- Please submit your answers to all questions.
- We will mark your answers to 3 questions.
- We will provide you with full solutions to all questions.
- 1. Negate the following statement: There is a real number c, so that for every positive number ϵ there is a positive number M for which

$$\left|\frac{x^2 + \sin(x^2)}{x^2 + \cos(x)} - c\right| < \epsilon,$$

whenever $x \geq M$.

Proof. First, let us convert this into a statement using quantifiers. The statement becomes

$$\exists c \in \mathbb{R} \text{ s.t. } \forall \epsilon > 0, \ \exists M > 0 \text{ s.t. } \forall x \ge M, \left| \frac{x^2 + \sin(x^2)}{x^2 + \cos(x)} - c \right| < \epsilon.$$

The negation is

$$\forall \ c \in \mathbb{R}, \ \exists \epsilon > 0 \text{ s.t. } \forall M > 0, \exists x \ge M \text{ s.t. } \left| \frac{x^2 + \sin(x^2)}{x^2 + \cos(x)} - c \right| \ge \epsilon.$$

In words: for all real numbers c, there exists a positive number ϵ , so that for all positive numbers M, there is a number $x \ge M$ so that

$$\left|\frac{x^2 + \sin(x^2)}{x^2 + \cos(x)} - c\right| \ge \epsilon.$$

2. Write down the negation of the statement

$$\forall x \in \mathbb{Z}, \exists y \in \mathbb{R}, (x \ge y \Rightarrow \frac{x}{y} = 1)$$

and determine the statement is true or false.

Proof. Recall that the negation of $P \Rightarrow Q$ is $P \land (\sim Q)$. In our case, P is the statement $x \ge y$, and Q is the statement $\frac{x}{y} = 1$. It is tempting to write $\sim Q = (\frac{x}{y} \ne 1)$, but we must be careful here, and also account for the possibility that y = 0. Thus $\sim Q = ((y = 0) \lor \frac{x}{y} \ne 1)$.

Thus the negation of the statement is

$$\exists x \in \mathbb{Z}, \forall y \in \mathbb{R}, ((x \ge y) \land \left((y = 0) \lor \left(\frac{x}{y} \ne 1\right)\right).$$

Now let us check whether the statement is true or false. Let x be an integer. Then, taking $y = x + \frac{1}{2}$, we have that y > x, so the hypothesis is false which makes the implication true. Thus the statement is true.

- 3. Let $A = \{n \in \mathbb{N} : 3 \mid n \text{ or } 4 \mid n\}$. Note that all numbers in A are positive. Determine whether the following four statements are true or false — explain your answers ("true" or "false" is not sufficient).
 - (a) $\exists x \in A \text{ s.t. } \exists y \in A \text{ s.t. } x + y \in A.$
 - (b) $\forall x \in A, \forall y \in A, x + y \in A.$
 - (c) $\exists x \in A \text{ s.t. } \forall y \in A, x + y \in A.$
 - (d) $\forall x \in A, \forall y \in A, \exists z \in A \text{ s.t. } x + y + z \in A.$

Proof. (a) True — Let $x = y = 3 \in A$. Then $x + y = 6 \in A$.

- (b) False Let x = 3 and y = 4. Then we see that $x + y = 7 \notin A$
- (c) True Let x = 12 and then let $y \in A$. If $3 \mid y$ then y = 3k and so x + y = 3(k + 4) and so is in A. Similarly, if $4 \mid y$ then $y = 4\ell$ and so $x + y = 4(\ell + 3)$ and so is in A.
- (d) True Let $x, y \in A$. By Fact 3.0.3 (Euclidean division), there are unique integers q and r so that x + y = 3q + r, with $0 \le r \le 2$. Let k = 3 r, so $k \ge 1$. Since $4 \equiv 1 \pmod{3}$, we have $4k \equiv k \equiv 3 r \pmod{3}$. Let z = 4k. We know that $z \in A$, since 4|z. Finally, by Theorem 5.3.3 we have

$$x + y + z = 3q + r + 4(3 - r) \equiv r + (3 - r) \equiv 3 \equiv 0 \pmod{3},$$

This means that 3|(x+y+z), and thus $x+y+z \in A$.

- 4. Negate the following statements and determine whether the original statements are true or false. Justify your answer.
 - (a) $\forall n \in \mathbb{Z}, \exists y \in \mathbb{R} \{0\}$ such that $y^n \leq y$.
 - (b) $\exists y \in \mathbb{R} \{0\}$ such that $\forall n \in \mathbb{Z}, y^n \leq y$.

(c)
$$\forall x \in \mathbb{R}$$
 where $x \neq 0$, we have $x \leq 1$ or $\frac{1}{x} \leq 1$.

(d)
$$\forall x \in \mathbb{R}$$
 where $x \neq 0$, we have $x \ge 1$ or $\frac{1}{x} \ge 1$.

- *Proof.* (a) The statement is true and its negation is " $\exists n \in \mathbb{Z}$, such that $\forall y \in \mathbb{R} \{0\}$ we have $y^n > y$ ". We see that we have different cases for any $n \in \mathbb{Z}$, we can take y = 1, and get $y^n = 1 = y$. Hence the statement is true.
- (b) The statement is true and its negation is " $\forall y \in \mathbb{R} \{0\}, \exists n \in \mathbb{Z} \text{ such that } y^n > y$.". We can see that for y = 1, we get $y^n = 1^n = 1 = y$ for all $n \in \mathbb{Z}$.

- (c) The statement is true and its negation is " $\exists x \in \mathbb{R}$ where $x \neq 0$, such that x > 1 and $\frac{1}{x} > 1$ ". To justify the original statement, we can look at different cases on x. We see that if x < 0, then $x \leq 1$ and $\frac{1}{x} \leq 1$. Moreover, if $0 < x \leq 1$, then we see that the statement $x \leq 1$ or $\frac{1}{x} \leq 1$ is automatically satisfied. Finally, for x > 1, we see that $\frac{1}{x} < 1$. Thus, again, the statement $x \leq 1$ or $\frac{1}{x} \leq 1$ is true. This means that the statement is true for all $x \in \mathbb{R}$, $x \neq 0$.
- (d) The statement is false and its negation is " $\exists x \in \mathbb{R}$ where $x \neq 0$, such that x < 1 and $\frac{1}{x} < 1$ ". To see that the negated statement is true, consider x = -1. Then x < 1 and -1 = 1/x < 1.

с		ч
L		
L		
L		

- 5. After cleaning your basement, you find a set of keys K and a set of locks L. For every one of the following statements (a), (b) and (c),
 - 1. re-express the statement in a mathematical form using quantifiers \forall and/or $\exists,$
 - 2. negate this mathematical statement,
 - 3. re-express the negation in standard english.
 - E.g.: All keys unlock all locks.
 - Reformulated statement: $\forall k \in K, \forall l \in L, k$ unlocks l.
 - Negation: $\exists k \in K, \exists l \in L, k \text{ does not unlock } l$.
 - Reformulated negation: Some key does not unlock some lock.
 - (a) At least one of the keys unlocks one of the locks.
 - (b) Some key unlocks all the locks.
 - (c) Some lock is not unlocked by any key.

Proof. (a)At least one of the keys unlocks one of the locks.

- Reformulated statement: $\exists k \in K, \exists l \in L, k \text{ unlocks } l$.
- Negation: $\forall k \in K, \forall l \in L, k \text{ does not unlock } l$.
- Reformulated negation: No key unlocks any lock.

(b) Some key unlocks all the locks.

- Reformulated statement: $\exists k \in K, \forall l \in L, k \text{ unlocks } l$.
- Negation: $\forall k \in K, \exists l \in L, k \text{ does not unlock } l$.
- Reformulated negation: For any key, there is a lock that it cannot unlock.

(c) Some lock is not unlocked by any key.

- Reformulated statement: $\exists l \in L, \forall k \in K, k \text{ does not unlock } l$.
- Negation: $\forall l \in L, \exists k \in K, k \text{ unlocks } l.$
- Reformulated negation: Every lock is unlocked by some key.