- Please submit your answers to all questions.
- We will mark your answers to 3 questions.
- We will provide you with full solutions to all questions.
- 1. Prove that for all $n \in \mathbb{N}$, $\sum_{k=1}^{n} (2k-1) \cdot 2^k = 6 + 2^n (4n-6)$.

Proof. We are going to prove this statement using induction.

Base case: We see that for n = 1, we have

$$\sum_{k=1}^{1} (2k-1) \cdot 2^k = 2 = 6 + 2^1 (4 \cdot 1 - 6),$$

which is a true. Thus, the statement is true for n = 1.

Inductive step: Assume that the statement is true for a = n for some $n \ge 1$, that is,

 $\sum_{k=1}^{n} (2k-1) \cdot 2^{k} = 6 + 2^{n} (4n-6).$ Then, by adding $(2(n+1)-1) \cdot 2^{n+1}$, to both sides, we get,

$$\sum_{k=1}^{n+1} (2k-1) \cdot 2^k = \sum_{k=1}^n (2k-1) \cdot 2^k + (2(n+1)-1) \cdot 2^{n+1}$$

= 6 + 2ⁿ(4n - 6) + (2n + 1) \cdot 2^{n+1}
= 6 + 2ⁿ(4n - 6) + 2ⁿ(4n + 2)
= 6 + 2ⁿ(4n - 6 + 4n + 2)
= 6 + 2ⁿ⁺¹(4n - 2)
= 6 + 2^{n+1}(4(n+1) - 6)

Therefore, by mathermatical induction, we see that the statement is true for all $n \in \mathbb{N}$.

2. Let $n \in \mathbb{N}$. Prove that if $a_{n+2} = 5a_{n+1} - 6a_n$ and $a_1 = 1, a_2 = 5$, then $a_n = 3^n - 2^n$ for all $n \ge 3$.

Proof. We use strong induction.

Base case: n = 3, we have $a_3 = 5 \cdot 5 - 6 \cdot 1 = 19 = 3^3 - 2^2$. When n = 4, $a_4 = 5a_3 - 6a_2 = 5 \cdot 19 - 6 \cdot 5 = 65 = 3^4 - 2^4$.

Inductive step: Assume $a_i = 3^i - 2^i$ for $4 \le i \le k$. Now

$$a_{k+1} = 5a_k - 6a_{k-1}$$

= 5(3^k - 2^k) - 6(3^{k-1} - 2^{k-1})
= (5 - 2)3^k - (5 - 3)2^k
= 3^{k+1} - 2^{k+1}.

By the strong math induction, we conclude that if $a_{n+2} = 5a_{n+1} - 6a_n$ and $a_1 = 1, a_2 = 5$, then $a_n = 3^n - 2^n$ for all $n \ge 3$.

3. Let $f_0 = 0$, $f_1 = 1$ and $f_n = f_{n-1} + f_{n-2}$ for each $n \in \mathbb{N}, n \ge 2$. Show that $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ for every $n \in \mathbb{N}$.

Proof. We prove by induction.

Base case: n = 1, we have $f_2 \cdot f_0 - f_1^2 = 1 \cdot 0 - 1^2 = (-1)^1$. **Inductive step:** Assume statement holds for $f_{k+1}f_{k-1} - f_k^2 = (-1)^k$. Then

$$f_{k+2}f_k - f_{k+1}^2 = (f_{k+1} + f_k)f_k - (f_k + f_{k-1})f_{k+1}$$

= $f_k^2 - f_{k+1}f_{k-1}$
= $-(-1)^k$
= $(-1)^{k+1}$.

4. Prove that $7^{4n+3} + 2$ is a multiple of 5 for all non-negative integers n.

Proof. We will use mathematical induction to prove the statement.

Base case: When n = 0, we have $7^3 + 2 = 343 + 2$ which is a multiple of 5. Inductive step: Assume, for some non-negative integer k, that

$$5 \mid 7^{4k+3} + 2.$$

Consider $7^{4(k+1)+3} + 2 = 7^4(7^{4k+3} + 2) + 2(1 - 7^4)$. We know that, on the right-hand side, the first summand is divisible by 5 due to the induction assumption and the second summand is divisible by 5 by inspection. So the induction step holds.

Therefore, by induction, the statement holds true for all non-negative integers n.

5. Let x be a real number. We let $u_0 = 1$, $u_1 = \cos x$ and define (u_n) in such a way that for all $n \ge 0$, $u_{n+2} = 2u_1u_{n+1} - u_n$. Show that for all $n \ge 0$ we have

$$u_n = \cos(nx).$$

Note: In the induction step, you can use the trigonometric formulas $\cos(a+b) = \cos a \cos b - \sin a \sin b$ and $\cos(a-b) = \cos a \cos b + \sin a \sin b$.

Proof. We will prove the result by strong induction.

Base case: it is clear that the property is true for n = 0 (check that $u_0 = \cos(0x) = 1$) and n = 1 (check that $u_0 = \cos(1x) = \cos x$.

Inductive step: Assume that the result is true for n and n + 1. Then we write

$$\cos((n+2)x) = \cos((n+1)x)\cos x - \sin((n+1)x)\sin x$$

and

$$\cos(nx) = \cos((n+1)x - x) = \cos((n+1)x)\cos x + \sin((n+1)x)\sin x.$$

Summing the two last display we get

$$\cos((n+2)x) + \cos(nx) = 2\cos((n+1)x)\cos x.$$

Now let us use the induction hypothesis and write

$$u_{n+2} = 2u_{n+1}u_1 - u_n$$

= 2 cos((n + 1)x) cos x - cos(nx)
= cos((n + 2)x).

This prove P(n+2).

Conclusion: using a two step induction, P(n) is proved for all $n \ge 0$. \Box

6. Find, with proof, all positive integers n so that $n^3 > 2n^2 + n$.

Proof. Check some small n cases

- When n = 1, we have $1 \ge 3$ which is obviously false.
- When n = 2, we have $8 \ge 10$ which is obviously false.
- When n = 3, we have $27 \ge 21$ which is true.
- When n = 4, we have $64 \ge 36$ which is true.

So it appears to be true for $n \ge 3$. We prove this by induction.

• Base case: — when n = 3, the statement is $27 \ge 18 + 3 = 21 \checkmark$.

• Inductive step: — assume that the statement is true for n = k. Hence

$$k^3 \ge 2k^2 + k$$

We need to show that

$$(k+1)^3 \ge 2(k+1)^2 + (k+1)$$
 equivalently
 $k^3 \ge -k^2 + 2k + 1$

It suffices to show that $2k^2+k \ge -k^2+2k+2$, or equivalently $3k^2 \ge k+2$. By assumption $k \ge 3 \ge 2$, and so $2k \ge k+2$. By similarly reasoning $2k^2 \ge 2k \ge k+2$, and finally $3k^2 \ge 2k^2 \ge k+2$. Thus we know $3k^2 \ge k+2$.

Now by assumption $k^3 \ge 2k^2 + k$, and we have show that $3k^2 \ge k + 2$ and so $k^3 \ge 2k^2 + k \ge -k^2 + 2k + 2$ as required.

Thus by induction, the statement is true for all integer $n \geq 3$.