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Numerical/Graphical Methods

The definition of a derivative:
dy

dx
= Limǫ→0

y(x+ ǫ)− y(x)

ǫ
But from the ODE we also know that dy/dx = F (x, y). Hence, taking a small but finite value of ǫ we
arrive at the approximation

y(x+ ǫ) ≈ y(x) + ǫF (x, y).

Given a starting condition, y(a) = y0, we may now step away from x = a to x = a + ǫ, and calcuate
y(a+ǫ), and then repeat the construction to continue to x = a+2ǫ, a+3ǫ and so on. We thereby build an
approximate solution curve. Evidently, each time a different starting condition is used, a different curve
will be generated (the non-uniqueness of the general solution is removed by picking a starting condition).

The approximation above is the simplest type of numerical scheme to solve a differential equation by
“finite differencing” (i.e. replacing the derivatives by differences).

An example is shown in the figure (red dots) for the ODE

dy

dx
= (1− y) cosx

(

y(x) = Ce− sin x + 1
)

and specific starting condition y(0) = 0. The figure also plots more solution curves with different starting
values (as indicated by the green stars).
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Figure 1. Solution curves for the first-order ODE, dy/dx = (1− y) cosx, and the starting values at x = 0
indicated by stars. The short grey lines sample the direction field of the ODE.

A related method that seeks to plot qualitatively entire sets of solution curves exploits the “direction
field” of the ODE: on the (x, y)−plane we place a grid, and then compute the slope of the solution at the
grid points using the ODE dy/dx = F (x, y). Short lines or arrows can then be plotted at those points to
sample the direction field (see the figure). When a solution curve passes close to a grid point, its slope
must match the line/arrow there. One can therefore thread curves through the grid to build a qualitative
picture of the different solution branches.
A second example, for the ODE y′ = (1− y2) cosx is shown below (the exact solution of this separable

ODE is y = (Ce2 sin x − 1)/(Ce2 sin x + 1)).
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Figure 2. Solution curves for the first-order ODE, dy/dx = (1− y2) cosx, and the starting values at x = 0
indicated by stars. The short grey lines sample the direction field of the ODE.

Second-order, linear ODEs with constant coefficients

General form: for constants a, b and c,

ay′′ + by′ + cy = 0 Homogeneous
ay′′ + by′ + cy = f(x) Inhomogeneous,

with f(x) a prescribed function.
Strategy for the homogeneous problem: pose y(x) = Aemx, where A and m are constants. Since

y′ = my and y′′ = m2y we have

(am2 + bm+ c)y = 0.

The choice y = 0 to solve this equation is trivial and uninteresting. Instead, we demand that the solution
satisfy the “auxiliary equation”,

am2 + bm+ c = 0, or m =
−b±

√
b2 − 4ac

2a
,

with two roots m = m1 and m = m2. Thus, we arrive at the general solution

y(x) = A1e
m1x +A2e

m2x,

for two different arbitrary constants A1 and A2 (making them different ensures the most general answer).
In many examples, the two solutions for m are real and unequal, but this is not always the case. To

fix the constants A1 and A2 we now require two additional conditions.
• In an Initial-Value Problem, y(x) and y′(x) are specified at a particular point, x0. e.g. y(x0) = 1
and y′(x0) = 1.
• For a Boundary-Value Problem, conditions are applied on either y(x) or y′(x) or a combo of both,
at two separate points, x1 and x2. e.g. y(x1) = 1 and y(x2) = 1.

e.g. 2y′′−y′−3y = 0, −→ 2m2−m−3 = (2m−3)(m+1) = 0 −→ y(x) = A1e
3x/2+A2e

−x

If y(0) = 1 and y′(0) = 0 (an initial-value problem), we have A1 +A2 = 1 and 3A1/2−A2 = 0, implying
A1 = 2/5 and A2 = 3/5.
For y(0) = 1 and y′(1) = 0 (a boundary-value problem) we have A1+A2 = 1 and 3A1/2e

3/2−A2e
−1 = 0,

etc.
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Complex solutions to the auxiliary equation
If the auxiliary equation has complex solutions (b2 < 4ac) then m = α ± iβ for α = −b/(2a) and

β =
√
4ac− b2/(2a).

One can persevere with these complex solutions and again write

y(x) = A1e
m1x +A2e

m2x = eαx(A1e
iβx +A2e

−iβx),

but the arbitrary constants are likely to turn out to be complex in any given initial or boundary-value
problem. Moreover, one must work with the complex exponentials. Alternatively one may exploit Euler
(eiβ = cosβ + i sinβ) to rewrite the general solution so that it takes a purely real form:

m = α± iβ −→ y(x) = eαx(C cosβx+D sinβx)

for two other arbirary constants C and D. With the clever use of some trig relations, we can even write

y(x) = Reαx cos(βx+ γ)

for two new arbitary constants R and γ. When satisfying the two additional conditions in an initial or
boundary-value problem, real values of y and/or y′ are typically provided, ensuring that C, D, R and γ
turn out to be real numbers.

e.g. y′′ + 4y = 0, −→ m2 + 4 = (m− 2i)(m+ 2i) = 0,

giving

y(x) =







A1e
2ix +A2e

−2ix

C cos 2x+D sin 2x
R cos(2x+ γ)

In the initial-value problem, y(0) = 0 and y′(0) = 2 we obtain y(x) = sin 2x (the conditions give, for
example, C = 0 and 2D = 2).
For the boundary-value problem, y(0) = 0 and y(π/4) = 1, we find the same solution (the conditions
give, for example, C = 0 and D sin(π/2) = 1).

Equal roots to the auxiliary equation
If b2 = 4ac, the auxiliary equation has the real equal roots m = −b/(2a) suggesting that y(x) = Aemx

alone. However, two different solutions are needed in order to formulate the general solution. To find
another solution we use the following trick (Reduction of Order): let y(x) = A(x)emx. Plugging this into
the ODE:

ay′′ + by′ + cy = (am2 + bm+ c)Aemx + a(2mA′ +A′′)emx + bA′emx = 0

But am2 + bm+ c = 0 and 2ma = −b. Thus A′′ = 0, implying A = B + Cx and

y(x) = (B + Cx)emx.

i.e. the first term is the original solution; the second is the needed new (and different) solution.

e.g. y′′ + 4y′ + 4y = 0, −→ m2 + 4m+ 4 = (m+ 2)2 = 0, −→ y(x) = (B + Cx)e−2x.

If y(0) = 0 and y′(0) = 1, then B = 0 and C = 1, giving y(x) = xe−2x.


