Numerical/Graphical Methods

The definition of a derivative:
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But from the ODE we also know that dy/dx = F(x,y). Hence, taking a small but finite value of € we

arrive at the approximation
y(x +e) = y(z) + eF(z,y).
Given a starting condition, y(a) = yo, we may now step away from = = a to x = a + ¢, and calcuate
y(a+e¢), and then repeat the construction to continue to x = a+2¢, a+ 3¢ and so on. We thereby build an
approximate solution curve. Evidently, each time a different starting condition is used, a different curve
will be generated (the non-uniqueness of the general solution is removed by picking a starting condition).
The approximation above is the simplest type of numerical scheme to solve a differential equation by
“finite differencing” (i.e. replacing the derivatives by differences).
An example is shown in the figure (red dots) for the ODE
d .
—yz(l—y)cosx (y(z)=Ce ™" +1)
dx
and specific starting condition y(0) = 0. The figure also plots more solution curves with different starting
values (as indicated by the green stars).
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FIGURE 1. Solution curves for the first-order ODE, dy/dx = (1 — y) cosz, and the starting values at z = 0
indicated by stars. The short grey lines sample the direction field of the ODE.

A related method that seeks to plot qualitatively entire sets of solution curves exploits the “direction
field” of the ODE: on the (z,y)—plane we place a grid, and then compute the slope of the solution at the
grid points using the ODE dy/dx = F(x,y). Short lines or arrows can then be plotted at those points to
sample the direction field (see the figure). When a solution curve passes close to a grid point, its slope
must match the line/arrow there. One can therefore thread curves through the grid to build a qualitative
picture of the different solution branches.

A second example, for the ODE ¢’ = (1 — y?) cos  is shown below (the exact solution of this separable
ODE is y = (Ce?s® — 1) /(Ce?5me 4+ 1)).



w

N

[y

VA

<

g o
-1
ol i
-4 -2 0 2 4 6 8

X

FIGURE 2. Solution curves for the first-order ODE, dy/dx = (1 — 4?) cos z, and the starting values at = 0
indicated by stars. The short grey lines sample the direction field of the ODE.
Second-order, linear ODEs with constant coefficients

General form: for constants a, b and c,
ay’ + by +cy=0 Homogeneous
ay’ + by’ 4+ cy = f(z) Inhomogeneous,
with f(z) a prescribed function.
Strategy for the homogeneous problem: pose y(x) = Ae™*, where A and m are constants. Since
y' = my and y” = m%y we have
(am? 4+ bm + ¢)y = 0.
The choice y = 0 to solve this equation is trivial and uninteresting. Instead, we demand that the solution
satisfy the “auxiliary equation”,
—b+Vb? — dac
m = -———
2a ’

with two roots m = my and m = mo. Thus, we arrive at the general solution

y(x) = Are™" + Age™",

am?® +bm+c =0, or

for two different arbitrary constants A; and A (making them different ensures the most general answer).
In many examples, the two solutions for m are real and unequal, but this is not always the case. To

fix the constants A; and As we now require two additional conditions.

e In an Initial-Value Problem, y(z) and y'(x) are specified at a particular point, zo. e.g. y(zo) =1

and y'(zo) = 1.

e For a Boundary-Value Problem, conditions are applied on either y(x) or y/(x) or a combo of both,

at two separate points, x; and zo. e.g. y(z1) =1 and y(xq2) = 1.

e.g. 2y'—y -3y =0, — 2m?—m—3 = (2m—3)(m+1) =0 — y(z) = A1’/ 24 Ay
If y(0) = 1 and ¢’(0) = 0 (an initial-value problem), we have A; + As = 1 and 34;/2 — A3 = 0, implying
A1 = 2/5 and A2 = 3/5

For y(0) = 1 and 3/(1) = 0 (a boundary-value problem) we have A; + A; = 1 and 34, /2¢3/? — Aye™! = 0,
etc.



Complex solutions to the auxiliary equation
If the auxiliary equation has complex solutions (b? < 4ac) then m = « 4 i for a = —b/(2a) and

B = +v4dac —b%/(2a).

One can persevere with these complex solutions and again write
Y(z) = A€ Ape™T = e (41107 Ape 07,

but the arbitrary constants are likely to turn out to be complex in any given initial or boundary-value
problem. Moreover, one must work with the complex exponentials. Alternatively one may exploit Euler
(e’ = cos B + isin B) to rewrite the general solution so that it takes a purely real form:

m=a+if — y(z) = e**(C cos fx + D sin fx)
for two other arbirary constants C' and D. With the clever use of some trig relations, we can even write
y(x) = Re™ cos(fz + )

for two new arbitary constants R and . When satisfying the two additional conditions in an initial or
boundary-value problem, real values of y and/or ¢’ are typically provided, ensuring that C, D, R and =
turn out to be real numbers.

eg. ¥ +4y=0, —  m’+4=(m—2i)(m+2i)=0,
giving
AleQix + Age—Qix
y(z) = ¢ Ccos2z + Dsin2zx
Rcos(2z + )

In the initial-value problem, y(0) = 0 and y'(0) = 2 we obtain y(x) = sin 2z (the conditions give, for
example, C' =0 and 2D = 2).

For the boundary-value problem, y(0) = 0 and y(7/4) = 1, we find the same solution (the conditions
give, for example, C' = 0 and Dsin(7/2) = 1).

Equal roots to the auxiliary equation
If b = 4ac, the auxiliary equation has the real equal roots m = —b/(2a) suggesting that y(x) = Ae™*®
alone. However, two different solutions are needed in order to formulate the general solution. To find
another solution we use the following trick (Reduction of Order): let y(x) = A(x)e™?. Plugging this into
the ODE:

ay” + by + cy = (am? + bm + c) Ae™ + a(2mA’ + A”)e™® + bA ™ =0
But am? + bm + ¢ = 0 and 2ma = —b. Thus A” = 0, implying A = B + Cz and
y(z) = (B + Cx)em™.

i.e. the first term is the original solution; the second is the needed new (and different) solution.

eg. y' +4y +4y=0, — m2+4m+4=(m+2)?%=0, — y(x) = (B + Cx)e ",
If y(0) = 0 and ¢/(0) = 1, then B =0 and C = 1, giving y(z) = ze~2*.



