- Please submit your answers to all questions.
- We will mark your answers to 3 questions.
- We will provide you with full solutions to all questions.
- 1. Prove that if $a \in \mathbb{Z}$, then $4 \nmid a^2 + 1$.

Proof. Assume $a \in \mathbb{Z}$. Then we have two cases: a is even or a is odd.

- Case 1: If a is even, then a = 2k for some $k \in \mathbb{Z}$. This implies $a^2 + 1 = 4k^2 + 1$. Since $k^2 \in \mathbb{Z}$, we conclude that $4 \nmid (a^2 + 1)$.
- Case 2: If a is even, then a = 2k + 1 for some $k \in \mathbb{Z}$. This implies $a^2 + 1 = 4k^2 + 4k + 2 = 4(k^2 + k) + 2$. Since $k^2 + k \in \mathbb{Z}$, we conclude that $4 \nmid (a^2 + 1)$.

2. Prove that if $k \in \mathbb{Z}$ then 3|k(2k+1)(4k+1).

Proof. We do the Euclidean division of k by 3 so we write k = 3q + r for some $q, r \in \mathbb{Z}$ with $r \in \{0, 1, 2\}$. We then argue by cases.

- Case 1: if r=0, then k=3q for some $q\in\mathbb{Z}$. This means that k(2k+1)(4k+1)=3q(2k+1)(4k+1) so k(2k+1)(4k+1) is a multiple of 3 since q(2k+1)(4k+1) is an integer.
- Case 2: if r=1, then k=3q+1 for some $q\in\mathbb{Z}$. This implies that 2k+1=3(2q+1) which implies $k(2k+1)(4k+1)=3\cdot k(2q+1)(4k+1)$. Thus, k(2k+1)(4k+1) is a multiple of 3 since k(2q+1)(4k+1) is an integer.
- Case 3: if r = 2, then k = 3q + 2 for some $q \in \mathbb{Z}$. In this case, we see that 4k+1 = 3(4q+3), that is, $k(2k+1)(4k+1) = 3 \cdot 3 \cdot k(2k+1)(4q+3)$. Thus, k(2k+1)(4k+1) is a multiple of 3 since k(2k+1)(4q+3) is an integer.

3. Let $n \in \mathbb{Z}$.

- a) Show that if $3 \mid n$ and $4 \mid n$, then $12 \mid n$.
- b) Use the previous part to show that if n > 3 is a prime, then $n^2 \equiv 1 \pmod{12}$.

Proof. Let $n \in \mathbb{Z}$.

- a) Assume that $3 \mid n$ and $4 \mid n$. This means that n = 3k and $n = 4\ell$ for some $k, \ell \in \mathbb{Z}$. Therefore we see that $4\ell = 3k$, which implies that $\ell = 3(k-\ell)$. Using this, we get $n = 4\ell = 4(3(k-\ell)) = 12(k-\ell)$. Hence, since $k \ell \in \mathbb{Z}$, we see that $12 \mid n$.
- b) Assume that n > 3 is prime. Then we know that n is odd, that is, n = 2k + 1 for some $k \in \mathbb{Z}$. Then $n^2 1 = 4k^2 + 4k$, which implies that $4 \mid (n^2 1)$. So, using part a), we see that it suffices to show that $3 \mid (n^2 1)$. Since n > 3 is prime, we know that $3 \nmid n$. Thus, we can prove this using cases.
 - Case 1: Let $n = 3\ell + 1$ for some $\ell \in \mathbb{Z}$. Then $n^2 1 = 9\ell^2 + 6\ell = 3(3\ell^2 + 2\ell)$ is divisible by 3.
 - Case 2:Let $n = 3\ell + 2$ for some $\ell \in \mathbb{Z}$. Then $n^2 1 = 9\ell^2 + 12\ell + 3 = 3(3\ell^2 + 4\ell + 1)$ is divisible by 3,

which finishes the proof.

4. Let $n \in \mathbb{Z}$. Prove that if $n^3 + n^2 - n + 3$ is a multiple of three, then n is a multiple of three.

Proof. Let $n \in \mathbb{Z}$. We prove this statement using contrapositive. Assume that $3 \nmid n$, then we want to show that $3 \nmid (n^3 + n^2 - n + 3)$.

Since $3 \nmid n$, we see that we have 2 cases. n = 3q + 1, or n = 3q + 2 for some $q \in \mathbb{Z}$.

• Case 1: n = 3q + 1. In this case, we see that

$$n^{3} + n^{2} - n + 3 = n^{3} - n + n^{2} + 3 = n(n^{2} - 1) + n^{2} + 3$$
$$= (n - 1)n(n + 1) + n^{2} + 3$$
$$= 3(qn(n + 1) + 1) + (3q + 1)^{2}$$
$$= 3(qn(n + 1) + 1 + 3q^{2} + 2q) + 1.$$

Hence, since $qn(n+1)+1+3q^2+2q\in\mathbb{Z}$, we see that $3\nmid (n^3+n^2-n+3)$.

• Case 2: n = 3q + 2. In this case, we see that

$$n^{3} + n^{2} - n + 3 = n^{3} - n + n^{2} + 3 = n(n^{2} - 1) + n^{2} + 3$$

$$= (n - 1)n(n + 1) + n^{2} + 3$$

$$= 3((n - 1)n(q + 1) + 1) + (3q + 2)^{2}$$

$$= 3((n - 1)n(q + 1) + 1 + 3q^{2} + 4q) + 1.$$

Hence, since $(n-1)n(q+1) + 1 + 3q^2 + 4q \in \mathbb{Z}$, we see that $3 \nmid (n^3 + n^2 - n + 3)$.

Therefore in both cases, we see that if $3 \nmid n$, then $3 \nmid (n^3 + n^2 - n + 3)$. Hence, the result follows.

5. Let $x \in \mathbb{R}$. Then, prove that $x^2 + |x - 6| > 5$.

Proof. We use proof by cases. First, let $x \in \mathbb{R}$.

- Case 1: x > 6: In this case we see that |x 6| = x 6. Hence we see that for x > 6, we have x 6 > 0. Moreover, for x > 6, multiplying this inequality by x and 6, we conclude $x^2 > 6x > 36$, that is $x^2 > 36$. Therefore, combining x 6 > 0 with $x^2 > 36$, we get $x^2 + x 6 > 36$.
- Case 2: $x \le 6$. In this case we see that |x 6| = 6 x. Thus, $x^2 + |x 6| = x^2 x + 6 = (x \frac{1}{2})^2 + \frac{23}{4} > \frac{20}{4} = 5$ since $(x \frac{1}{2})^2 \ge 0$ for all $x \in \mathbb{R}$. Hence we see that for $x \le 6$, $x^2 x + 6 > 5$. Therefore in both cases, we see that $x^2 + |x 6| > 5$.

6. Let $x, y \in \mathbb{Z}$. Prove that

 $3 \nmid (x^3 + y^3)$ if and only if $3 \nmid (x + y)$.

Proof. Let $x, y \in \mathbb{Z}$. We see that this is a biconditional statement. We will prove each implication in turn.

- **Proof of** $3 \nmid (x^3 + y^3)$ **implies** $3 \nmid (x + y)$: We prove the contrapositive. Assume $3 \mid (x + y)$. Then we know that (x + y) = 3k for some $k \in \mathbb{Z}$. Thus, $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 = 27k^3$. This implies that $(x^3 + y^3) = 27k^3 3x^2y 3xy^2 = 3(9k^3 x^2y xy^2)$. Since $(9k^3 x^2y xy^2) \in \mathbb{Z}$ we see that $3 \mid (x^3 + y^3)$
- **Proof of** $3 \nmid (x+y)$ **implies** $3 \nmid (x^3+y^3)$: Assume that $3 \nmid (x+y)$. Then, we have two cases, (x+y) = 3k+1 or (x+y) = 3k+2 for some $k \in \mathbb{Z}$.
 - Case 1: (x+y) = 3k+1 for some $k \in \mathbb{Z}$. Then we see that $(x^3+y^3) = (x+y)^3 3(x^2y + xy^2) = 27k^3 + 27k^2 + 9k + 1 3(x^2y + xy^2) = 3(9k^3 + 9k^2 + 3k x^2y + xy^2) + 1$. Since $(9k^3 + 9k^2 + 3k x^2y + xy^2) \in \mathbb{Z}$, we see that $3 \nmid (x^3 + y^3)$.
 - Case 2: (x+y) = 3k+2 for some $k \in \mathbb{Z}$. Then we see that $(x^3+y^3) = (x+y)^3 3(x^2y + xy^2) = 27k^3 + 54k^2 + 36k + 8 3(x^2y + xy^2) = 3(9k^3 + 18k^2 + 12k x^2y + xy^2) + 1$. Since $(9k^3 + 18k^2 + 12k x^2y + xy^2) \in \mathbb{Z}$, we see that $3 \nmid (x^3 + y^3)$.

7. **Bézout's identity**: Let $a, b \in \mathbb{Z}$ such that a and b are not both zero. Then there exists $x, y \in \mathbb{Z}$ such that $ax + by = \gcd(a, b)$.

For example, for a = 5 and b = 7, we see gcd(a, b) = 1 and we can take x = 10 and y = -7.

Now, let $a, b, k \in \mathbb{Z}$ and assume that a, b are not both zero. Then, using Bézout's identity, show that if $k \nmid \gcd(a, b)$, then $k \nmid a$ or $k \nmid b$.

Proof. We are going to prove this statement using contrapositive. Let $a, b, k \in \mathbb{Z}$ and assume that a, b are not both zero. Moreover, assume that $k \mid a$ and $k \mid b$. This means that a = km and b = kn for some $n, m \in \mathbb{Z}$. We also know that by Bézout's identity, we know that there exists $x, y \in \mathbb{Z}$ such that $ax + by = \gcd(a, b)$. Hence, combining these equations we get $kmx + kny = k(mx + ny) = \gcd(a, b)$. Therefore, since $mx + ny \in \mathbb{Z}$, we get $k \mid \gcd(a, b)$.