
Periodic functions and boundary conditions

A function is periodic, with period T , if it repeats itself exactly after an interval of length T . i.e. y(x) = y(x+
T ) for any x. Evidently, the derivatives of y(x) are also periodic (unless the function cannot be differentiated
– otherwise just differentiate y(x) = y(x+ T )).

e.g. sin(ωt) and cos(ωt) are periodic functions with period 2π/ω.

ODEs can be solved over an interval of length T subject to periodic boundary conditions, which state that
the function and its derivatives at one end of the interval equal their values at the other end of the interval.
The solution is then a periodic function with period T .

For example, for a second-order ODE to be solved over the interval 0 < x < T , two conditions are
needed to uniquely specify the solution. The corresponding periodic boundary conditions are y(0) = y(T ) and
y′(0) = y′(T ).

e.g. y′′ + y = (1− 4π2) cos(2πx), y(0) = y(1), y′(0) = y′(1) (so T = 1).

The homogeneous and particular solutions are

yh = A cosx+B sinx & yp = cos(2πx).

The general solution is therefore y = A cosx+B sinx+ cos(2πx). Applying the boundary conditions: A+ 1 =
A cos 1+B sin 1+1 and B = B cos 1−A sin 1, which can be solved to find that A = B = 0. Thus y = cos(2πx).
This solution can be found more straightforwardly by recognizing that cos(2πx) is periodic with period T = 1,
as needed, but the two homogeneous solutions cosx and sinx, though periodic, have the wrong period (2π)
and must therefore be eliminated.

Fourier series

A periodic function f(x) with period T = 2π can be represented by a Fourier series:

f(x) =
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) (∗)

for some constant a0 and a set of (constant) coefficients {an, bn}, n = 1, 2, ...

Helpful integrals: for any integers n and m,∫ π

−π
cosnx dx =

∫ π

−π
sinnx dx =

∫ π

−π
cosnx sinmx dx = 0

∫ π

−π
cosnx cosmx dx =

∫ π

−π
sinnx sinmx dx =

{
0, if n 6= m
π, if n = m

which follow on using our handy trig formulae.

Using the preceding integrals, one can determine the constant and coefficients of the Fourier series by
multiplying (∗) by one of 1, cosmx or sinmx, and then integrating x from −π to π. We obtain

a0 =
1

π

∫ π

−π
f(x)dx, am =

1

π

∫ π

−π
f(x) cosmx dx, bm =

1

π

∫ π

−π
f(x) sinmx dx

e.g. The sawtooth function, f(x) = π
2 − |x| for −π < x < π, with f(x) = f(x+ 2π) = f(x− 2π) furnishing the

function for points outside this interval. We find

πa0 =

∫ π

0

(π
2
− x
)
dx+

∫ 0

−π

(π
2

+ x
)
dx = 0,

πam =

∫ π

0

(π
2
− x
)

cosmx dx+

∫ 0

−π

(π
2

+ x
)

cosmx dx =
2

m2
[1− (−1)m] (integrating by parts)
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and

πbm =

∫ π

0

(π
2
− x
)

sinmx dx+

∫ 0

−π

(π
2

+ x
)

sinmx dx = 0.

Hence

π

2
− |x| =

∞∑
n=1

2

n2π
[1− (−1)n] cosnx =

4

π

∞∑
j=1

cos[(2j − 1)x]

(2j − 1)2
=

4

π

(
cosx+

1

32
cos 3x+

1

52
cos 5x+ ...

)
.

(given an = 0 for n even, and then putting n = 2j − 1 for n odd).

Application to an ODE: If f(x) is the preceding sawtooth, solve

y′′ − y = −f(x), y(−π) = y(π) & y′(−π) = y′(π).

We use the fact that f(x) can be represented as the Fourier series above (with a0 = bn = 0). Hence,

y′′ − y = −
∞∑
n=1

an cosnx, an =
2

n2π
[1− (−1)n].

The homogeneous solutions are yh = Aex + Be−x. The inhomogeneous term is a series of cosines, so we pose
the trial particular solution,

yp =

∞∑
n=1

dn cosnx.

Plugging nto the ODE gives
∞∑
n=1

(1 + n2)dn cosnx =

∞∑
n=1

an cosnx,

then matching up each of the cosines gives dn = an/(1 + n2). The general solution is therefore

y = Aex +Be−x +

∞∑
n=1

an cosnx

n2 + 1
.

However, the periodic boundary conditions demand that y(x) be periodic with period 2π, whereas the homo-
geneous solution is never periodic, and so A = B = 0. Alternatively, one can substitute the general solution
into the boundary conditions, and solve the resulting pair of algebraic equations to find these values of A and
B explicitly. Thus,

y =
4

π

∞∑
j=1

cos[(2j − 1)x]

[(2j − 1)2 + 1](2j − 1)2
.

The square wave: Find the Fourier series for

f(x) =

{
k for x > 0
−k for x < 0

, f(x) = f(x+ 2π).

We find

πa0 = k

∫ π

0

dx− k
∫ 0

−π
dx = 0, πan = k

∫ π

0

cosnx dx− k
∫ 0

−π
cosnx dx = 0

and

πbn = k

∫ π

0

sinnx dx− k
∫ 0

−π
sinnx dx =

2k

n
[1− (−1)n].

Hence (given bn = 0 for n even, and then setting n = 2j − 1 for n odd),

f(x) =
4k

π

∞∑
j=1

sin[(2j − 1)x]

(2j − 1)
=

4k

π

(
sinx+

1

3
sin 3x+

1

5
sin 5x+ ...

)
.

Note that the sawtooth is an even function (i.e. f(x) = f(−x)) and has bn = 0, whereas the square wave
is an odd function (i.e. f(x) = −f(−x)) and has a0 = an = 0. These are, in fact, general properties of even
and odd functions (which reduces by at least one half the degree of effort required to compute their Fourier
series!).
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Figure 1: The sawtooth and square wave. The functions are shown in (thick) red. The blue lines show
the Fourier series truncated at j = 1 (dashed), 2 (dotted), 3 (dash-dotted) and 8 (solid). Note the Gibbs
phenomenon for the square wave (residual oscillations in the truncated Fourier series).

Funks with Jumps

If f(x) has a discontinuity at x = a, the Fourier series converges to 1
2f(a−) + 1

2f(a+), where f(a−) is the
limit of f(x) as x approaches a from the left, and f(a+) is the limit of f(x) as x approaches a from the right.
Thus, if f(x) is defined to be anything other than 1

2f(a−) + 1
2f(a+) at the jump, the Fourier series will not

converge to f(x) at x = a.
At any jumps of f(x), the Fourier series displays persistent “ringing” if truncated at a finite number of terms

because smooth functions (i.e. sines and cosines) are being used to represent something that is discontinuous.
This is “Gibbs phenomenon”.

Even and odd functions

A function is even if f(x) = f(−x); it is odd if f(x) = −f(−x). In view of these properties∫ π

−π
(Even Function)dx = 2

∫ π

0

(Even Function)dx &

∫ π

−π
(Odd Function)dx = 0.

The cosine function is even (cos(−x) = cosx), and the sine function is odd (− sin(−x) = sinx).
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• Products of even function remain even; i.e. if f(x) and g(x) are both even, then f(x)g(x) is even.
• Products of odd function are also even: if f(x) and g(x) are both odd, then f(x)g(x) is even.
• The product of an even and an odd function is odd: if f(x) is even and g(x) is odd, then f(x)g(x) is odd.
All of these follow from switching the sign of x in the arguments and then using the properties of f and g.

Thus,∫ π

−π
(Even Function) cosnx dx = 2

∫ π

0

(Even Function) cosnx dx &

∫ π

−π
(Even Function) sinnx dx = 0,

and∫ π

−π
(Odd Function) cosnx dx = 0 &

∫ π

−π
(Odd Function) sinnx dx = 2

∫ π

0

(Odd Function) sinnx dx.

This means that for an even function, the coefficients of the sine terms of the Fourier series must vanish
(bn = 0), and

f(x) =
1

2
a0 +

∞∑
n=1

an cosnx with a0 =
2

π

∫ π

0

f(x)dx & an =
2

π

∫ π

0

f(x) cosnx dx.

This is called a “Fourier cosine series”.
Similarly, for an odd function, the constant and the coefficients of the cosine terms of the Fourier series

must vanish (a0 = an = 0), and

f(x) =

∞∑
n=1

bn sinnx with bn =
2

π

∫ π

0

f(x) sinnx dx.

This is called a “Fourier sine series”.

Fourier series for arbitrary period

A periodic function with period T = 2L can be represented by the Fourier series,

f(x) =
1

2
a0 +

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
with

a0 =
1

L

∫ L

−L
f(x)dx, an =

1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, bn =

1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx;

the proof follows as before, but using the alternative handy integrals∫ L

−L
cos
(nπx
L

)
dx =

∫ L

−L
sin
(nπx
L

)
dx =

∫ L

−L
cos
(nπx
L

)
sin
(mπx

L

)
dx = 0

∫ L

−L
cos
(nπx
L

)
cos
(mπx

L

)
dx =

∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx =

{
0, if n 6= m
L, if n = m

Again, even functions have the Fourier cosine series,

f(x) =
1

2
a0 +

∞∑
n=1

an cos
(nπx
L

)
, a0 =

2

L

∫ L

0

f(x)dx, an =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx,

and odd functions have the Fourier sine series,

f(x) =

∞∑
n=1

bn sin
(nπx
L

)
, bn =

2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.
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Figure 2: The even and odd periodic extensions of the function f(x) = x for 0 < x < π.

Extensions of functions

If a function f(x) is defined over the interval 0 < x < L, then it can be extended to −L < x < L as an
even function by defining f(x) = f(−x) for x < 0. Similarly, the function can be extended to −L < x < L as
an odd function by demanding that f(−x) = −f(x) for x < 0.

Both of these new functions can then be made periodic with period 2L by also demanding that f(x) =
f(x + 2L) = f(x − 2L) if x lies outside of the interval (−L,L). The first is the “even periodic extension” of
f(x) and is described by a Fourier cosine series. The second is the “odd periodic extension” of f(x) and has a
Fourier sine series.

The odd periodic extension of f(x) necessarily satisfies f(0−) + f(0+) = 0 and f(L−) + f(−L+) = 0. In
view of the periodicity condition f(x) = f(x ± 2L), the latter further implies that f(L−) + f(L+) = 0. The
Fourier series respresentation of the odd periodic extension of the function f(x) will therefore vanish at x = 0
and L. These ideas of extension are handy results when we start solving PDEs, allowing us to use Fourier
series theory to compute the coefficients of general solutions.
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