Homework 9

- Please submit your answers to all questions.
- We will mark your answers to 3 questions.
- We will provide you with full solutions to all questions.
- 1. Suppose $f:A\to A$ such that $f\circ f$ is bijective. Is f necessarily bijective? Prove that your answer is correct.

Proof. Yes.

- f is injective Suppose $a, a' \in A$ satisfying f(a) = f(a'). Then applying f to both sides we get f(f(a)) = f(f(a')). Then, since $f \circ f$ is injective, we get a = a'. Hence, f is injective.
- f is surjective Suppose $a \in A$. Since $f \circ f$ is surjective, there exists $b \in A$ such that $f \circ f(b) = a$. This means that, there exists $c = f(b) \in A$ such that f(c) = a. Hence f is surjective.

2. Let $f: A \to A$ be a function. Prove that f is a symmetric and transitive relation on A if and only if f is the identity function.

Proof. Let f be a function from A to A and assume that $f = \{(a, f(a) : a \in A)\}$ is a symmetric and transitive relation. Let $a \in A$. Then, since f is a function, $\exists f(a) \in A$, such that $(a, f(a)) \in f$. Thus, we see that since $(a, f(a)) \in f$, by symmetry, we get $(f(a), a) \in f$. Since f is transitive, this implies $(a, a) \in f$. Moreover, since f is a function, and $(a, f(a)), (a, a) \in f$, we see f(a) = a. Thus, f is the identity function.

Moreover, if f is the identity function, we see that $f = \{(a, a) : a \in A\}$. Then, by definition, we see that f is the identity relation on A, and hence it is an equivalence relation, in particular, it is symmetric and transitive.

For the next problem, we need the following definition. Let $f: A \to B$ be a function, and let $D \subseteq A$. We define the restriction of f to D, denoted f_D , to be the function $f_D: D \to B$ given by $f_D(x) = f(x)$ for all $x \in D$.

- 3. Let X, Y, B be sets, and define $A = X \cup Y$. Let $f: A \to B$ be a function. Prove or disprove the following
 - a) If f_X and f_Y are injective, then f is injective.

Disproof: We see that this statement is false. For a counterexample we can take the function $f: \mathbb{R} \to \mathbb{R}$, defined as $f(x) = x^2$ and $X = (-\infty, 0]$ and $Y = [0, \infty)$ then see that f_X and f_Y are injective, but f is not injective.

Homework 9

b) If f is surjective, then $f(X) \cup f(Y) = B$.

Proof: Assume that f is surjective. We know that since $X,Y\subseteq A$, then $f(X),f(Y)\subseteq B$. Thus, we see $f(X)\cup f(Y)\subseteq B$. Moreover, if $b\in B$, then since f is surjective, $\exists a\in A$ such that f(a)=b. Thus, since $X\cup Y=A$, we see $a\in X\cup Y$. Hence, $a\in X$, in which case $f(a)\in f(X)$, or $a\in Y$, in which case $f(a)\in f(Y)$. In both cases, we see that $f(a)=b\in f(X)\cup f(Y)$. Thus, $B\subseteq f(X)\cup f(Y)$.

Therefore $f(X) \cup f(Y) = B$.

4. Consider the function

$$f: \mathbb{R} \longrightarrow [-1, +\infty)$$
$$x \longmapsto x^2 + 2x$$

- a) Show that f is well defined, namely that: $\forall x \in \mathbb{R}$, we have $x^2 + 2x \ge -1$.
- b) What is $f^{-1}(\{0\})$? $f^{-1}(\{-4\})$? $f^{-1}(\{-1\})$?
- c) Show that Range $(f) = [-1, +\infty)$.
- d) Is the function f injective, surjective, bijective?
- e) Now we consider the function

$$g: \mathbb{R} \longrightarrow [-1, +\infty)$$

$$x \longmapsto f(e^x)$$

Show that the function g is not surjective.

Proof. a for any $x \in \mathbb{R}$, we have $(x+1)^2 = x^2 + 2x + 1 > 0$ so $x^2 + 2x > -1$.

- b $f^{-1}(\{0\}) = \{0, -2\}.$ $f^{-1}(\{-4\}) = \emptyset.$ $f^{-1}(\{-1\}) = \{-1\}.$
- c Let $y \in [-1, +\infty)$. We want to show that there exists $x \in \mathbb{R}$ such that f(x) = y namely $x^2 + 2x y = 0$. We compute $\Delta = 4 + 4y$ which is greater than or equal to 0 since $y \ge -1$. Therefore, this equation has a solution $(x = -1 + \sqrt{1+y})$ or $x = -1 \sqrt{1+y}$. This proves that $y \in \text{Range}(f)$.
- d Surjective, not injective (see above questions).
- e Let x be such that g(x) = -1. It means that $f(e^x) = -1$, namely $e^{2x} + 2e^x = -1$. Contradiction.
- 5. Let R be the equivalence relation on \mathbb{R}^2 defined as

$$(x,y) R(s,t)$$
 if and only if $x^2 - y^2 = s^2 - t^2$.

Now, let S be the set of equivalence classes of the relation R. Let $F: S \to (0, \infty)$ be the function defined as

$$F([(x,y)]) = e^{x^2 - y^2}.$$

Homework 9

- a) Given $(x, y) \in \mathbb{R}^2$, determine [(x, y)], i.e. write down an explicit description of the set [(x, y)].
- b) Prove that the function F is bijective.

(You can use without proof that R is an equivalence relation.)

Proof. a) Let $(x,y) \in \mathbb{R}^2$. Then, we see that

$$[(x,y)] = \{(a,b) \in \mathbb{R}^2 \mid (x,y) \ R \ (a,b) \}$$
$$= \{(a,b) \in \mathbb{R}^2 \mid x^2 - y^2 = a^2 - b^2 \}.$$

Therefore we see that [(x,y)] is a rectangular hyperbola.

- b) Show F is bijective: We need to show that F is injective and surjective.
 - Injective: Let $(x,y),(s,t) \in \mathbb{R}^2$, and suppose that

$$F([(x,y)]) = F([(s,t)]).$$

This means that $e^{x^2-y^2}=e^{s^2-t^2}$. Since $z\mapsto e^z$ is injective (this follows, for example, from that fact that $z\mapsto e^z$ is increasing), this in turn implies that

$$x^2 - y^2 = s^2 - t^2.$$

Thus, we get (x, y) R(s, t), that is,

$$[(x,y)] = [(s,t)].$$

Hence F is injective.

• Surjective: Let $r \in (0, \infty)$, and let $R = \log(r)$. If $R \ge 0$, we take $[(x, y)] = [(\sqrt{R}, 0)] \in \mathcal{S}$, and see that

$$F([(x,y)]) = F([(\sqrt{R},0)]) = e^{\sqrt{R}^2} = e^R = r.$$

If R < 0, we take $[(x, y)] = [(0, \sqrt{-R})] \in \mathcal{S}$, and see that

$$F\big([(x,y)]\big) = F\big([(0,\sqrt{-R})]\big) = e^{0-\sqrt{-R}^2} = e^{-(-R)} = e^R = r.$$

Hence, F is surjective.

Therefore, we see that $F: \mathcal{S} \to [0, \infty)$ is bijective.