Homework 10

- Please submit your answers to all questions.
- We will mark your answers to 3 questions.
- We will provide you with full solutions to all questions.
- 1. Prove that there is no integer a so that $a \equiv 2 \pmod{6}$ and $a \equiv 7 \pmod{9}$.

Proof. Suppose such an integer a exists. Then the first congruence implies that a = 6k + 2 for some integer k. Similarly, the second congruence implies that a = 9l + 7 for some integer l. Thus we have

$$6k + 2 = 9l + 7$$

or, equivalently

$$6k - 9l = 5$$
.

This gives a contradiction since 3|6k + 9l = 3(2k + 3l) but $3 \nmid 5$.

2. Prove that the equation $5y^2 - 4x^2 = 7$ has no integer solutions.

Hint: Consider the equation modulo 4.

Proof. Suppose there are integers x and y satisfying $5y^2 - 4x^2 = 7$. Then

$$5y^2 - 4x^2 \equiv 7 \mod 4$$
$$1y^2 - 0x^2 \equiv 3 \mod 4$$

 $y^2 \equiv 3 \mod 4$

However, we can see the square of any integer is equivalent to either 0 or 1 modulo 4.

Case 1 If $y \equiv 0 \mod 4$, then $y^2 \equiv 0^2 \equiv 0 \mod 4$.

Case 2 If $y \equiv 1 \mod 4$, then $y^2 \equiv 1^2 \equiv 1 \mod 4$.

Case 3 If $y \equiv 2 \mod 4$, then $y^2 \equiv 2^2 \equiv 0 \mod 4$.

Case 4 If $y \equiv 3 \mod 4$, then $y^2 \equiv 3^2 \equiv 1 \mod 4$.

This is a contradiction. Hence, the equation has no integer solutions.

- 3. Let $f: X \to Y$ be a function. Suppose that f admits an inverse function.
 - (a) Prove the inverse function is unique.
 - (b) Let $g: Y \to Z$ be another function with an inverse. Show that the inverse function of $g \circ f$ is given by $f^{-1} \circ g^{-1}$

Proof. To show a), we suppose g and h are both inverse functions of f. Then

$$g \circ f = h \circ f = i_X$$

 $f \circ g = f \circ h = i_Y$

Homework 10

where i_A is the identity function on the set A.

By above equalities and associativity, we have

$$g = g \circ i_Y = g \circ (f \circ h) = (g \circ f) \circ h = i_X \circ h = h.$$

By a), both f and g admit a unique inverse function, say f^{-1} and g^{-1} . Then

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ i_Y \circ f = f^{-1} \circ f = i_X$$
$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ i_Y \circ g^{-1} = g \circ g^{-1} = i_Z.$$

Thus $f^{-1} \circ g^{-1}$ is the inverse function of $g \circ f$.

4. Prove that $\sqrt[3]{25}$ is irrational.

Proof. Assume that $\sqrt[3]{25} \in \mathbb{Q}$. Then we can write $\sqrt[3]{25} = a/b$ for some $a, b \in \mathbb{Z}$, $\gcd(a, b) = 1$. Then $25 = a^3/b^3$, so $25b^3 = a^3$. Therefore $25 \mid a^3$, so $5 \mid a^3$ and since 5 is prime, we have $5 \mid a$.

We write a=5a'. Then we substitute into the above equation to get $25b^3=125a'^3$. This implies $b^3=5a'^3$, so $5\mid b^3$. Therefore $5\mid b$. This is a contradiction on $\gcd(a,b)=1$. So $\sqrt[3]{25} \notin \mathbb{Q}$.

5. Let $n \in \mathbb{N}$. Suppose that n is a perfect square; that is $n = m^2$ for some $m \in \mathbb{Z}$. Show that 2n is not a perfect square.

Proof. Since n is a perfect square we have $n=k^2$ for some integer k. Assume that 2n is a perfect square as well so that $2n=\ell^2$. Then $2n=\ell^2=2k^2$ so that $2=\frac{\ell^2}{k^2}$. Taking the square root we get $\sqrt{2}=\frac{\ell}{k}$ which entails that $\sqrt{2}$ is rational. This is a contradiction. Hence 2n is not a perfect square.