Homework 4 Solutions

- Please submit your answers to all questions.
- We will mark your answers to 3 questions.
- We will provide you with full solutions to all questions.
- 1. Recall Bézout's identity: Let $a, b \in \mathbb{Z}$ such that a and b are not both zero. Then there exists $x, y \in \mathbb{Z}$ such that ax + by = gcd(a, b).

Use this result to prove the following result:

Let $a, b, c \in \mathbb{Z}$ such that gcd(a, b) = 1. Then

$$(a \mid bc) \implies (a \mid c).$$

Proof. Assume a|bc. Then bc = ka for some $k \in \mathbb{Z}$. Since gcd(a, b) = 1, using Bézout's identity there exists $x, y \in \mathbb{Z}$ such that ax + by = 1. Multiplying the last equality by c yields c = acx + bcy = acx + kay = a(cx + ky). Since $(cx + ky) \in \mathbb{Z}$, we have a|c.

- 2. Let $P \subset \mathbb{N}$ be the set of prime numbers $P = \{2, 3, 5, 7, 11, \ldots\}$. Determine whether the following statements are true or false. Prove your answers ("true" or "false" is not sufficient).
 - 1. $\forall x \in P, \forall y \in P, x + y \in P$.
 - 2. $\forall x \in P, \exists y \in P \text{ such that } x + y \in P.$
 - 3. $\exists x \in P$ such that, $\forall y \in P, x + y \in P$.
 - 4. $\exists x \in P$ such that, $\exists y \in P, x + y \in P$.
 - *Proof.* 1. **Disproof**: This statement is false. As a counterexample, we can take any $x = 3 \in P$ and $y = 3 \in P$. Then we see that $x + y = 6 \notin P$.
 - 2. **Disproof**: This statement is false. For a counterexample, let $x = 7 \in P$. Then, we see that if $y \in P$ is odd, then x + y > 2 is even and thus, $x + y \notin P$. Moreover, if y is even, then this means y = 2, and hence, $x + y = 9 \notin P$.
 - 3. **Disproof**: This statement is false. To disprove it we are going to prove its negation:

" $\forall x \in P, \exists y \in P, \text{ such that } x + y \notin P$."

Let $x \in P$. Then we have two cases to consider:

Case 1: x = 2: In this case, we can pick $y = 7 \in P$, and get $x + y = 9 \notin P$.

Case 2: x is odd: In this case, we can take y = x. This implies that x + y > 2 is even and thus, $x + y \notin P$.

Therefore the negation of the statement is true, and hence, the original statement is false.

Homework 4 Solutions

4. **Proof**: This statement is true. As an example, we can take any $x = 2 \in P$, and $y = 3 \in P$. Then we see that $x + y = 5 \in P$.

3. Prove the following statement: For every positive number ϵ there is a positive number M such that

$$\left|\frac{2x^2}{x^2+1} - 2\right| < \epsilon$$

whenever $x \ge M$.

Proof. Given $\epsilon > 0$, let $M = 2/\epsilon'$, where $\epsilon' = \min\{\epsilon, 1\}$. Then for $x \ge M$, we have

$$x^{2} + 1 > 4/(\epsilon')^{2} > 2/\epsilon'.$$

For the second inequality, we used the fact that $\epsilon' \leq 1$. Thus

$$\epsilon \ge \epsilon' > \frac{2}{x^2 + 1} = \left| \frac{2x^2}{x^2 + 1} - 2 \right|.$$

4. We say that a function $f : \mathbb{R} \to \mathbb{R}$ is continuous at $a \in \mathbb{R}$ if $\lim_{x \to a} f(x) = f(a)$. Let

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$$

Is f continuous at x = 0?

Note: Make sure to use the definition of a limit to justify your answer. You may also use the fact that $\forall x \in \mathbb{R}, |\sin(x)| \leq 1$.

Proof. Yes. It suffices to show that $\lim_{x\to 0} x^2 \sin(\frac{1}{x}) = 0$. Given $\epsilon > 0$, we let $\delta = \sqrt{\epsilon}$. Then for each x satisfying $0 < |x| < \delta$, we have

$$|x^{2}\sin(\frac{1}{x}) - 0| = x^{2}|\sin(\frac{1}{x})| \le x^{2} < \sqrt{\epsilon}^{2} = \epsilon,$$

where the first inequality follows from the fact that $|\sin(x)| \le 1$. This proves $\lim_{x\to 0} x^2 \sin(\frac{1}{x}) = 0$.

5. We say that a sequence (x_n) is bounded if

$$\exists M \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, |x_n| \leq M.$$

Prove that if a sequence (x_n) converges to 0, then (x_n) is bounded.

Homework 4 Solutions

Proof. Assume that the sequence (x_n) converges to 0. Set $\epsilon = 1$. From the definition of convergence, there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have $|x_n - 0| \leq 1$. Then let $M = \max(1, |x_1|, |x_2|, |x_3|, \dots, |x_{N-1}|)$ be the maximum absolute value of the N-1 first values of the sequence and 1. Let $n \in \mathbb{N}$. Then either $n \leq N-1$ or $n \geq N$. Let us consider the two cases separately.

• Case 1: Assume $n \leq N - 1$. Then

$$|x_n| \le \max(|x_1|, |x_2|, |x_3|, \dots, |x_N|) \le M$$

by definition of M.

• Assume $n \ge N$. Then $|x_n| = |x_n - 0| \le 1 \le M$ thanks to the definition of N and of M.

In all cases we have $|x_n| \leq M$, which finishes the proof.

6. We say that a sequence $(x_n)_{n \in \mathbb{N}}$ converges to L if

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n > N) \implies (|x_n - L| < \epsilon).$$

Using the definition, prove that the sequence (x_n) with $x_n = (-1)^n + \frac{1}{n}$ does not converge to any $L \in \mathbb{R}$.

Proof. Case 1: $L \ge 0$. For $\epsilon = 1/2, \forall N \in \mathbb{N}$, take n = 2N + 1 > N. Then

$$|x_n - L| = |-1 + \frac{1}{n} - L| = 1 - \frac{1}{n} + L > 1 - \frac{1}{2N+1} + L \ge 1 - \frac{1}{3} > \frac{1}{2},$$

where the second inequality is because $-1+\frac{1}{n}-L\leq 0$ for all $n\in\mathbb{N}$ and $L\geq 0$

Case 2: L < 0. For $\epsilon = 1/3, \forall N \in \mathbb{N}$, take n = 2N > N. Then

$$|x_n - L| = |1 + \frac{1}{2N+1} - L| = 1 + \frac{1}{2N+1} - L > 1 + \frac{1}{3} > \frac{1}{3}.$$