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The inhomogeneous problem

Recall the ODE:
ay′′ + by′ + cy = f(x)

with constants a, b and c, and f(x) a prescribed function.

An example: y′′ + y = ex. Notice that if y ∝ ex, then all three terms in the ODE have a ex that
therefore can be cancelled out. i.e. a potential solution to the ODE is y(x) = dex, for some constant
d. Indeed, plugging and chugging implies d = 1

2 , so y = 1
2e
x is a solution to the ODE. However, for a

general solution we are expecting some additional bits with arbitrary constants in them.
Now let y(x) = yh(x) + yp(x) with yp(x) = 1

2e
x and yh(x) satisfying the corresponding homogeneous

ODE, y′′h+yh = 0. On plugging this combo into the ODE, one realizes that it will still satisfy the equation
(because the yh(x) cancels on the LHS, and yp(x) gives us the RHS). But we know how to solve for yh(x),
and it, in general, will contain two arbitrary constants!

Thus, the general solution takes the form yh(x) + yp(x) where the homogeneous solutions account for
the arbitrary parts of the general solution and yp(x), the “particular solution”, is designed to match the
inhomogeneous term.

For our example: yh(x) = C cosx+D sinx and yp(x) = 1
2e
x. Hence y(x) = C cosx+D sinx+ 1

2e
x.

General strategy: (for ay′′ + by′ + cy = f(x))

1. determine the homogeneous solutions (satisfying ay′′ + by′ + cy = 0)

2. find a particular solution (by posing a trial solution based on f(x) and containing constants to be
determined by plugging into the inhomogeneous ODE)

3. apply any initial/boundary conditions, if provided, to fix the arbitrary constants in the homogeneous
solutions (do not do this without including the particular solution, as your final answer will not
generally then satisfy the initial or boundary conditions; i.e. use the full general solution when
imposing the initial or boudnary conditions)

To come up with suitable trial particular solutions, the following table should prove helpful:

Inhomogeneous term, f(x): Trial particular solution
(with constants d, d1, d2, ... to be determined):

eηx deηx

Polynomial of degree n Polynomial of degree n, d1x
n + d2x

n−1 + ...
cosωx or sinωx d1 cosωx+ d2 sinωx

eηx cosωx or eηx sinωx (d1 cosωx+ d2 sinωx)eηx

(Polynomial of degree n)eηx (d1x
n + d2x

n−1 + ...)eηx

Homogeneous solution dxf(x)

One must beware of inhomogeneous terms that are also of the same form as a homogeneous solution.
In this case, the trial solution will not work: the trial completely disappears from the left-hand side of the
equation because it is a homogeneous solution. A different trial is needed instead; adding an additional
factor of x usually works.

e.g. y′′ − y = f(x). The homogeneous solutions are A1e
x +A2e

−x.

• For f(x) = 3e2x, we use yp(x) = de2x and (by plugging the trial into the ODE) find that d = 1. Thus
y(x) = A1e

x +A2e
−x + e2x.

• For f(x) = 2 cosx, we use yp(x) = d1 cosx + d2 sinx and find that d1 = −1 and d2 = 0 (note that
d2 = 0 is a consequence of the absence of a y′ term). Thus y(x) = A1e

x +A2e
−x − cosx.

• For f(x) = 5ex sinx, we use yp(x) = ex(d1 cosx+ d2 sinx) and find that d1 = 2d2 and 2d1 + d2 = −5,
so d2 = −1 and d1 = −2. Thus y(x) = A1e

x +A2e
−x − ex(2 cosx+ sinx).

• For f(x) = 2ex, there is a hitch as this is a homogeneous solution and so dex will not work as a
trial particular solution. Instead, let yp(x) = dxex. Plugging into the ODE now gives d = 1, and so
y(x) = A1e

x +A2e
−x + xex.
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Potpouri of examples:

• y′ + 3y = 9x with y(0) = 0.
This is a linear first-order ODE with integrating factor I = e3x. Furthermore,

∫
qIdx = 9

∫
xe3xdx =

3xe3x − e3x. Hence the general solution is y(x) = Ce−3x + 3x− 1. Applying y(0) = 0 gives C = 1.

• y′ = (y + y−1) cosx with y(0) = 0.

The RHS is separable and so∫
ydy

1 + y2
= C +

∫
cosxdx or log(1 + y2) = 2(C + sinx) or y = ±

√
Ae2 sin x − 1

with arbitrary C or A (note that there is no need for any absolute value as 1 + y2 > 0). Imposing the
starting value gives A = 1.

• y′′+3y′+2y = 0 with y(0) = 0 and y′(0) = 1. Auxiliary equation is m2+3m+2 = (m+1)(m+2) = 0,
so y(x) = A1e

−x +A2e
−2x. Applying the initial conditions gives y(x) = e−x − e−2x.

• y′′+6y′+13y = 0 with y(0) = 2 and y′(π) = 0. Auxiliary equation is m2+6m+13 = (m+3)2+4 = 0,
so y(x) = e−3x(C cos 2x+D sin 2x). Applying the boundary conditions gives C = 2 and −3C + 2D = 0,
or D = 3.

• y′′ + 6y′ + 9y = 0. Auxiliary equation is m2 + 6m+ 9 = (m+ 3)2 = 0, so y(x) = e−3x(ax+ b).

• y′′ − 4y′ + 3y = f(x), for f(x) = e2x, cosx, x2 and ex.

Homogeneous solutions: Auxilliary equation, m2 − 4m− 3 = (m− 3)(m− 1) = 0, implying m = 1 or
3. Hence the homogeneous solutions are Aex +Be3x, where A and B are arbitrary constants.

Particular solutions:

For f(x) = e2x, try y = de2x. Plugging and chugging implies that this is a solution if 4d− 8d + 3d = 1;
that is, if d = −1.

For f(x) = cosx, try y = d1 cosx + d2 sinx. Plug and chug; the solution works if −d1 − 4d2 + 3d1 = 1
and −d2 + 4d1 + 3d2 = 0, which gives d1 = 1/10 and d2 = −1/5.

For f(x) = x2, try y = d1x
2 + d2x + d3. Plug and chug to find that 3d1 = 1, 3d2 − 8d1 = 0 and

3d3 − 4d2 + 2d1 = 0, or d1 = 1/3, d2 = 8/9 and d3 = 26/27.

For f(x) = ex, the trial solution y = dex will not work because the inhomogeneous term has the form of a
homogeneous solution. Now we must try the solution dxex. Plugging and chugging implies that −2d = 1,
or d = −1/2.
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Mechanical oscillators

Consider a mass M hanging vertically down at position X(t) on the end of a spring with constant k.
Air drag, proportional to Ẋ with drag coefficient D, slows down the mass. There is a motor at the other
end of the spring that shakes this end up a down at frequency ω with amplitude Y0, so that its position
is Y (t) = Y0 cosωt. Newton’s law gives

MẌ = Mg − k(X − Y )−DẊ = Mg − kX −DẊ + kY0 cosωt

where g is gravity. Let y = X −Mg/k, γ = D/(2M), Ω2 = k/M and a = kY0/M . Then,

ÿ + 2γẏ + Ω2y = a cosωt

Note that ω has the units of radians per second. The cyclic frequency f , which has units of cycles per
second (i.e. Hertz) is related by ω = 2πf .

Electrical circuits

The mechanical oscillator problem is the
same as that for an electrical circuits in
which an EMF drives an alternating cur-
rent through a resistor, impedance and ca-
pacitor (in series).

E0 cosωt

L

C

R

The various laws of electrical circuits demand that

Lq′′ +Rq′ +
q

C
= E0 cosωt,

where q(t) is the charge in the circuit at time t, L is the impedance, R is the resistance, C is the
capacitance and E0 is the amplitude of the EMF, which has frequency ω. If γ = R/(2L), Ω = (LC)−1/2

and a = E0/L, we arrive at exactly the same problem as considered above with q(t) replacing y(t).

Solution of the ODE and resonance

The general solution to this ODE is y(t) = yh(t) + yp(t), where yh(t) are the homogeneous solutions
(free oscillations) and yp(t) is the particular solution (forced response). The homogeneous solutions can

be found from looking at the auxiliary equation, m2 + 2γm+ Ω2 = 0, giving m = −γ ±
√
γ2 − Ω2.

• For γ > Ω, the solutions are real and unequal; the homogeneous solutions decay exponentially in time,
This is called the “over-damped” case.
• For γ = Ω, the roots are equal and m = −γ. This gives the homogeneous solutions yh(t) = (At+B)e−γt,
which still decays because of the exponential factor e−γt. This is the “critically damped” case.
• For γ < Ω we have decaying oscillations with yh = e−γt[C cos(

√
Ω2 − γ2t) + D sin(

√
Ω2 − γ2t)]. This

is called the “under-damped” case.
For all three cases, if we wait for long enough, yh(t) decays away, leaving the particular solution, which
we will now concentrate on.

We pose the trial yp(t) = c cosωt+ d sinωt. After some algebra, we find

c =
(Ω2 − ω2)a

(Ω2 − ω2)2 + 4ω2γ2
, d =

2ωγa

(Ω2 − ω2)2 + 4ω2γ2
,

and with a little more effort,

yp(t) = S(ω) cos(ωt− δ), S(ω) =
a√

(Ω2 − ω2)2 + 4γ2ω2
, tan δ =

2γω

Ω2 − ω2
.

i.e. a pure oscillation at frequency ω, with a phase lag δ behind the forcing. The amplitude S(ω) has

a maximum of Smax = a/
√

Ω4 − ω4 = a/[2γ
√

Ω2 − γ2] when ω2 = Ω2 − 2γ2. Thus, as the damping
(γ) becomes small, the forced response becomes large at the “resonant” frequency ω ≈ Ω. For ω → 0,
S(ω) → a/Ω2, and for ω → ∞, S(ω) → 0. The “response curve”, S against ω, illustrates the forced
behaviour.
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Figure 1: RESONANCE: the near divergence of the forced amplitude when damping is small and an
oscillator is driven at a frequency close to the natural frequency (Ω).

No damping

Now consider what happens without any damping, γ = 0. The ODE is ÿ + Ω2y = a cosωt. The
particular solution is now

yp(t) = S cosωt, S =
a

Ω2 − ω2
, for ω 6= Ω and yp(t) =

at

2Ω
sin Ωt, for ω = Ω.

The latter (the driven resonant response without damping) is an oscillation with an amplitude that grows
linearly with time. This can be destructive (e.g. the Tacoma Narrows suspension bridge; shattering a
wine glass with sound) or exploited (quartz clock; lasers).
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Beats

Consider now the situation in which the oscillator is driven close to (but not at) resonance, with initial
condition y(0) = ẏ(0) = 0. The solution is

y(t) = S(cosωt− cos Ωt)

If ω = Ω + ε with |ε| � Ω, and with the help of some trig formulae, we find

y(t) = 2S sin

[
1

2
(ω − Ω)t

]
sin

[
1

2
(Ω + ω)t

]
≈ 2S sin

(
1

2
εt

)
sin Ωt

This is a fast oscillation at frequency Ω, but with an amplitude that varies sinusoidally in time over a
much longer period 4π/ε. i.e. The phenomenon of BEATING.

t

y
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)
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Euler equations

Euler equations (of second order) have the form

αx2y′′ + (β + α)xy′ + γy = 0,

for three constants α, β and γ. That is, for each derivative, there is a corresponding factor of x. The
general solutions to this equation can be found by posing the solution y(x) = Axm. Plugging this trial
solution into the ODE gives

[αm(m− 1) + (β + α)m+ γ]Axm = (αm2 + βm+ γ)Axm = 0.

We once more demand that the auxiliary equation αm2 + βm + γ = 0 is satisfied, giving the two
options m = m1 and m = m2 with m1,2 = (−β ±

√
β2 − 4αγ)/(2α). The general solution is then

y(x) = A1x
m1 +A2x

m2 .

e.g. x2y′′ + xy′ − y = 0. Plugging in y(x) = Axm gives m(m − 1) + m − 1 = 0 or m = ±1. Hence,
y(x) = A1x+A2x

−1.

Reduction of Order

“Reduction of order” is a technique that furnishes a second solution to a homogeneous linear second-
order ODE if a first solution is known. e.g. x2y′′ + xy′ − y = 0 has solution y(x) = Ax for any constant
A; what is a second solution? Note that this equation does not have constant coefficients!

Strategy: Take the arbitrary constant in the known solution and make it into a function of x. i.e. if
y = Ay1(x) is the known solution, put y = A(x)y1(x). Plugging into the ODE:

ay′′ + by′ + cy = a(Ay′′1 + 2A′y′1 + y1A
′′) + b(Ay′1 + y1A

′) + cAy1 = 0,

where the coefficients a, b and c may not be functions of x. But ay′′1 + by′1 + cy1 = 0, and so

a(2A′y′1 + y1A
′′) + by1A

′ = 0, or ay1Z
′ + (2ay′1 + by1)Z = 0 if Z = A′.

This is a linear, separable first-order ODE for Z(x) that can be solved:

Z = A′ = C exp

[
−
∫

(2ay′1 + by1)
dx

ay1

]
=
C

y21
exp

[
−
∫

b

a
dx

]
A further integral then gives A.

For our example: inserting y = xA(x) into x2y′′+xy′−y = 0 gives x3A′′+3x2A′ = 0 or Z ′ = −3Z/x.
Hence, Z = Cx−3. Integrating again: A = A1 +A2x

−2 for two new arbitrary constants A1 and A2 (with
A2 related to C). Thus, y = A1x+A2x

−1.

The method can also be applied to an inhomogeneous ODE to generate a particular solution without
posing a trial. For example, for a second-order, constant-coefficient ODE (with constants a, b and c),
ay′′ + by′ + cy = f(x), the homogeneous solutions are y = A1e

m1x + A2e
m2x. Now try a solution to the

inhomogeneous ODE using reduction of order, y(x) = A(x)emx where m is either of m1 or m2. Then,

[a(A′′ + 2mA′ +m2A) + b(A′ +mA) + cA]emx = f(x).

But am2 + bm+ c = 0, and so

A′′ +

(
2m+

b

a

)
A′ =

1

a
e−mxf(x) −→ A′ = e−(2m+b/a)x

[
C +

1

a

∫
e(m+b/a)xf(x)dx

]
,

using the integrating factor I = e(2m+b/a)x. Note that the first term corresponds to the other homogeneous
solution and the integral to the particular solution; the original homogeneous solution appears when we
integrate A′ and add a second constant of integration.

e.g. y′′ − y = f(x). We set y(x) = A(x)ex (since m2 = 1). Then, A′′ + 2A′ = e−xf(x) giving
A′ = e−2x[C +

∫
f(x)exdx] (the integrating factor is e2x). At this stage we need an f(x) to make

further progress. For f(x) = 4xex, we find A′ = Ce−2x + 2x − 1. Integrating a second time: A =
A1 + A2e

−2x + x2 − x for two new arbitrary constants A1 and A2 (with A2 related to C). Thus,
y(x) = A1e

x +A2e
−x + x(x− 1)ex.


