
Slide Set 14, Page 1

Slide Set 14

Design for Testability

Steve Wilton
Dept. of ECE

University of British Columbia
stevew@ece.ubc.ca



Slide Set 14, Page 2

Overview

Wolf 4.8, 5.6, 5.7, 8.7

Up to this point in the class, we have spent all of time trying to figure out 
what we want on a chip, how to implement the desired functionality. We 
also need to figure out a method of testing to see if the chip works after it is 
manufactured. There are two types of testing a designer is interested in. 
The first is to check out the design, to make sure it is correct, and 
implements the desired functionality. We have talked some about this 
testing already.
Unfortunately the manufacturing process for ICs is not perfect, so we need 
to check each chip created to see if it matches the original design. Given 
the complexity of today’s chips, this can be a very difficult task, unless 
some planning is done up front. This planning is called design for 
testability.
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Types of Testing

1. Verification:  Testing your design to make sure it is correct
- Done using simulators (HSPICE, Verilog, IRSIM, etc.)
- Usually follow a test plan written by Verification Engineers
- Involves both testing Verilog code and final layout

2. Validation:  Test every chip to see if it works
- You are assuming your design is correct
- Fabrication errors, imperfections in silicon cause errors
- Don’t want to sell faulty chips!  

3. Debugging:  Why doesn’t this chip work?
- So you can correct it in the next “spin”



Verification
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Design Bug Distribution in Pentium 4

2.6Design mistake
2.8Incorrect RTL assertions
2.8Late definition
3.4Initialization
3.9Complexity
4.4Documentation
5.7Power down
8Corner cases
9.3Logic/microcode changes
9.3Microarchitecture
11.4Miscommunication
12.7“Goof”
%Type of Bug

42 Million Transistors,
1+ Million lines of RTL

Source: EE Times,

From J. Abraham, Oct 2005



Slide Set 14, Page 7

Pentium FDIV Bug

Pentium shipped in August 1994
• Intel actually knew about the bug in July
• But calculated that delaying the project a month would cost ~$1M
• And that in reality only a dozen or so people would encounter it
• They were right… but one of them took the story to EE times

By November 1994, firestorm was full on
• IBM said that typical Excel user would encounter bug every month
• Assumed 5K divisions per second around the clock
• People believed the story
• IBM stopped shipping Pentium PCs

By December 1994, Intel promises full recall
• Total cost: ~$550M
• All for a bug which in reality maybe affected a dozen people



TOP TEN NEW INTEL SLOGANS FOR THE PENTIUM
--------------------------------------------------------------------------
• 9.9999973251   It's a FLAW, Dammit, not a Bug
• 8.9999163362   It's Close Enough, We Say So
• 7.9999414610   Nearly 300 Correct Opcodes
• 6.9999831538   You Don't Need to Know What's Inside
• 5.9999835137   Redefining the PC -- and Mathematics As Well
• 4.9999999021   We Fixed It, Really
• 3.9998245917   Division Considered Harmful - No Life-Maintenance 

Devices Should Be Used With This Processor
• 2.9991523619   Why Do You Think They Call It *Floating* Point?
• 1.9999103517   We're Looking for a Few Good Flaws

And the 0.9999999998th Slogan Is...

• The Errata Inside



Moral:
Test your chip thoroughly.
If you don’t test it, it won’t work.  Guaranteed! 

But, even if your design is correct, the chips that come back from
the fab might not work



Validation



Slide Set 14, Page 11

Defects in Fabrication

In the fabrication of chips, there are defects that get introduced. These 
defects come from many sources:

– Defects in the base silicon.

– Dust or contamination in the fab or on wafer.

– Dust on mask.

– Misalignment.

– Over-etch or under-etch.
...
→ sometimes you don't get the exact pattern you printed due to 

limitations in the photolithographic process as we reach limits on 
resolution.

Thus, sometimes, the implementation of the fabricated die doesn’t match 
its specification, and you get wires you don’t want, don’t get wires that 
you want, or find out that the transistors don’t operate as you expect
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Example Mask Alignment Error

This is from an NCR Memory Chip.  This was what was sent to be fabbed:
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Example Mask Alignment Error

This is what came back.  Layers were not aligned properly.

In this case, this part of the circuit was not functional anyway, but imagine 
what this would do to your transistors
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Particle Defects

Particles can disrupt either “light-field” or “dark-field” patterns on the mask 
or on the wafer during photolithographic process.
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Remember this distinction: Verification vs. Validation

Verification: - Test your design
- You can take advantage of regularity

- if one bit of a register works, they probably all do  

Verification: - Test the actual chip
- A fault could occur in any bit of a register… test them all
- Need to test every chip you intend to sell
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This sort of testing is very expensive:

0.5-1.0GHz, analog instruments,1,024 digital pins: 
ATE purchase price

= $1.2M + 1,024 x $3,000 = $4.272M

Running cost (five-year linear depreciation)
= Depreciation + Maintenance + Operation
= $0.854M + $0.085M + $0.5M
= $1.439M/year

Test cost (24 hour ATE operation)
– = $1.439M/(365 x 24 x 3,600)
– = 4.5 cents/second
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Production Testing

Once the design is fully correct, production testing verifies correct
fabrication for each new die.

But this isn’t trivial:
1. Need to test all the gates in a chip.
2. Only get to force chip inputs and observe chip outputs. 

(Production testing is done with automated equipment, never 
microprobing or e-beam, obviously)

# gates >> # inputs/outputs.
3. Production testing is always done by applying a sequence of vectors

(apply new input to pins, and measure outputs from pins), usually one 
vector per clock cycle.   

If there were no internal states, the problem would merely be hard, but not 
impossible. With states, the problem is nearly impossible unless the 
designer helps.



Don’t need to verify design at this step, just need to see if

the chip works

- Idea: come up with a model of what sort of faults are 

likely, and test for those faults
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Fault Model

Come up with a model of what sort of errors are common, and test
for those errors

“Stuck at” Model: this is the most popular:
- assume that a faulty chip has exactly one node that is
either stuck at 0 or stuck at 1

- come up with a set of test vectors that will find as many
of these faults as possible
- given a set of test vectors, you can come up with 
a “fault coverage”: percentage of single stuck-at faults
that the test vectors will uncover
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Production Testing

We obviously created some test vectors before we sent the chip out to be 
fabbed (to check our design).  Can we just use these for production 
testing?

No, not usually:
- When you simulated, you were making sure your design was correct
- But when we test the actual chip, it may be that there are 

fabrication errors
- Since fabrication errors are very different than design errors, we 

shouldn’t expect our design simulation vectors to be very effective
when looking for fabrication errors

- Ideally, we would want to test every gate and every wire on the chip
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Test Example

SA1 SA0
• A3
• A2
• A1
• A0
• n1
• n2
• n3
• Y
• Minimum set:

A3
A2

A1

A0

Y

n1

n2 n3

Example from: Bushel, Rutgers University
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Test Example

SA1 SA0
• A3 {0110} {1110}
• A2
• A1
• A0
• n1
• n2
• n3
• Y
• Minimum set:

A3
A2

A1

A0

Y

n1

n2 n3

Example from: Bushel, Rutgers University
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Test Example

SA1 SA0
• A3 {0110} {1110}
• A2 {1010} {1110}
• A1
• A0
• n1
• n2
• n3
• Y
• Minimum set:

A3
A2

A1

A0

Y

n1

n2 n3

Example from: Bushel, Rutgers University
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Test Example

SA1 SA0
• A3 {0110} {1110}
• A2 {1010} {1110}
• A1 {0100} {0110}
• A0
• n1
• n2
• n3
• Y
• Minimum set:

A3
A2

A1

A0

Y

n1

n2 n3

Example from: Bushel, Rutgers University
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Test Example

SA1 SA0
• A3 {0110} {1110}
• A2 {1010} {1110}
• A1 {0100} {0110}
• A0 {0110} {0111}
• n1
• n2
• n3
• Y
• Minimum set:

A3
A2

A1

A0

Y

n1

n2 n3

Example from: Bushel, Rutgers University
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Test Example

SA1 SA0
• A3 {0110} {1110}
• A2 {1010} {1110}
• A1 {0100} {0110}
• A0 {0110} {0111}
• n1 {1110} {0110}
• n2 {0110} {0100}
• n3 {0101} {0110}
• Y {0110} {1110}
• Minimum set: {0100, 0101, 0110, 0111, 1010, 1110}

A3
A2

A1

A0

Y

n1

n2 n3

Example from: Bushel, Rutgers University



Fault Coverage = 100 * Number of faults we will find
Total number of potential faults

100% Fault coverage would be great, but we sometimes 
can’t quite get there



Slide Set 14, Page 28

Testing Circuits with State

Suppose you have a 64 bit counter:

With no inputs but clock and the outputs there are two problems:

The tester does not know where the counter starts. Thus it can’t 
simply compare the counter output to the ‘expected’ value.

To test the counter takes 264 = 18446744073709551616 clock 
cycles. This is a long time to test just 64 counter cells. 

Adding a reset fixes the first problem.

All counters (and state in general) need a reset to enable the tester to 
get the chip in a known starting state. 

Adding a load input fixes the second problem.

With a load it takes O(32) steps to test the counter.

To efficiently test state machines, you need a direct way of getting the 
state machine into the state you want to test. The easiest way of 
doing this it to provide a mechanism to load the state in the state 
machines.
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Observability

Original Design:

More Testable Design:

ALU Registers

ALU Registers

MODE

OUTPUT
Some other signal If mode is 1, we 

output internal 
signal. Idea: 
intelligently choose 
which internal 
signals you will want 
access to
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Controllability

Original Design:

More Testable Design:

ALU Registers

If mode is 1, we can use 
input pin(s) to drive 
internal signals.  Can be 
used to set state of a 
state machine, etc.

ALU Registers

MODE
Input
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Scan

Scan techniques are often used in testing, since they take only a few 
(about 4 to 6) additional pins, but have the potential to control a lots of 
things (state, other output pads, etc.). Trade bandwidth for pins. 
Techniques requiring everything to be scannable are often called by the 
buzzword LSSD (level-sensitive scan design) which really just means 
“full-scan”. (Original meaning also implied strict 2 phase clocking)

• Convert testing a sequential machine into solely the problem of testing a 
block of combinational logic with ALL primary inputs controllable through 
scan, and all primary outputs observable through scan.

• Accomplish this by changing all the state latches into a latch that can 
become a shift-register, and linking them all together in scan chains.

• A state can be shifted in, all the logic can compute, and then the state 
can be shifted out at the same time the next state is shifted in. 
Do a complete scan between every applied test vector.

• Scan great for both debug and production wafer or packaged part testing
• Partial-scan is possible, but ATPG tools are not as automated.
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Scan

Structured technique which allows us to set state of flip-flops
in a circuit or read out state during testing:

Replace all DFF’s with:

If Mode=0, operate as a normal flip-flop
If Mode=1, take input from SI instead

MODE

Data in (DI)
D Q

Scan In (SI)

0
1

CLK



• Original Design:

• New Design:

D

Q

D

Q

D

Q

Logic

Logic

Clock not shown
(each flip-flop receives

a common clock)

DI

Q Q Q

Logic

Logic

Clock not shown
(each flip-flop receives

a common clock)
DIDISI SI SI

MMM

Scan in

Scan out
M
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Scan

If M is 1, all registers act as a big shift chain

Operation:
a) to set state: 

- set M to 1
- shift in 3 bits on scan in
- set M to 0, and operate circuit as normal

b) to read state:
- set M to 1
- shift out 3 bits out of scan out
- set M to 0

You can link all FFs in a design this way -> full scan
Or only some FFs -> partial scan



0 
1 

0 
1 

0 
1 

Combinational 
circuit 

z 1 

z k 

w 1 

w n 

y 3 

y 2 

y 1 

Y 3 

Y 2 

Y 1 

Clock Scan-in Normal Scan⁄

Scan-out

D Q 

D Q 

D Q 
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Scan if you are using two-phase clocking

In a latch-based chip, need to add extra Φ2 latches so the scan chain 
doesn’t go through combinational logic. 

Scan of Register-based designs Scan of Latch-based designs

CL Φ1 Φ2

Scan In

Scan Out

CL Φ1

Φ2

Scan In

Scan Out

Φ2CL

*
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Design for LSSD

Does not affect user-visible architecture but 

• Makes registers or latches more complex (larger and slightly slower)

→ area penalty.

• The additional wiring taken up by the scan wires is usually minuscule, 
but this is only true when the CAD flow can generate a good scan
ordering, which must be determined after cell placement (and then 
backannotated into logic netlist). 

For many semi-custom design, full-scan makes sense since it allows the 
production test vectors to be generated with good test coverage.
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Built-In-Self-Test

The buzzword BIST is best used to refer to the portions of a design where an 
additional FSM has been added solely for the purposes of running through a 
test sequence where the results are NOT observable by the tester on every 
clock cycle.

Typically, BIST is added to test large (RAM) arrays where the number of clock 
cycles required by conventional vector-based tests would be just too 
excessive.   

Additionally, BIST can be used to test the delay performance of circuits which 
would also not be accessible by a tester applying vectors slowly.

The result of BIST is meant to be a pass/fail result, not diagnostic information. 
Typically, the BIST controller compresses the results into a “signature” which 
can be compared against the signature of a known good chip.

Unlike other methods of design for testability, adding BIST usually doesn’t 
really help in providing any controllability for design debug.
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Built-In Self Test

(Sub)-Circuit

Under

Test

Stimulus Generator Response Analyzer

Test Controller
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Example Stimulus Generator: LFSR

S0 S1 S2

R R R

1 0 0
0 1 0
1 0 1
1 1 0
1 1 1
0 1 1
0 0 1
1 0 0
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Example Analyzer: Signature Analysis

Counts transitions on input stream
-> Compression in time

R

Counter

In
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Example Analyzer: Signature Analysis

Slightly more complex signature analysis circuit:

p

Clock

Signature

D Q

Q

D Q

Q

D Q

Q

D Q

Q
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IDDQ Testing

Measuring the quiescent power supply current (IDDQ) as a method of 
testing is another good idea in CMOS circuits. 

Once pure fully-complementary static CMOS circuits have driven their 
outputs they only draw picoamps from the power supply (leakage)

So, design the chip with a way of turning off all DC power consumption 
(like ratioed-logic NOR gates), and then after every vector, the power 
supply current will settle down. Even on big chips with millions of 
transistors, the leakage current of all the transistors together is less than 
(or about the order of) the on-current of a single transistor that is stuck on.

So, measuring IDDQ is a great way to detect shorts which will cause 
fighting output drivers to consume current. 

But, don’t have time to measure IDDQ after every test vector, so just 
measure it after a few well chosen ones, and hope.

With higher leakage currents in recent technologies, this may be more 
difficult.



Debug
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Silicon Debug

If you find that none of your chips work, then it probably is a
design problem.

Reality: most chips go 
through a few “spins” before 
it is correct enough to sell

But, if there is a problem, you have 
to find the cause FAST

- This is a really stressful 
time for an engineer

- Better get it right before 
committing another few million

- What if one bug hides another?
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Silicon Debug

Currently, there is no systematic methodology that 
Addresses this problem.

There are some ‘hacks’ and point solutions:
– controlled un-loading of scan chains=> complicated, careful 

clock gating, not full-speed.

– ad-hoc design-specific debug logic => suffers from the “bug 
prediction” problem.

– external accessible ‘test-points’ => external I/O is 
expensive and unable to run at internal rates.
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Probing Technology

Micro-probes (nano-probes, pico-probes) are all very thin needles 
manipulated on a wafer probe station that can get be moved under the 
microscope and dropped down on specific wires. But often the added 
capacitance disrupts the circuit so much, that no information is gained 
about what was happening before the probe changed the circuit.

With an active FET amplifier in the tip, the best micro-probe models can 
reduce the added capacitance to under 100fF

Voltage levels can be sensed non-mechanically by e-beam testers, which 
are like sampling digital oscilloscopes that recreate a waveform by 
repeated sampling at slightly different delay offsets.

Both microprobing and e-beam probing can usually only get to the top 
layer of metal. Sometimes it is possible to scrape insulation away, to get to 
the next lower level of metal if it isn’t covered by the top layer. Sometimes 
laser or ion beam drilling can be used too.
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Single-Die Repair Technology

When a problem is discovered, and a correction proposed, it is 
desirable to check the correction quicker than waiting many weeks 
for the re-fabrication cycle. 

It is possible to make changes to individual dies by using focused 
ion-beam (FIB) machines. Together with laser cutting, this allows 
the capability to both remove and deposit wires. But the wires are 
much lower quality (hundreds of ohm/square), and deposition rates 
are slow (on the order of a minute per 100 microns).

Much better to get the chips right in the first place!
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Overall System Test Strategy

To enhance controllability and observability both inside of chips
and at the board level, use the techniques discussed in this lecture:

• Add reset signals and muxes to allow more direct control.
• Bring key signals out from inside of complex combinational logic

blocks.
• Add Scan to latches/registers.
• Add BIST around RAMs or other arrays, using signature 

compression to compare the results.


