
Homework 4 Solutions

• Please submit your answers to all questions.
• We will mark your answers to 3 questions.
• We will provide you with full solutions to all questions.

1. Recall Bézout’s identity: Let a, b ∈ Z such that a and b are not both zero.
Then there exists x, y ∈ Z such that ax+ by = gcd(a, b).

Use this result to prove the following result:

Let a, b, c ∈ Z such that gcd(a, b) = 1. Then

(a | bc) =⇒ (a | c).

Proof. Assume a|bc. Then bc = ka for some k ∈ Z. Since gcd(a, b) = 1, using
Bézout’s identity there exists x, y ∈ Z such that ax + by = 1. Multiplying
the last equality by c yields c = acx + bcy = acx + kay = a(cx + ky). Since
(cx+ ky) ∈ Z, we have a|c.

2. Let P ⊂ N be the set of prime numbers P = {2, 3, 5, 7, 11, . . .}. Determine
whether the following statements are true or false. Prove your answers (“true”
or “false” is not sufficient).

1. ∀x ∈ P , ∀y ∈ P , x+ y ∈ P .

2. ∀x ∈ P , ∃y ∈ P such that x+ y ∈ P .

3. ∃x ∈ P such that, ∀y ∈ P , x+ y ∈ P .

4. ∃x ∈ P such that, ∃y ∈ P , x+ y ∈ P .

Proof. 1. Disproof : This statement is false. As a counterexample, we can
take any x = 3 ∈ P and y = 3 ∈ P . Then we see that x+ y = 6 /∈ P .

2. Disproof : This statement is false. For a counterexample, let x = 7 ∈ P .
Then, we see that if y ∈ P is odd, then x + y > 2 is even and thus,
x + y /∈ P . Moreover, if y is even, then this means y = 2, and hence,
x+ y = 9 /∈ P .

3. Disproof : This statement is false. To disprove it we are going to prove
its negation:

“∀x ∈ P , ∃y ∈ P , such that x+ y /∈ P .”

Let x ∈ P . Then we have two cases to consider:

Case 1: x = 2: In this case, we can pick y = 7 ∈ P , and get x + y =
9 /∈ P .

Case 2: x is odd: In this case, we can take y = x. This implies that
x+ y > 2 is even and thus, x+ y /∈ P .

Therefore the negation of the statement is true, and hence, the original
statement is false.
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4. Proof : This statement is true. As an example, we can take any x =
2 ∈ P , and y = 3 ∈ P . Then we see that x+ y = 5 ∈ P .

3. Prove the following statement: For every positive number ϵ there is a positive
number M such that ∣∣∣∣ 2x2

x2 + 1
− 2

∣∣∣∣ < ϵ

whenever x ≥ M .

Proof. Given ϵ > 0, let M = 2/ϵ′, where ϵ′ = min{ϵ, 1}. Then for x ≥ M , we
have

x2 + 1 > 4/(ϵ′)2 > 2/ϵ′.

For the second inequality, we used the fact that ϵ′ ≤ 1. Thus

ϵ ≥ ϵ′ >
2

x2 + 1
=

∣∣∣∣ 2x2

x2 + 1
− 2

∣∣∣∣ .

4. We say that a function f : R → R is continuous at a ∈ R if lim
x→a

f(x) = f(a).

Let

f(x) =

{
x2 sin( 1

x
), if x ̸= 0

0, if x = 0.

Is f continuous at x = 0?

Note: Make sure to use the definition of a limit to justify your answer. You
may also use the fact that ∀x ∈ R, | sin(x)| ≤ 1.

Proof. Yes. It suffices to show that lim
x→0

x2 sin( 1
x
) = 0. Given ϵ > 0, we let

δ =
√
ϵ. Then for each x satisfying 0 < |x| < δ, we have

|x2 sin(
1

x
)− 0| = x2| sin(1

x
)| ≤ x2 <

√
ϵ
2
= ϵ,

where the first inequality follows from the fact that | sin(x)| ≤ 1. This proves
lim
x→0

x2 sin( 1
x
) = 0.

5. We say that a sequence (xn) is bounded if

∃M ∈ R s.t. ∀n ∈ N, |xn| ≤ M.

Prove that if a sequence (xn) converges to 0, then (xn) is bounded.
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Proof. Assume that the sequence (xn) converges to 0. Set ϵ = 1. From the
definition of convergence, there exists N ∈ N such that for all n ≥ N we
have |xn − 0| ≤ 1. Then let M = max(1, |x1|, |x2|, |x3|, . . . , |xN−1|) be the
maximum absolute value of the N − 1 first values of the sequence and 1. Let
n ∈ N. Then either n ≤ N − 1 or n ≥ N . Let us consider the two cases
separately.

� Case 1: Assume n ≤ N − 1. Then

|xn| ≤ max(|x1|, |x2|, |x3|, . . . , |xN |) ≤ M

by definition of M .

� Assume n ≥ N . Then |xn| = |xn − 0| ≤ 1 ≤ M thanks to the definition
of N and of M .

In all cases we have |xn| ≤ M , which finishes the proof.

6. We say that a sequence (xn)n∈N converges to L if

∀ϵ > 0,∃N ∈ N,∀n ∈ N, (n > N) =⇒
(
|xn − L| < ϵ

)
.

Using the definition, prove that the sequence (xn) with xn = (−1)n +
1

n
does

not converge to any L ∈ R.

Proof. Case 1: L ≥ 0. For ϵ = 1/2, ∀N ∈ N, take n = 2N + 1 > N . Then

|xn − L| = | − 1 +
1

n
− L| = 1− 1

n
+ L > 1− 1

2N + 1
+ L ≥ 1− 1

3
>

1

2
,

where the second inequality is because −1 + 1
n
− L ≤ 0 for all n ∈ N and

L ≥ 0

Case 2: L < 0. For ϵ = 1/3, ∀N ∈ N, take n = 2N > N . Then

|xn − L| = |1 + 1

2N + 1
− L| = 1 +

1

2N + 1
− L > 1 +

1

3
>

1

3
.
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