another?

Slide Set 14, Page 45

Silicon Debug

Currently, there is no systematic methodology that
Addresses this problem.

There are some ‘hacks’ and point solutions:

— controlled un-loading of scan chains=> complicated, careful
clock gating, not full-speed.

— ad-hoc design-specific debug logic => suffers from the “bug
prediction” problem.

— external accessible ‘test-points’ => external I/O is
expensive and unable to run at internal rates.

Slide Set 14, Page 46

Rambus XDR DRAM interface §

U Memory controller

.-Iri--'-i- '|-

| 9 Ii,g' 1L —
.5 MB
4
- il

- - II II | il Bl i —'--I.-I

est and debug logic

=
E ol
—_
=
—
-
—
-
)
S
=
-
e
e i

O controller

Probing Technology

Micro-probes (nano-probes, pico-probes) are all very thin needles
manipulated on a wafer probe station that can get be moved under the
microscope and dropped down on specific wires. But often the added
capacitance disrupts the circuit so much, that no information is gained
about what was happening before the probe changed the circuit.

With an active FET amplifier in the tip, the best micro-probe models can
reduce the added capacitance to under 100fF

Voltage levels can be sensed non-mechanically by e-beam testers, which
are like sampling digital oscilloscopes that recreate a waveform by
repeated sampling at slightly different delay offsets.

Both microprobing and e-beam probing can usually only get to the top
layer of metal. Sometimes it is possible to scrape insulation away, to get to
the next lower level of metal if it isn’t covered by the top layer. Sometimes
laser or ion beam drilling can be used too.

Slide Set 14, Page 48

Single-Die Repair Technology

When a problem is discovered, and a correction proposed, it is
desirable to check the correction quicker than waiting many weeks
for the re-fabrication cycle.

It is possible to make changes to individual dies by using focused
lon-beam (FIB) machines. Together with laser cutting, this allows
the capability to both remove and deposit wires. But the wires are
much lower quality (hundreds of ohm/square), and deposition rates
are slow (on the order of a minute per 100 microns).

Much better to get the chips right in the first place!

Slide Set 14, Page 49

Overall System Test Strategy

To enhance controllability and observability both inside of chips
and at the board level, use the techniques discussed in this lecture:

e Add reset signals and muxes to allow more direct control.

« Bring key signals out from inside of complex combinational logic
blocks.

 Add Scan to latches/registers.

 Add BIST around RAMSs or other arrays, using signature
compression to compare the results.

Slide Set 14, Page 50

