
Homogeneous systems of ODEs

We now deal with the system of first-order equations,

d

dt
x = Ax,

where x(t) is a (column) vector of length n and A is an n× n matrix.
Practically, we will consider A to have constant entries, in which case, by a process of successive elimination

of all but one of the components of x(t), we may reduce the system to an nth−order, linear, constant-coefficient
ODE.

e.g. A =

(
1 2
3 4

)
, implying the two coupled first-order ODEs,

ẋ1 = x1 + 2x2 & ẋ2 = 3x1 + 4x2

We have x2 = 1
2 (ẋ1 − x1) from the first equation, and so the substitution of this relation into the second

equation gives the second-order ODE,
ẍ1 − 5ẋ1 − 2x1 = 0

The reverse is also true: an nth−order linear ODE can be recast as a system.

e.g. aẍ + bẋ + cx = 0. Let x =

(
x1
x2

)
=

(
x
ẋ

)
. We therefore have the two equations, ẋ1 = 0x1 + 1x2 and

ẋ2 = − c
ax1 −

b
ax2, which are equivalent to the system

d

dt
x =

(
0 1
−c/a −b/a

)
x.

Solution strategy: Pose x = vemt, where m is a constant exponent to be determined from an auxiliary
equation and v is a constant vector (of length n). Plugging in to the system and cancelling off the exponential
factor emt gives

mv = Av

i.e. the eigenvalue equation of A. Thus, m must be an eigenvalue of A and v is the corresponding eigenvector.
The general solution is then a linear combination of all the eigensolutions:

x = A1v1e
m1t +A2v2e

m2t + ...+Anvne
mnt,

with a set of arbitrary constants {A1, A2, ..., An}. Note that here we use the facts that
(i) an n× n matrix has n eigenvalues and eigenvectors (except in some special situations that we will not

consider),
(ii) the eigenvalues follow from setting det(A −mI) = 0 where “det” is short for “determinant” and I is

the n× n identity matrix,
(iii) the eigenvectors are computed by solving the linear system (A−mI)v = 0 once each of the eigenvalues

m is found,
(iv) the eigenvectors are not unique, but can be multiplied by any arbitrary constant. Practically when

one computes the eigenvectors one often make a convenient choice to fix the solution. However, the general
solution to the system of ODEs requires as many arbitrary constants as possible. In the general solution above,
we have explicitly included these arbitrary constants, denoting them by A1, A2, ... An, with the understanding
that the eigenvectors have been computed without including any further free constants.

e.g. dx/dt = Ax with

A =

(
1 2
2 1

)
−→ det(A−mI) = (1−m)2 − 4 = m2 − 2m− 3 = (m− 3)(m+ 1).

Hence m = 3 or −1. The corresponding eigenvectors satisfy

m = 3 :

(
−2 2
2 −2

)(
v1
v2

)
=

(
0
0

)
or v1 = v2
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and

m = −1 :

(
2 2
2 2

)(
v1
v2

)
=

(
0
0

)
or v1 = −v2

We may therefore take v =

(
1
1

)
for m = 3 and v =

(
1
−1

)
for m = −1, then write the general solution

x = A1

(
1
1

)
e3t +A2

(
1
−1

)
e−t

Initial conditions: To fix the arbitrary constants in the general solution, we need an initial condition
such as x(0) = x0. This is an n× n linear system for A1, A2, ... An.

e.g. For the previous example, we impose the initial condition x(0) =

(
1
0

)
. Hence

(
1
0

)
= A1

(
1
1

)
+A2

(
1
−1

)
or 1 = A1 +A2 & 0 = A1 −A2 → A1 = A2 =

1

2
,

giving

x =
1

2

(
1
1

)
e3t +

1

2

(
1
−1

)
e−t =

1

2

(
e3t + e−t

e3t − e−t

)
Inhomogeneous problems: If an inhomogeneous terms also appears in the system, then the general

solution is composed of homogeneous solutoins, constructed as above, and a particular solution, found by
posing a suitable trial solution. e.g.

ẋ = Ax + e3tc,

where c is a constant vector. We pose the trial xp = de3t, to obtain

3de3t = (Ad + c)e3t.

The exponential function is along for the ride at this stage, so we may cancel it, leaving

(A− 3I)d = −c,

where I is the n× n identity matrix. This is a linear system of the form Md = −c with matrix M = A− 3I.
As long as we can invert this matrix, we can write the formal solution,

d = −(A− 3I)−1c, or xp = −(A− 3I)−1ce3t,

and there is some linear algebra to be performed to write the solution more explicitly. The general solution is
then

x =

n∑
j=1

Ajvje
mjt − (A− 3I)−1ce3t. (1)

Note that the construction fails if M = A−3I is not invertible. This arises when det(M) =det(A−3I) = 0. But
det(A− λI) = 0 gives the eigenvalues. So the failure will occur when the exponential on the RHS corresponds
to one of the homogeneous solutions, which ought to sound familiar by now. One can guess what the strategy
might be to fix this! In any event, to avoid digressing too much into a lot of linear algebra, we’ll usually leave
the solution in a formal form like (1). i.e. don’t compute those inverses!

Second-order systems: the methodology also works for second-order systems of the form

ẍ = Ax,

which is typical of coupled oscillator systems. Again, we introduce x = vemt, to arrive at

m2v = Av.
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This time the eigenvalues of A are m2; the corresponding eigenvectors are still v.

e.g. A =

(
−3 −1
−1 −3

)
−→ det(A−m2I) = (m2 + 3)2 − 1 = m4 + 6m2 + 8 = (m2 + 2)(m2 + 4).

Hence m2 = −2 or −4. The corresponding eigenvectors satisfy

m2 = −2 :

(
−1 −1
−1 −1

)(
v1
v2

)
=

(
0
0

)
or v1 = −v2

and

m2 = −4 :

(
1 −1
−1 1

)(
v1
v2

)
=

(
0
0

)
or v1 = v2

We may therefore take v =

(
1
−1

)
for m2 = −2, or m = ±

√
2i, and v =

(
1
1

)
for m2 = −4, or m = ±2i.

Hence the general solution is

x =

(
1
−1

)
[A1 cos(

√
2t) +B1 sin(

√
2t)] +

(
1
1

)
[A2 cos(2t) +B2 sin(2t)].

Note that the general solution now has four arbitrary constants (A1, A2, B1, B2), corresponding to each possible
solution for m (but there are still only two eigenvectors).

We may also add inhomogeneous terms to the second-order system and then find the corresponding partic-
ular solutions following the usual strategy of educated guess work. Again, the best thing to do in Math 256 is
to write a formal solution containing matrix inverses, and avoid the linear algebra required to compute any of
them! See the worked problem below by way of an example.
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A model of a water molecule

A model of the water molecule consists of two particles of mass m at positions x1(t) and x3(t), sandwiching
a third with mass M at position x2(t). The particles (atoms) are connected to their neighbours by springs
with constant k. Newton’s law states that

mẍ1 = k(x2 − x1),
Mẍ2 = k(x3 − x2)− k(x2 − x1),
mẍ3 = −k(x3 − x2).

These three ODEs can be written as the system,

ẍ = Ax, x =

x1
x2
x3

 , A = ω2

−1 1 0
α −2α α
0 1 −1

 ,

where ω2 = k/m and α = m/M . The eigenvalues and eigenvectors of A are

λ = −ω2, v =

−1
0
1

 ; λ = −(1 + 2α)ω2, v =

 1
−2α

1

 ; λ = 0, v =

 1
1
1

 .

(you can confirm this by plugging them into the eignvalue/vector equation and doing the matrix multiplication).
The first of these eigenvalue/vector pairs corresponds to a pair of solutions with the form

[A1 cos(ω1t) +B1 sin(ω1t)]

−1
0
1

 ,

for two arbitrary constants A1 and B1. This is an oscillation of the molecule at frequency ω1 = ω in which
the middle particle (i.e. the oxygen atom) does not participate in the motion, and the two outer particles (the
hydrogen atoms) oscillate out of phase with one another.

The second eigenvalue/vector pair is an oscillation at frequency ω2 = ω
√

1 + 2α, with solution is

[A2 cos(ω2t) +B2 sin(ω2t)]

 1
−2α

1

 .

In this motion, the two outer particles oscillate in phase with one another, but are out of phase with the central
particle, which also oscillates at a different amplitude.

The last eigenvalue/vector pair is not an oscillation. If x(t) = T (t)v, where v is the relevant eigenvector,
then substitution into the system of ODEs gives

T̈v = 0.

i.e. T (t) is the linear function of time, A3 + tB3. In other words, the eigenvalue/vector pair leads to a solution

(A3 + tB3)

 1
1
1

 .

The A3 part refers to a uniform sideways shift of the molecule; the B3 part describes a launch of the molecule
sideways at constant speed.
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Overall the general solution to the system is

x(t) = [A1 cos(ω1t) +B1 sin(ω1t)]

−1
0
1

+ [A2 cos(ω2t) +B2 sin(ω2t)]

 1
−2α

1

+ (A3 + tB3)

 1
1
1

 . (2)

The various pieces of the solution, or “modes”, are illustrated in the figure,
If hydrogen bonding with other water molecules agitates the two outer atoms, their equations of motion

become revised to
mẍ1 = k(x2 − x1) + f(t), mẍ3 = −k(x3 − x2) + f(t).

for some prescribed function f(t). In this case, our system is revised to

ẍ = Ax + f , f(t) = f(t)

 1
0
1

 .

The solution to this problem consists of the homogeneous solutions in (2) and a particular solution whose form
is dictated by f(t). For example, if f(t) = cos(Ωt), we can pose the trial particular solution

xp(t) = d cos(Ωt)

(there are no first derivatives in the system!). Plugging this trial into the system gives

−Ω2d cos(Ωt) = Ad cos(Ωt) +

 1
0
1

 cos(Ωt).

That is, we may formally write

d = −(A+ Ω2I)−1

 1
0
1

 ,

where I is the 3× 3 identity matrix, and so

x(t) = xh(t)− (A+ Ω2I)−1

 1
0
1

 cos(Ωt),

where xh(t) denotes the homogeneous solutions in (2). This formal solution of the problem boils down to some
linear algebra as long as the matrix (A + Ω2I) is invertible. When it is not, we need to solve the problem
differently. The matrix (A + Ω2I) is no longer invertible when det(A + Ω2I) = 0, or when −Ω2 is one of the
eigenvalues of A; i.e. Ω = ω, Ω = ω

√
1 + 2α or Ω = 0. The first two conditions reflect the occurrence of

resonsance for our system of ODEs. The last one corresponds to driving the molecule with a constant force
(so it must accelerate).
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