- Please submit your answers to all questions.
- We will mark your answers to 3 questions.
- We will provide you with full solutions to all questions.
- 1. Prove or disprove: If R and S are two equivalence relations on a set A, then $R \cup S$ is also an equivalence relation on A.

Proof. This statement is false. For a counterexample we can take $A = \{1, 2, 3\}$ and the relations $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$ and $S = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\}$. We see that the relations R and S are equivalence relations, but

 $R \cup S = \{(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1)\}$ is not an equivalence relation since $(2,1), (1,3) \in R \cup S$, but $(2,3) \notin R \cup S$, that is, $R \cup S$ is not transitive.

2. Define a relation on \mathbb{Z} as aRb if $3 \mid (5a - 8b)$. Is R an equivalence relation? Justify your answer.

Proof. We need to check whether this relation is reflexive, symmetric, and transitive.

Reflexive: We see that this relation is reflexive since for any $a \in \mathbb{Z}$, we have (5a - 8a) = 3(-a), which implies $3 \mid (5a - 8a)$, that is, aRa.

Symmetric: Let $a, b \in \mathbb{Z}$ and assume aRb. Then we see $3 \mid (5a - 8b)$, and so 5a - 8b = 3k for some $k \in \mathbb{Z}$. Then

5b-8a = (-3b-3a) - (5a-8b) = 3(-b-a-k). Since $(-b-a-k) \in \mathbb{Z}$ we see that $3 \mid (5b-8a)$. Therefore R is symmetric.

Transitive: Let $a, b, c \in \mathbb{Z}$ and assume aRb and bRc. Then we see $3 \mid (5a-8b)$ and $3 \mid (5b-8c)$, so that 5a-8b=3k and 5b-8c=3n for some $k, n \in \mathbb{Z}$. Then 5a-8c=(5a-8b)+3b+(5b-8c)=3(k+b+n). Since $(k+b+n) \in \mathbb{Z}$ we see that $3 \mid (5a-8c)$. Therefore R is transitive.

- 3. Determine whether the following relations are reflexive, symmetric and transitive.
 - 1. On the set X of all functions $\mathbb{R} \to \mathbb{R}$, we define the relation:

fRg if there exists $x \in \mathbb{R}$ such that f(x) = g(x).

2. Let R be a relation on \mathbb{Z} defined by:

$$xRy \text{ if } xy \equiv 0 \pmod{4}.$$

- *Proof.* 1. It is reflexive, symmetric but not transitive. For example, let f, g and h such that f(x) = 0, g(x) = x and h(x) = 1. We have fRg and gRh but it is not true that fRh.
 - 2. (a) We see that $(1,1) \notin R$, since $1 \cdot 1 = 1 \not\equiv 0 \pmod{4}$. Therefore, the relation is not reflexive.
 - (b) This relation is symmetric since if $xy \equiv 0 \pmod{4}$, then $yx = xy \equiv 0 \pmod{4}$, that is, if $(x, y) \in R$, then $(y, x) \in R$.
 - (c) This relation is not transitive. For a counterexample, we can take, a = 1, b = 4, c = 1. Then, we see that $(1, 4), (4, 1) \in \mathbb{R}$, whereas, $(1, 1) \notin \mathbb{R}$.

4. Let A be a non-empty set and $S \subseteq \mathcal{P}(A)$ and $\mathcal{T} \subseteq \mathcal{P}(A)$ partitions of A. Show that \mathcal{R} defined as

$$\mathcal{R} = \{ S \cap T : S \in \mathcal{S}, \ T \in \mathcal{T} \} \setminus \{ \emptyset \}$$

is a partition of A.

Proof. The set \mathcal{R} is a set of non-empty subsets of A by definition. Let $x \in A$. Since \mathcal{S} and \mathcal{T} are partitions, there exists $S \in \mathcal{S}$ and $T \in \mathcal{T}$ such that $x \in S$ and $x \in T$. This entails that $x \in S \cap T$ and $S \cap T \in \mathcal{R}$.

Let $U_1, U_2 \in \mathcal{R}$. By definition $U_1 = S_1 \cap T_1$ for $S_1 \in \mathcal{S}$ and $T_1 \in \mathcal{T}$ and $U_2 = S_2 \cap T_2$ for $S_2 \in \mathcal{S}$ and $T_2 \in \mathcal{T}$. Then $U_1 \cap U_2 = S_1 \cap T_1 \cap S_2 \cap T_2 = (S_1 \cap S_2) \cap (T_1 \cap T_2)$. From there, either $S_1 = S_2$ and $T_1 = T_2$, in which case $U_1 = U_2$. Or we have $S_1 \cap S_2 = \emptyset$ or $T_1 \cap T_2 = \emptyset$, which entails that $U_1 \cap U_2 = \emptyset$.

In the end, \mathcal{R} is a partition of A.

5. Let E be a non-empty set and $x \in E$ be a fixed element of E. Consider the relation R on $\mathcal{P}(E)$ defined as

$$ARB \iff (x \in A \cap B) \lor (x \in \overline{A} \cap \overline{B}),$$

where for any set $S \subseteq E$, we write $\overline{S} = E \setminus S$ for the complement of S in E. Prove or disprove that R an equivalence relation.

Proof. Let us prove that R is an equivalence relation.

- Reflexivity: Let $A \in \mathcal{P}(E)$. Then $(x \in A) \lor (x \in \overline{A})$ which we can rewrite as $(x \in A \cap A) \lor (x \in \overline{A} \cap \overline{A})$. Hence, ARA.
- Symmetry: The symmetry is immediate from the symmetry of the intersection of sets.

• Transitivity: Let $A, B, C \in \mathcal{P}(E)$ and assume that ARB and BRC so that

$$\left((x \in A \cap B) \lor (x \in \overline{A} \cap \overline{B}) \right) \land \left((x \in B \cap C) \lor (x \in \overline{B} \cap \overline{C}) \right).$$

Now we can study 4 cases in turn:

- Case 1: $(x \in A \cap B) \land (x \in B \cap C)$. Then $x \in A \cap B \cap C$ so $x \in A \cap C$ so ARC.
- Case 2: $(x \in A \cap B) \land (x \in \overline{B} \cap \overline{C})$, which entails that $x \in B \cap \overline{B}$ so this case never happens.
- Case 3: $(x \in \overline{A} \cap \overline{B}) \land (x \in B \cap C)$. This case does not happen for the same reason as above.
- Case 4: $(x \in \overline{A} \cap \overline{B}) \land (x \in \overline{B} \cap \overline{C})$. From there $x \in \overline{A} \cap \overline{C}$ and so *ARC*.

6. Suppose that $n \in \mathbb{N}$ and \mathbb{Z}_n is the set of equivalence class of congruent modulo n on \mathbb{Z} (in Sections 101 and 103, this was called $\mathbb{Z}/n\mathbb{Z}$). In this question we will call an element $[u]_n$ invertible if it has a multiplicative inverse.

Now, define a relation R on \mathbb{Z}_n by xRy iff xu = y for some invertible $[u]_n \in \mathbb{Z}_n$.

- (a) Show that R is a equivalence relation.
- (b) Compute the equivalence classes of this relation for n = 6.

Hint: First find the invertible elements in \mathbb{Z}_6

Proof. To prove (a), we have to show that R is reflexive, symmetric and transitive.

- (reflexive) We have xRx since $[a]_n[1]_n = [a]_n$ for all $n \in \mathbb{Z}$.
- (symmetric) Suppose xRy, that is xu = y for some $u \in \mathbb{Z}_n$ which admits a multiplicative inverse. Write $v \in \mathbb{Z}_n$ to be a inverse of u, i.e. $uv = [1]_n$. Then we have $yv = xuv = x[1]_n = x$ and thus yRx.
- (transitive) Suppose xRy and yRz, that is xu = y and yv = z with u, v both admitting multiplicative inverse. Then we have xuv = yv = z. Write u' for the multiplicative inverse of u and v' for that of v. Then we see that $uvv'u' = u[1]_n u' = uu' = [1]_n$ and thus uv admits a multiplicative inverse. Therefore, we have xRz.

For (b), we first note that the set of elements in \mathbb{Z}_6 with a multiplicative inverses are $U = \{[1]_6, [5]_6\}$. Thus we may list the equivalence classes defined by R:

• We see that

$$\begin{split} [[0]_6] &= \{ [y]_6 \in \mathbb{Z}_6 \colon [y]_6 = [0]_6 [u]_6 \text{ for some invertible } [u]_6 \in \mathbb{Z}_6 \} \\ &= \{ [0]_6 u : u \in U \} = \{ [0]_6 \}. \end{split}$$

Then similarly,

- $[[1]_6] = \{ [1]_6 u : u \in U \} = \{ [1]_6, [5]_6 \}.$
- $[[2]_6] = \{ [2]_6 u : u \in U \} = \{ [2]_6, [4]_6 \}.$
- $[[3]_6] = \{[3]_6u : u \in U\} = \{[3]_6\}.$