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Laplace transforms

The Laplace transform is defined by the integral

L{y(t)} =

∫ ∞

0

e−sty(t)dt = y(s)

Within the integral a new variable s appears. Thus the transform is a function of s; we add the bar above
the original function symbol to denote the new function of s.

Sample Laplace transforms: Using the definition, L{1} = 1
s

provided Real(s) > 0, and L{emt} = 1
s−m

provided Real(s) > m.

The transform domain: Note that the transform is only defined (i.e. the integral is finite) for certain
ranges of s, which could be complex.

Linearity: the transform is linear (i.e. acts upon the function itself, rather than a power of it or some
such thing), which implies

L{Ay1(t) + By2(t)} = AL{y1(t)} + BL{y2(t)} = Ay1(s) + By2(s)

Laplace transforms and derivatives: The crucial feature of the transform from the perspective of
ODEs is what it does to derivatives: from the definition, and by integrating by parts, we have

L{ẏ(t)} = sy(s) − y(0) & L{ÿ(t)} = s2y(s) − sy(0) − ẏ(0)

If we apply the Laplace transform to the ODE, aÿ + bẏ + cy = f(t), we therefore arrive at the algebraic
problem,

(as2 + bs + c)y − asy(0) − aẏ(0) − by(0) = f(s) → y =
f(s) + (as + b)y(0) + aẏ(0)

as2 + bs + c
,

where f(s) = L{f(t)}. The problem is then broken down into the three steps:

(1) Compute f(s) from f(t)
(2) Include the initial conditions to calculate y(s)
(3) Convert y(s) back to y(t).

Notes:
• Laplace transform converts an ODE to an algebraic problem for the transform of the unknown function
• There is no need to split the solution into homogeneous and particular pieces
• There is no need to pose any trial solutions
• The initial conditions are automatically incorporated

Inverting the transform: The preceding advantages are, of course, too good to be true: we want to
find y(t) not y(s). To undo the transform we might try to use the inverse Laplace transform, which is
defined as another integral:

y(t) = L−1{y(s)} =

∫

C

esty(s)
ds

2πi
.

The bad news is that C is the “Bromwich contour”, which is a path over the complex s−plane. For Math
256, this definition is useless, as we cannot yet do “path integrals” of this sort. Instead, for step (3),
we will build up a repertoir of known Laplace transforms in a table. This table can then be used to
recognize what functions of t corresponds to our calculated functions of s, and so we can then write down
the desired solution.

e.g. If y(s) = 1
s

then y(t) = L−1{s−1} = 1.
If y(s) = 1

s−m
then y(t) = L−1{(s − m)−1} = emt.

Another example of a “transform pair” is y(t) = tn and y(s) = n!
sn+1 (Real(s) > 0), which can be

established by again using the definition of the Laplace transform (and integrating by parts).
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Sample ODE problems:

• ÿ − 2ẏ − 3y = 0 with y(0) = 0 and ẏ(0) = 1. We have

(s2 − 2s − 3)y − 1 = 0 → y =
1

(s + 1)(s − 3)

The right-hand side is not one of our currently known Laplace transforms. However, a partial fraction
comes to the rescue:

1

(s + 1)(s − 3)
=

1

4

(

1

s − 3
−

1

s + 1

)

But L{e−t} = 1/(s + 1) and L{e3t} = 1/(s − 3) (as long as Real(s) > 3). Thus,

y(t) =
1

4
(e3t − e−t).

• ÿ + y = 0 with y(0) = 0 and ẏ(0) = 1. We have

y =
1

s2 + 1
,

which is again not one of our currently known Laplace transforms. This time we need to add more entries
to our table. Consider

L{sin(ωt)} =

∫ ∞

0

e−st sin(ωt)dt = −

[

e−st

s
sin(ωt)

]∞

0

+
ω

s

∫ ∞

0

e−st cos(ωt)dt.

That is, L{sin(ωt)} = ω

s
L{cos(ωt)} since the first term vanishes on plugging in the limits (provided

Real(s) > 0). Similarly,

L{cos(ωt)} = −

[

e−st

s
cos(ωt)

]∞

0

−
ω

s

∫ ∞

0

e−st sin(ωt)dt =
1

s
−

ω

s
L{sin(ωt)}

Thus,

L{sin(ωt)} =
ω

s2 + ω2
& L{cos(ωt)} =

s

s2 + ω2
.

Evidently, for our ODE, y(t) = sin t.

• ẏ + 5y = 2, y(0) = 1. Applying the Laplace transform:

y(s) =
2 + s

s(s + 5)
=

2

5s
+

3

5(s + 5)
→ y(t) =

2

5
+

3

5
e−5t

• ÿ + 4y = 6, y(0) = 0 and ẏ(0) = 5. Applying the Laplace transform:

y(s) =
6 + 5s

s(s2 + 4)
=

3

2s
−

3

2

s

(s2 + 4)
+

5

2

2

(s2 + 4)
→ y(t) =

3

2
−

3

2
cos 2t +

5

2
sin 2t

Helpful inversion tools: the table, partial fractions, shifting theorems (including completing a square)

First shifting theorem: L{eaty(t)} =
∫ ∞

0
e−(s−a)ty(t)dt = y(s − a).

y(t) = t → y(s) = L{t} =
1

s2
→ L{teat} = y(s − a) =

1

(s − a)2

• ÿ + ẏ − 2y = 9et, y(0) = 3 and ẏ(0) = 0. Applying the Laplace transform:

y(s) =
3s2 + 6

(s + 2)(s − 1)2
=

2

s + 2
+

1

s − 1
+

3

(s − 1)2
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We know the transforms

L{2e−2t} =
2

s + 2
, L{et} =

1

s − 1
, L{tet} =

1

(s − 1)2
.

Hence y(t) = 2e−2t + et + 3tet.

• ÿ − 4ẏ + 13y = 0, y(0) = 0 and ẏ(0) = 3. Applying the Laplace transform:

y(s) =
3

s2 − 4s + 13
=

3

(s − 2)2 + 9

We know the transform pair

y(t) = sin 3t, y(s) =
3

s2 + 9
and so if we use the first shifting theorem,

y(s) ≡ L{e2t sin 3t} → y(t) = e2t sin 3t

Step functions and the second shifting theorem: the Heaviside step function is defined so that

H(t − a) =

{

0 if t < a
1 if t > a

The step function is useful in mathematically describing functions that switch on and off. e.g.

f(t) =







0 t < 0
t(t − 1) 0 < t < 1

0 t > 1
→ f(t) = t(t − 1)[H(t) − H(t − 1)]

Now consider

L{f(t − a)H(t − a)} =

∫ ∞

0

e−stf(t − a)H(t − a)dt = e−sa

∫ ∞

a

e−s(t−a)f(t − a)dt

= e−sa

∫ ∞

0

e−st̃f(t̃)dt̃ = e−saf(s)

which furnishes the second shifting theorem. In other words, an exponential factor in the transofrmed
variable corresponds to a time shift.

e.g, L−1{ 1
s
e−sa} = H(t − a) and L−1{ ω

s2+ω2 e−sa} = H(t − a) sinω(t − a).

• An ODE with switches: ÿ + y = H(t) − H(t − 1) with y(0) = ẏ(0) = 0. Applying the Laplace
transform:

y = (1 − e−s)

(

1

s
−

s

s2 + 1

)

→ y = 1 − cos t − H(t − 1)[1 − cos(t − 1)].

The Dirac delta-function: The delta-function has the special property that
∫

b

a

δ(t − t0)f(t)dt =

{

f(t0) provided a < t0 < b
0 otherwise.

Thus, if a > 0, L{δ(t−a)} = e−sa and so L−1{e−sa} = δ(t−a). The delta-function is related to the step
function because

∫

t

−∞

δ(τ − t0)dτ =

{

0 t < t0
1 t > t0

≡ H(t − t0).

i.e. the delta-function is the derivative of the step function.

• Delta functions correspond to impulsive-type forcings of an ODE: consider the oscillator problem,

ÿ + ω2y = δ(t − a), y(0) = ẏ(0) = 0, a > 0.
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Using the Laplace transform and the second shifting theorem:

y(s) =
e−as

s2 + ω2
→ y(t) =

1

ω
H(t − a) sinω(t − a)

Thus the oscillator gets kicked into action at t = a.

Transfer functions and convolutions: The convolution integral, denoted here by f ∗ g, is defined
as

f ∗ g =

∫

t

0

f(t − τ)g(τ)dτ.

Consider the Laplace transform of this integral:

L{f ∗ g} =

∫ ∞

0

∫

t

0

e−stf(t − τ)g(τ)dτdt

By considering the domain of the double integration over the (t, τ)−plane, one can interchange the order
of the integrals and then change variables to find that

L{f ∗ g} =

∫ ∞

0

∫ ∞

τ

e−stf(t − τ)g(τ)dtdτ =

∫ ∞

0

∫ ∞

0

e−sue−sτf(u)g(τ)dudτ = f(s)g(s)

That is, the inverse Laplace transform of a product is a convolution integral.

• Application to ODEs: ÿ + 4y = g(t) with y(0) = 3 and ẏ(0) = −1. We have

y(s) =
3s − 1 + g(s)

s2 + 4

and so

y(t) = 3 cos 2t −
1

2
sin 2t +

1

2
sin 2t ∗ g(t) = 3 cos 2t −

1

2
sin 2t +

1

2

∫ t

0

sin 2(t − τ) g(τ)dτ.

The final term corresponds to the particular solution of the ODE. i.e. the forced response of the oscillator.
We have successfully written down this solution in terms of an integral for any forcing term g(t). The
factor T (t − τ) = 1

2 sin 2(t − τ) in the integrand came from the form of the left-hand side of the original
ODE; this is the associated “transfer function”.

In other words, using the Laplace transform technology, we can write the solution down in terms of a
piece that takes care of the initial condition and a convolution of the transfer function and forcing term:

y(t) = {homogeneous solutions accounting for initial conditions} + T ∗ g.


